Dos Problemas De Combinatoria Geométrica: Triangulaciones

Total Page:16

File Type:pdf, Size:1020Kb

Dos Problemas De Combinatoria Geométrica: Triangulaciones Dos problemas de combinatoria geometrica:´ Triangulaciones eficientes del hipercubo; Grafos planos y rigidez. (Two problems in geometric combinatorics: Efficient triangulations of the hypercube; Planar graphs and rigidity). David Orden Mart´ın Universidad de Cantabria Tesis doctoral dirigida por el Profesor Francisco Santos Leal. Santander, Marzo de 2003. 2 ´Indice Agradecimientos iii Pre´ambulo v Preamble vii 1 Introducci´on y Preliminares 1 1.1 Triangulaciones y subdivisiones de politopos . 1 1.1.1 Preliminares sobre Teor´ıa de Politopos . 2 1.1.2 Triangulaciones de cubos . 6 1.2 Teor´ıa de Grafos . 11 1.2.1 Preliminares y relaciones con politopos . 11 1.2.2 Inmersiones planas de grafos: Teorema de Tutte . 15 1.3 Teor´ıa de Rigidez . 20 1.3.1 La matriz de rigidez . 20 1.3.2 Tensiones y grafos rec´ıprocos . 23 1.3.3 Rigidez infinitesimal y grafos isost´aticos . 26 1.4 Pseudo-triangulaciones de cuerpos convexos y puntos . 29 1.4.1 Pseudo-triangulaciones de cuerpos convexos . 29 1.4.2 Pseudo-triangulaciones de puntos . 31 1.5Resultados y Problemas abiertos . 35 1.5.1 Triangulaciones eficientes de cubos . 35 1.5.2 Grafos sin cruces, rigidez y pseudo-triangulaciones . 36 1 Introduction and Preliminaries 41 1.1 Triangulations and subdivisions of polytopes . 41 1.1.1 Preliminaries about Polytope Theory . 42 1.1.2 Triangulations of cubes . 46 1.2 Graph Theory . 50 1.2.1 Preliminaries and relations with polytopes . 51 1.2.2 Plane embeddings of graphs: Tutte’s Theorem . 54 1.3 Rigidity Theory . 59 1.3.1 The rigidity matrix . 59 1.3.2 Stresses and reciprocal graphs . 62 i ii 1.3.3 Infinitesimal rigidity and isostatic graphs . 65 1.4 Pseudo-triangulations of convex bodies and points . 67 1.4.1 Pseudo-triangulations of convex bodies . 68 1.4.2 Pseudo-triangulations of points . 69 1.5Results and Open problems . 73 1.5.1 Efficient triangulations of cubes . 73 1.5.2 Non-crossing graphs, rigidity and pseudo-triangulations . 74 2 Asymptotically efficient triangulations of the d-cube 79 2.1 Introduction . 79 2.2 Overview of the method and results . 82 ··· − − 2.3 Polyhedral subdivision of P ×∆k1+ +km 1 induced by one of P ×∆m 1 84 ··· − − 2.4 Triangulation of P × ∆k1+ +km 1 induced by one of P × ∆m 1 ... 86 2.5A triangulation of P × Q ........................ 88 2.6 Interpretation of our method via the Cayley Trick . 92 2.7 Computation of ρl,m ........................... 95 2.7.1 Smallest weighted efficiency of triangulations of I2 × ∆m−1 .95 2.7.2 Smallest weighted efficiency of triangulations of I3 × ∆m−1, for m =2, 3............................ 97 3 The polytope of non-crossing graphs on a planar point set 101 3.1 Introduction . 101 3.2 The graph of all pseudo-triangulations of A .............. 105 3.2.1 Marked non-crossing graphs on A. ............... 109 3.3 The polyhedron of marked non-crossing graphs on A ......... 110 3.4 Valid choices of f ............................. 116 3.5Points in special position . 120 3.5.1 The graph of all pseudo-triangulations of A .......... 120 3.5.2 The case with only interior collinearities . 123 3.5.3 Boundary collinearities . 128 4 Planar minimally rigid graphs and pseudo-triangulations 131 4.1 Introduction . 131 4.2 Embedding combinatorial pseudo-triangulations . 132 4.3 3-connectedness of G ........................... 137 4.4 Laman graphs admit c.p.p.t. labelings. 140 4.5Infinitesimally rigid graphs admit c.p.t. labelings. 145 5 Rigidity circuits, reciprocal diagrams and pseudo-triangulations 149 5.1 Introduction . 149 5.2 Non-crossing spherical frameworks with non-crossing reciprocals . 152 5.3 Proof of Theorems 5.2.1 and 5.2.3 . 