The Sylow Subgroups of the Symmetric Group*

Total Page:16

File Type:pdf, Size:1020Kb

The Sylow Subgroups of the Symmetric Group* THE SYLOWSUBGROUPS OF THE SYMMETRICGROUP* BY WILLIAM FINDLAY In the Sylow theorems f we learn that if the order of a group 2Í is divisible hj pa (p a prime integer) and not by jo*+1, then 31 contains one and only one set of conjugate subgroups of order pa, and any subgroup of 21 whose order is a power of p is a subgroup of some member of this set of conjugate subgroups of 2Í. These conjugate subgroups may be called the Sylow subgroups of 21. It will be our purpose to investigate the Sylow subgroups of the symmetric group of substitutions. By means of a preliminary lemma the discussion will be reduced to the case where the degree of the symmetric group is a power (pa) of the prime (p) under consideration. A set of generators of the group having been obtained, they are found to set forth, in the notation suggested by their origin, the complete imprimitivity of the group. The various groups of substitutions upon the systems of imprimi- tivity, induced by the substitutions of the original group, are seen to be them- selves Sylow subgroups of symmetric groups of degrees the various powers of p less than p". They are also the quotient groups under the initial group of an important series of invariant subgroups. In terms of the given notation convenient exhibitions are obtained of the commutator series of subgroups and also of all subgroups which may be consid- ered as the Sylow subgroups of symmetric groups of degree a power of p. Enumerations are made of the substitutions of periods p and p" and the con- jugacy relations of the latter set of substitutions are discussed. The subgroup consisting of all substitutions invariant under the main group is cyclic and of order p. The full set of conjugate Sylow subgroups of the symmetric group on p" letters fall into 7P-^- (a=j.«-1+J)«-J+---+J) + l) (piy classes each consisting of {(p — 2 ) ! }■ groups having the same complete system of imprimitivity. * Presented to the Society February 27, 1904. Received for publication June 20, 1903. tMathematische Annalen, vol. 5 (1873), page 584. 263 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 264 w. findlay: the sylow [July § 1. Lemma. We define the function it ( n, p ) of p any prime and n any integer, as the exponent of the highest power of p occurring as a factor of n !. If we impose the restriction that no power of p shall occur in the summation more than p — 1 times, n is uniquely expressible in the form n = '¿p"<, a^O. i=i We have the relation * n — k ■>r(n>P)=j^l- In particular Va — 1 "(pa>p) = j^ri> and therefore k Tr(n,p) = Y<Tr(pai,p)- § 2. Reduction of the problem. Throughout this paper, German capitals will be used to denote groups and the corresponding Boman capitals to represent substitutions; thus, 2i£ represents a group of degree a and order a and its substitutions will in general be denoted by Aj, A2, • • •. The symmetric group of degree n will be denoted by ©" and its Sylow subgroup of order a power of p, by ^jß". The letter E, with suffixes, will be used for the elements of ?ß which are considered as its generators. Our main problem is to find one subgroup ^5" of ©", having order p"^n'PK If a<c, any substitution, or group of substitutions on a letters — we will speak of the objects upon which the substitution is performed as letters — may properly be considered as an element or subgroup of &. Given a number of groups J*a, "0/3 ' ' ' "> í\c > if we consider the letters of the different groups as wholly distinct and the groups as subgroups of <Bm,m = a + b+.-- + k, then their least common overgroup consists of the totality of products of the form AB..-K and its order is a- ß •• -k. By the lemma of § 1, we can find a set of powers of p, say „ai „oj „a, P , P , , P , such that 1) « = ¿i>aS * Bachmann, Zahlentheorie, I, p. 33. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1904] SUBGROUPS OF THE SYMMETRIC GROUP 265 r 2) ■n-(n,p) = '£lTr(pai,p). i=X Distributing the n letters of <Sn into r sets containing p"x, p"1, • • •, p"r letters, respectively, we see that ty" is the least common overgroup of a set of Sylow subgroups * *P** (i = l,2,3,---,r). Since it is also a subgroup of !^pa, pa~>n, it may be considered sufficient to investigate only the case where n is a power of p. § 3. Generation of a $£,,., p). f We shall obtain ty1" by an inductive process, assuming the knowledge of a çqp«-x. Distribute the p" letters into p corresponding sets each containing p"~l letters. This we may indicate by the notation for the letters L4J (¿ = 1,2, ■■■,p;j = l, 2,3, •••,p-1). Let 21' be a ty1"'1 on the letters Ljtj. Transforming this by the p substitutions O _ /■^'l,l» ""1,2» ' ' " ' -kl.po-l \ (¿=1,2, ■■;p), ' \Li,l» Li,2, •*•» Lí,í>«-1/ we obtain a series of groups 21', 21", 21" ■• • $1^, whose least common overgroup D (§ 2) is of degree p" and order pP.