154 5.4 Rigidity circuits. The case of pseudo-triangulations . 156 Agradecimientos Quiero expresar aqu´ı mi gratitud a todas las personas que de una u otra forma me han apoyado durante la realizaci´on de este trabajo. Muy especialmente a mis padres, pues entre lo mucho que les debo est´a el haber puesto siempre la mejor de sus voluntades para allanar el camino de la vida acad´emica que ahora termino. Tanto ellos como mi hermano aportaron palabras de aliento al d´ıaad´ıa de una investigaci´on que muchas veces les era lejana. Adem´as de su apoyo, a Encarna le agradezco tambi´en de una forma especial su compa˜n´ıa durante este tiempo. Mi reconocimiento es tambi´en para aquellos amigos y compa˜neros que, cada uno en su medida, colaboraron y pusieron en tantas ocasiones un necesario par´entesis en mi trabajo. Asimismo, quiero hacer constar mi gratitud por el apoyo, a menudo incomparable en lo profesional y personal, de Paco Santos, sin cuya gu´ıa este tra- bajo habr´ıa resultado a buen seguro mucho menos llevadero. Otros miembros del departamento, desde la entrada en esta facultad hasta hoy, facilitaron tambi´en mi andadura y me aportaron en ocasiones sus opiniones y consejos, por lo que les estoy agradecido. Finalmente, quiero mencionar a: G¨unter Ziegler, en cuyo grupo de la Technische Universit¨at Berlin realic´e una estancia en oto˜no de 2000. Emo Welzl y J¨urgen Richter-Gebert, que permitieron mi asistencia a sus cursos en el ETH de Z¨urich. Komei Fukuda y Marc Noy, quienes accedieron a recomendar mi investigaci´on. Jes´us de Loera, por su calurosa acogida durante mi estancia en la University of California at Davis en el oto˜no de 2001, y por ayudarme a intentar mejorar algunos c´alculos de esta tesis e invitarme a impartir una conferencia en Agosto de 2002. Ferr´an Hurtado, a cuya iniciativa debo tanto mi inclusi´on en una acci´on integrada de la Universitat Polit`ecnica de Catalunya como la solicitud de otras ayudas. Franz Aurenhammer, por aceptar mi estancia en la Technische Universit¨at Graz en el pr´oximo oto˜no. G¨unter Rote, que colabor´o en parte de los resultados de esta tesis. Ruth Haas, Brigitte Servatius, Hermann Servatius, Diane Souvaine, Ileana Streinu y Walter Whiteley tambi´en aportaron conversacionesutiles ´ a algunos de estos resultados. iii iv Pre´ambulo Esta tesis est´a dividida en dos partes independientes, aunque ambas proporcionan construcciones en combinatoria geom´etrica. En la primera parte, se aborda el estudio de m´etodos para construir triangulaciones “sencillas” de hipercubos de dimensi´on alta. Se ha demostrado que la obtenci´on de triangulaciones eficientes del d-cubo regular Id =[0, 1]d tiene aplicaciones de inter´es como el c´alculo de puntos fijos o la resoluci´on de ecuaciones diferenciales por m´etodos de elementos finitos. En particular, se ha dedicado especial atenci´on a tratar de determinar la triangulaci´on m´as peque˜na (en n´umero de s´ımplices 1 ) o, al menos, el comportamiento asint´otico de ese n´umero m´ınimo de s´ımplices. Los resultados previos se deben a Sallee (1984) y Haiman (1991). En el Cap´ıtulo 2 desarrollamos una construcci´on para obtener triangulaciones eficientes del producto de dos politopos generales. Aplicado al caso particular del producto de dos cubos, demostramos que este m´etodo mejora las cotas obtenidas por Haiman para el tama˜no asint´otico de una triangulaci´on del d-cubo. Nuestra construcci´on comienza con una triangulaci´on “eficiente” del producto entre un cubo y un s´ımplice de dimensiones peque˜nas. Este trabajo tiene una parte puramente te´orica (c´omo usar las triangulaciones de dimensi´on baja en objetos de dimensi´on alta) y una parte computacional (el c´alculo de la triangulaci´onoptima, ´ para nuestros prop´ositos, de los objetos de dimensi´on baja). La segunda parte de la tesis trata sobre las relaciones entre grafos planos, rigidez y pseudo-triangulaciones 2 de un conjunto de puntos en el plano. Estas´ tienen ricas propiedades combinatorias y han sido aplicadas con un amplia variedad de prop´ositos (planificaci´on de movimientos, visibilidad, estructuras de datos cin´eticas) durante la ultima´ d´ecada. En el Cap´ıtulo 3 consideramos un conjunto A de puntos en el plano y, utilizando propiedades que relacionan las pseudo-triangulaciones con la teor´ıa cl´asica de la rigidez (algunos de cuyos precursores son Euler y Cauchy), construimos un politopo simple cuyos v´ertices son todas las posibles pseudo-triangulaciones de A. Al contrario que las construcciones similares propuestas previamente para triangu- laciones, podemos describir completamente las ecuaciones de las facetas de nuestro politopo, lo que implica que se puede utilizar programaci´on lineal para optimizar funcionales sobre ´el. Por otro lado, la estructura de caras del politopo es esencial- mente la estructura de todos los grafos sin cruces que es posible dibujar en A.La 1Un d-s´ımplice es la envolvente convexa de d + 1 puntos af´ınmente independientes. 2Un pseudo-tri´angulo es un pol´ıgono simple con exactamente tres v´ertices convexos. v vi construcci´on del politopo sirve incluso para un conjunto de puntos en posici´on no general, lo que conduce a una definici´on natural de pseudo-triangulaci´on para ese caso. En cuanto a sus relaciones con rigidez, Streinu (2000) demostr´o que las pseudo- triangulaciones puntiagudas 3 son grafos planos minimalmente r´ıgidos. Demostramos que el inverso es tambi´en cierto: todo grafo plano minimalmente r´ıgido admite una inmersi´on como pseudo-triangulaci´on puntiaguda en R2, incluso bajo ciertas res- tricciones combinatorias como la imposici´on a priori de los tresangulos ´ convexos de cada cara. Este tipo de problemas de inmersi´on de grafos han sido ampliamente estudiados en la literatura, y nuestro resultado proporciona una caracterizaci´on de los grafos planos minimalmente r´ıgidos que se a˜nade a la debida a Laman.
Recommended publications
  • Spectral Conditions for Graph Rigidity in the Euclidean Plane
    Spectral conditions for graph rigidity in the Euclidean plane Sebastian M. Cioab˘a∗ and Xiaofeng Guy January 20, 2020 Abstract Rigidity is the property of a structure that does not flex. It is well studied in discrete geometry and mechanics and has applications in material science, engineering and biological sciences. A bar-and-joint framework is a pair (G; p) of graph G together with a map p of the vertices of G into the Euclidean d-space. We view the edges of (G; p) as bars and the vertices as universal joints. The vertices can move continuously as long as the distances between pairs of adjacent vertices are preserved. The framework is rigid if any such motion preserves the distances between all pairs of vertices. In 1970, Laman obtained a combina- torial characterization of rigid graphs in the Euclidean plane. In 1982, Lov´aszand Yemini discovered a new characterization and proved that every 6-connected graph is rigid in the Euclidean plane. Consequently, if Fiedler's algebraic connectivity is at least 6, then G is rigid. In this paper, we show that if G has minimum degree δ ≥ 6 and algebraic connectivity 1 greater than 2 + δ−1 , then G is rigid. We prove a more general result giving a necessary spectral condition for packing k edge-disjoint spanning rigid subgraphs. The same condition implies that a graph contains k edge-disjoint 2-connected spanning subgraphs. This result extends previous spectral conditions for packing edge-disjoint spanning trees. MSC: 05C50, 05C70 Key words: eigenvalue, algebraic connectivity, rigid graph, connectivity 1 Introduction In this paper, we consider finite undirected simple graphs.