*(.P"-x, p). Now ■>r(pa-l,p)=pa-2+?"-*+ ■■■+P + 1- Therefore the degree of D is p7t(.P",p)-l. The substitution E -("£•■■)• where h = i + 1, mod. p, l=h=p,i=l,2,b',---,p, has the following properties : 1) E-1A»E = Aw. Therefore the product of two substitutions of the form QE* may again be expressed in the same form. * Cf. G. A. Miller, On the Transitive Substitution Groups whose order is a power of a Prime Number, American Journal of Mathematics, vol. 23 (1901), p. 176. fCf. Netto, Theory of substitutions (translated by Cole), I 39, page 41. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 266 w. findlay: the sylow [July 2) If Q changes L^- into L¿ g, then QE* will change L^ to LA g where h m i + k, mod. p. Therefore QE*- Q'E*' if, and only if, Q = Q' and k m k, mod. p. Hence it follows that the totality of substitutions of the form QE4 constitute a group of order which is therefore a ^5P". The process of induction obtained above is to be conceived of as beginning with a = 1. The Q in this case is the identity substitution. For the full application of the induction it is required that the original pa letters be dis- tributed into p sets, which we shall call the subsets of order one, then each of these into p subsets of order two, each of the latter subsets into p subsets of order three, and so on until finally we have the subsets of order a consist- ing of one letter each. The required correspondence between the letters in the p subsets of order h + 1 into which any subset of order h is divided is to be obtained by ordering the p subdivisions at each stage. For convenience the totality of the p" letters will be spoken of as the subset of order 0. All these requirements are met by the following a-partite suffix notation : ■k{»i,»>.U» where 1 =6;=^(i = l,2, • • •, a). The first g elements in the suffix define the subset of order g to which the letter belongs, the (g + l)th suffix which of the p subsets of this division con- tains it and the remaining a — g — 1 elements serve to establish the required correspondence of these p subsets of order g + 1. Here g has the range gr=0,l,2,...,a-l. The E required to obtain a particular ^S**""'(0=^ = a — 1), (say that which acts upon the subset of order g whose letters have cx, c2, • ■-, c as the first g elements in their suffix), from the p sp,**"""""1upon the p subsets of order g + 1 contained in the above, will be "P _ "P _.( ""{»I,»».K) \ "'- <C"C2.*>"V""' LKd2.dy ■■)' where dgJrX==bgJrX+ l(moc\.p)xtbi = ci(i=l, 2,-..,g), dg+x= bg+x,if for some i, in i — 1, 2, •••, g, bf + et, df— bj (j = l,2,---,g,g + 2,---,a). Hereafter we shall use a , ß , y , etc., as symbols for gr-partite numbers with elements a., b., e\, etc. The general g'-partite number with elements having range 1, 2, 3, • • •, p will be denoted by X m {lt, lt, • • •, I ) and the totality License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 1904] SUBGROUPS OF THE SYMMETRIC GROUP 267 of these, p" in number, will be denoted by A . For g = 0 we have but one E which we may denote by E0. The totality of E, 'a (g = 0, 1, •••, a — 1), in number a-l f(p,»í)-Zí?. 17=0 constitute a system of generators of a 1^°. § 4. A normal form for the general P. We shall say that X^is contained in X'hii 1) g <.h, 2) l.= l't (i = 1, 2, ■• ■,g). If X and \'h are not the same and neither one contains the other they will be said to be independent.
Recommended publications
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • Orders on Computable Torsion-Free Abelian Groups
    Orders on Computable Torsion-Free Abelian Groups Asher M. Kach (Joint Work with Karen Lange and Reed Solomon) University of Chicago 12th Asian Logic Conference Victoria University of Wellington December 2011 Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 1 / 24 Outline 1 Classical Algebra Background 2 Computing a Basis 3 Computing an Order With A Basis Without A Basis 4 Open Questions Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 2 / 24 Torsion-Free Abelian Groups Remark Disclaimer: Hereout, the word group will always refer to a countable torsion-free abelian group. The words computable group will always refer to a (fixed) computable presentation. Definition A group G = (G : +; 0) is torsion-free if non-zero multiples of non-zero elements are non-zero, i.e., if (8x 2 G)(8n 2 !)[x 6= 0 ^ n 6= 0 =) nx 6= 0] : Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 3 / 24 Rank Theorem A countable abelian group is torsion-free if and only if it is a subgroup ! of Q . Definition The rank of a countable torsion-free abelian group G is the least κ cardinal κ such that G is a subgroup of Q . Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 4 / 24 Example The subgroup H of Q ⊕ Q (viewed as having generators b1 and b2) b1+b2 generated by b1, b2, and 2 b1+b2 So elements of H look like β1b1 + β2b2 + α 2 for β1; β2; α 2 Z.