    [Show full text]
  • Algorithms in Rigidity Theory with Applications to Protein Flexibility and Mechanical Linkages
    ALGORITHMS IN RIGIDITY THEORY WITH APPLICATIONS TO PROTEIN FLEXIBILITY AND MECHANICAL LINKAGES ADNAN SLJOKA A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS YORK UNIVERSITY, TORONTO, ONTARIO August 2012 ALGORITHMS IN RIGIDITY THEORY WITH APPLICATIONS TO PROTEIN FLEXIBILITY AND MECHANICAL LINKAGES by Adnan Sljoka a dissertation submitted to the Faculty of Graduate Studies of York University in partial fulfillment of the requirements for the degree of Doctor of Philosophy c 2012 Permission has been granted to: a) YORK UNIVERSITY LIBRARIES to lend or sell copies of this thesis in paper, microform or electronic formats, and b) LIBRARY AND ARCHIVES CANADA to reproduce, lend, distribute, or sell copies of this thesis any- where in the world in microform, paper or electronic formats and to authorize or pro- cure the reproduction, loan, distribution or sale of copies of this thesis anywhere in the world in microform, paper or electronic formats. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the authors written permission. ii .......... iii Abstract A natural question was asked by James Clark Maxwell: Can we count vertices and edges in a framework in order to make predictions about its rigidity and flexibility? The first complete combinatorial generalization for (generic) bar and joint frameworks in dimension 2 was confirmed by Laman in 1970. The 6jV j − 6 counting condition for 3-dimensional molecular structures, and a fast `pebble game' algorithm which tracks this count in the multigraph have led to the development of the program FIRST for rapid predictions of the rigidity and flexibility of proteins.
    [Show full text]
  • Some Inequalities for the Tutte Polynomial
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector European Journal of Combinatorics 32 (2011) 422–433 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Some inequalities for the Tutte polynomial Laura E. Chávez-Lomelí a, Criel Merino b,1, Steven D. Noble c, Marcelino Ramírez-Ibáñez b a Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Avenida San Pablo 180, colonia Reynosa Tamaulipas, Delegación Azcapotzalco, Mexico b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigación Científica, Circuito Exterior, C.U. Coyoacán 04510, México D.F., Mexico c Department of Mathematical Sciences, Brunel University, Kingston Lane, Uxbridge UB8 3PH, UK article info a b s t r a c t Article history: We prove that the Tutte polynomial of a coloopless paving matroid Received 22 February 2010 is convex along the portion of the line x C y D p lying in the Accepted 6 September 2010 positive quadrant. Every coloopless paving matroid is in the class Available online 29 December 2010 of matroids which contain two disjoint bases or whose ground set is the union of two bases. For this latter class we give a proof that TM .a; a/ ≤ maxfTM .2a; 0/; TM .0; 2a/g for a ≥ 2. We conjecture that TM .1; 1/ ≤ maxfTM .2; 0/; TM .0; 2/g for the same class of matroids. We also prove this conjecture for some families of graphs and matroids. ' 2010 Elsevier Ltd. All rights reserved. 1. Introduction The Tutte polynomial is a two-variable polynomial which can be defined for a graph G or more generally a matroid M.
    [Show full text]
  • Restricted String Representations
    Restricted String Representations by Martin Derka A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Computer Science Waterloo, Ontario, Canada, 2017 c Martin Derka 2017 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. ExternalExaminer DavidEppstein Professor Supervisor ThereseBiedl Professor InternalMember AnnaLubiw Professor InternalMember LapChiLau Associate Professor Internal-ExternalMember BruceRichter Professor ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract A string representation of a graph assigns to every vertex a curve in the plane so that two curves intersect if and only if the represented vertices are adjacent. This work investigates string representations of graphs with an emphasis on the shapes of curves and the way they intersect. We strengthen some previously known results and show that every planar graph has string representations where every curve consists of axis-parallel line segments with at most two bends (those are the so-called B2-VPG representations) and simultaneously two curves intersect each other at most once (those are the so-called 1-string representations). Thus, planar graphs are B2-VPG 1-string graphs. We further show that with some restrictions on the shapes of the curves, string representations can be used to produce approximation algorithms for several hard problems.
    [Show full text]
  • BIPARTITE RIGIDITY 1. Introduction 1.1. Three Basic Properties Of
    BIPARTITE RIGIDITY GIL KALAI, ERAN NEVO, AND ISABELLA NOVIK Abstract. We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k; l the notions of (k; l)-rigid and (k; l)-stress free bipartite graphs. This theory coincides with the study of Babson{Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, Gb, does not contain K3;3; equivalently, planar bipartite graphs are generically (2; 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes. 1. Introduction 1.1. Three basic properties of planar graphs. We start with three important results on planar graphs and a motivating conjecture in a higher dimension: Proposition 1.1 (Euler, Descartes). A simple planar graph with n ≥ 3 vertices has at most 3n − 6 edges. Proposition 1.2 (Wagner, Kuratowski (easy part)). A planar graph does not contain K5 and K3;3 as minors. The first result (that can be traced back to Descartes) is a simple consequence of Euler's theorem. The second result is the easy part of Wagner's characterization of planar graphs [41] which asserts that not having K5 and K3;3 as minors characterizes planarity. We will now state a third fundamental result on planar graphs.
    [Show full text]
  • Planar Minimally Rigid Graphs and Pseudo-Triangulations
    Planar Minimally Rigid Graphs and Pseudo-Triangulations Ruth Haas 1 David Orden 2 G¨unter Rote 3 Francisco Santos 2 Brigitte Servatius 4 Herman Servatius 4 Diane Souvaine 5 Ileana Streinu 6 and Walter Whiteley 7 Abstract Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (adjacent to an angle larger than π). In this paper we prove that the opposite state- ment is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embed- ding algorithms. They also provide - to the best of our knowledge - the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are described by combinatorial pseudo-triangulations, first defined and studied in this paper. Also of interest are our two proof techniques, one based on Henneberg inductive constructions from combinatorial rigidity theory, the other on a generalization of Tutte’s barycentric embeddings to directed graphs. 1 Introduction In this paper we bring together two classical topics in graph theory, planarity and rigidity, to answer the fundamental question (posed in [42]) of characterizing the class of planar graphs which admit pointed pseudo-triangular embeddings. Our main result is that this coincides with the class of all planar minimally rigid graphs (planar Laman graphs). Furthermore we extend the result in several directions, attacking the same type of question for other (not necessarily pointed) classes of pseudo-triangulations and for combinatorial pseudo-triangulations, a new class of objects first introduced and studied in this paper.
    [Show full text]
  • Flexible and Rigid Labelings of Graphs
    Submitted by Jan Legersk´y Submitted at Research Institute for Symbolic Computation Supervisor and First Examiner Josef Schicho Second Examiner Tibor Jord´an May 2019 Flexible and Rigid Labelings of Graphs Doctoral Thesis to obtain the academic degree of Doktor der technischen Wissenschaften in the Doctoral Program Technische Wissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenbergerstraße 69 4040 Linz, Osterreich¨ www.jku.at DVR 0093696 Eidesstattliche Erklärung Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdoku- ment identisch. Linz, Mai 2019 Jan Legerský iii Kurzfassung Rigiditätstheorie untersucht ebene und räumliche Realisierungen von Graphen, die gege- benen Bedingungen durch Kantenlängen genügen. Eine Realisierung ist mit einer Kan- tenbeschriftung kompatibel, wenn die euklidische Distanz zwischen zwei adjazenten Knoten gleich der Beschriftung dieser Kante ist. Wir sagen, dass zwei Realisierun- gen kongruent sind, wenn sie sich nur durch starre Transformationen unterscheiden. Beschriftungen mit unendlich vielen nicht-kongruenten kompatiblen Realisierungen hei- ßen flexibel, wohingegen jene mit einer positiven endlichen Anzahl an Realisierungen starr genannt werden. Ein Graph heißt generisch starr, wenn die durch eine generische Realisierung in- duzierte Beschriftung starr ist. Ein solcher Graph kann aber trotzdem eine nicht- generische flexible Beschriftung haben. Der Fokus dieser Arbeit ist es diese nicht- generischen flexiblen Beschriftungen zu untersuchen. Wir zeigen, dass eine flexible Beschriftung genau dann existiert, wenn es eine so genannte NAC-Färbung gibt. Diese NAC-Färbung ist eine Färbung der Kanten in rot und blau, sodass jeder Zyklus des Graphen entweder einfärbig ist oder darin von jeder Farbe mindestens zwei Kanten existieren.
    [Show full text]
  • On Rigidity of Graphs
    On Rigidity of Graphs Bachelor Thesis of Oliver Suchan at the Department of Informatics Institute of Theoretical Informatics Reviewers: Prof. Dr. Dorothea Wagner Prof. Dr. Peter Sanders Advisors: Dr. Torsten Ueckerdt Marcel Radermacher, M. Sc. Time Period: 05.11.2018 – 04.03.2019 KIT – The Research University in the Helmholtz Association www.kit.edu Acknowledgement I would like to thank my advisors Dr. Torsten Ueckerdt and Marcel Radermacher for many hours of sharing and discussing ideas. Statement of Authorship I hereby declare that this thesis has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, March 4, 2019 iii Abstract A rigid framework refers to an embedding of a graph, in which each edge is represented by a straight line. Additionally, the only continuous displacements of the vertices, that maintain the lengths of all edges, are isometries. If the edge lengths are allowed to only be perturbed in first order, the framework is called infinitesimally rigid. In this thesis the degrees of freedom of a certain, new type of rigidity, called edge-x- rigidity, for a given framework in the 2-dimensional Euclidean space are examined. It does not operate on the length of an edge, but on the intersection of an edge’s support line and the x-axis. This may then help to determine the class of graphs where every edge intersection with the x-axis can be repositioned along the x-axis, such that there still exists a framework that satisfies these position constraints. Deutsche Zusammenfassung Ein starres Fachwerk bezeichnet eine Einbettung eines Graphen - bei der jede Kante durch ein gerade Linie repräsentiert wird - und es keine stetige nicht-triviale Verschiebung der Knoten gibt, welche die Längen aller Kanten gleich lässt.
    [Show full text]
  • Avis, David; Katoh, Naoki; Ohsaki, Makoto; Streinu, Ileana; Author(S) Tanigawa, Shin-Ichi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Enumerating Constrained Non-crossing Minimally Rigid Title Frameworks Avis, David; Katoh, Naoki; Ohsaki, Makoto; Streinu, Ileana; Author(s) Tanigawa, Shin-ichi Citation Discrete and Computational Geometry (2008), 40(1): 31-46 Issue Date 2008-07 URL http://hdl.handle.net/2433/84862 Right The original publication is available at www.springerlink.com. Type Journal Article Textversion author Kyoto University Enumerating Constrained Non-crossing Minimally Rigid Frameworks David Avis 1 Naoki Katoh 2 Makoto Ohsaki 2 Ileana Streinu 3 Shin-ichi Tanigawa 2 April 25, 2007 Abstract In this paper we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks under edge constraints, which we call constrained non-crossing Laman frameworks, on a given set of n points in the plane. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of all the constrained non-crossing Laman frameworks on a given point set is connected by flips which preserve the Laman property. Key words: geometric enumeration; rigidity; constrained non-crossing minimally rigid frameworks; constrained Delaunay triangulation. 1 Introduction Let G be a graph with vertices {1,...,n} and m edges. G is a Laman graph if m = 2n − 3 and every subset of n′ ≤ n vertices spans at most 2n′ − 3 edges.
    [Show full text]
  • Rigid and Generic Structures
    RIGID AND GENERIC STRUCTURES by Garn Cooper B.Sc.(Hons) Submitted in fulfilment of the requirements for the degree of Master of Science University of Tasmania February, 1993 This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief this thesis contains no material previously published or written by another person, except when due reference is made in the text of the thesis. /(9 Abstract This thesis is an examination of infinitesimal rigidity in generic structures using linear algebra and matroid theory techniques. The structures examined are bar and joint structures in 1, 2 and 3 dimensions, and hinged panel structures. The focus of this work is a conjectured environment for higher dimensional analogues of Laman's theorem, and some light is consequently shed on the quest for a combinatorial characterisation of (generic) rigid bar and joint structures in three dimensions. Towards completing this thesis Don helped as supervisor, Betty helped type it, Kym helped computer it, and Robyn helped illustrate it. Contents Introduction 1 Preamble 12 Chapter 1 — Defining Rigidity 16 Chapter 2 — Rigidity in 012 32 Chapter 3 — Genericity 40 Chapter 4 — Generic Rigidity in R 2 47 Chapter 5 — Rigidity in 013 63 Chapter 6 — Hinged Panel Structures 72 Conclusions 86 Reference List 93 Introduction. Consider a triangular framework and a square framework in a plane, for which the edges are inflexible rods which are joined at the vertices by universal joints. The latter is flexible in the plane since it can deform into the shape of a rhombus.
    [Show full text]
  • Minimally Rigid Graphs and Pseudo-Triangulations
    Computational Geometry 31 (2005) 31–61 www.elsevier.com/locate/comgeo Planar minimally rigid graphs and pseudo-triangulations Ruth Haas a, David Orden b,1, Günter Rote c,2, Francisco Santos d,1, Brigitte Servatius e, e f,3 g, ,4 h,5 Herman Servatius , Diane Souvaine , Ileana Streinu ∗ , Walter Whiteley a Department of Mathematics, Smith College, Northampton, MA 01063, USA b Departamento de Matemáticas, University of Alcalá de Henares, E-28871 Alcalá de Henares, Spain c Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany d Departamento de Matemáticas, Estadistica y Computacion, Universidad de Cantabria, E-39005 Santander, Spain e Mathematics Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA f Department of Computer Science, Tufts University, Medford, MA, USA g Department of Computer Science, Smith College, Northampton, MA 01063, USA h Department of Mathematics and Statistics, York University, Toronto, Canada Received 1 July 2003; received in revised form 28 May 2004; accepted 7 July 2004 Available online 2 December 2004 Communicated by D.M. Mount Abstract Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (ad- jacent to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embedding algorithms. They also provide the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are described by combinatorial pseudo-triangulations, first defined and studied in this paper.
    [Show full text]
  • The Maximum Matroid for a Graph
    The Maximum Matroid for a Graph Meera Sitharam and Andrew Vince University of Florida Gainesville, FL, USA [email protected] Abstract The ground set for all matroids in this paper is the set of all edges of a complete graph. The notion of a maximum matroid for a graph is introduced. The maximum matroid for K3 (or 3-cycle) is shown to be the cycle (or graphic) matroid. This result is persued in two directions - to determine the maximum matroid for the m-cycle and to determine the maximum matroid for the complete graph Km. While the maximum matroid for an m-cycle is determined for all m ≥ 4; the determination of the maximum matroids for the complete graphs is more complex. The maximum matroid for K4 is the matroid whose bases are the Laman graphs, related to structural rigidity of frameworks in the plane. The maximum matroid for K5 is related to a famous 153 year old open problem of J. C. Maxwell. An Algorithm A is provided, whose input is a given graph G and whose output is a matroid MA(G), defined in terms of its closure operator. The matroid MA(G) is proved to be the maximum matroid for G, implying that every graph has a unique maximum matroid. Keywords: graph, matroid, framework Mathematical subject codes: 05B35, 05C85, 52C25 1 Introduction Fix n and let Kn be the complete graph on n vertices. A graph in this paper is a subset E of the edge set E(Kn) of Kn. The number of edges of a graph E is denoted jEj and graph isomorphism by ≈.
    [Show full text]