    [Show full text]
  • 14.2 Covers of Symmetric and Alternating Groups
    Remark 206 In terms of Galois cohomology, there an exact sequence of alge- braic groups (over an algebrically closed field) 1 → GL1 → ΓV → OV → 1 We do not necessarily get an exact sequence when taking values in some subfield. If 1 → A → B → C → 1 is exact, 1 → A(K) → B(K) → C(K) is exact, but the map on the right need not be surjective. Instead what we get is 1 → H0(Gal(K¯ /K), A) → H0(Gal(K¯ /K), B) → H0(Gal(K¯ /K), C) → → H1(Gal(K¯ /K), A) → ··· 1 1 It turns out that H (Gal(K¯ /K), GL1) = 1. However, H (Gal(K¯ /K), ±1) = K×/(K×)2. So from 1 → GL1 → ΓV → OV → 1 we get × 1 1 → K → ΓV (K) → OV (K) → 1 = H (Gal(K¯ /K), GL1) However, taking 1 → µ2 → SpinV → SOV → 1 we get N × × 2 1 ¯ 1 → ±1 → SpinV (K) → SOV (K) −→ K /(K ) = H (K/K, µ2) so the non-surjectivity of N is some kind of higher Galois cohomology. Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but SpinV (K) → SOV (K) need NOT be onto. Example 208 Take O3(R) =∼ SO3(R)×{±1} as 3 is odd (in general O2n+1(R) =∼ SO2n+1(R) × {±1}). So we have a sequence 1 → ±1 → Spin3(R) → SO3(R) → 1. 0 × Notice that Spin3(R) ⊆ C3 (R) =∼ H, so Spin3(R) ⊆ H , and in fact we saw that it is S3. 14.2 Covers of symmetric and alternating groups The symmetric group on n letter can be embedded in the obvious way in On(R) as permutations of coordinates.
    [Show full text]
  • Representations of the Infinite Symmetric Group
    Representations of the infinite symmetric group Alexei Borodin1 Grigori Olshanski2 Version of February 26, 2016 1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia 2 Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia National Research University Higher School of Economics, Moscow, Russia Contents 0 Introduction 4 I Symmetric functions and Thoma's theorem 12 1 Symmetric group representations 12 Exercises . 19 2 Theory of symmetric functions 20 Exercises . 31 3 Coherent systems on the Young graph 37 The infinite symmetric group and the Young graph . 37 Coherent systems . 39 The Thoma simplex . 41 1 CONTENTS 2 Integral representation of coherent systems and characters . 44 Exercises . 46 4 Extreme characters and Thoma's theorem 47 Thoma's theorem . 47 Multiplicativity . 49 Exercises . 52 5 Pascal graph and de Finetti's theorem 55 Exercises . 60 6 Relative dimension in Y 61 Relative dimension and shifted Schur polynomials . 61 The algebra of shifted symmetric functions . 65 Modified Frobenius coordinates . 66 The embedding Yn ! Ω and asymptotic bounds . 68 Integral representation of coherent systems: proof . 71 The Vershik{Kerov theorem . 74 Exercises . 76 7 Boundaries and Gibbs measures on paths 82 The category B ............................. 82 Projective chains . 83 Graded graphs . 86 Gibbs measures . 88 Examples of path spaces for branching graphs . 91 The Martin boundary and Vershik{Kerov's ergodic theorem . 92 Exercises . 94 II Unitary representations 98 8 Preliminaries and Gelfand pairs 98 Exercises . 108 9 Spherical type representations 111 10 Realization of spherical representations 118 Exercises .
    [Show full text]
  • The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
    (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication.
    [Show full text]
  • Semigroups and Monoids 
    S Luis Alonso-Ovalle // Contents Subgroups Semigroups and monoids Subgroups Groups. A group G is an algebra consisting of a set G and a single binary operation ◦ satisfying the following axioms: . ◦ is completely defined and G is closed under ◦. ◦ is associative. G contains an identity element. Each element in G has an inverse element. Subgroups. We define a subgroup G0 as a subalgebra of G which is itself a group. Examples: . The group of even integers with addition is a proper subgroup of the group of all integers with addition. The group of all rotations of the square h{I, R, R0, R00}, ◦i, where ◦ is the composition of the operations is a subgroup of the group of all symmetries of the square. Some non-subgroups: SEMIGROUPS AND MONOIDS . The system h{I, R, R0}, ◦i is not a subgroup (and not even a subalgebra) of the original group. Why? (Hint: ◦ closure). The set of all non-negative integers with addition is a subalgebra of the group of all integers with addition, because the non-negative integers are closed under addition. But it is not a subgroup because it is not itself a group: it is associative and has a zero, but . does any member (except for ) have an inverse? Order. The order of any group G is the number of members in the set G. The order of any subgroup exactly divides the order of the parental group. E.g.: only subgroups of order , , and are possible for a -member group. (The theorem does not guarantee that every subset having the proper number of members will give rise to a subgroup.
    [Show full text]
  • More on the Sylow Theorems
    MORE ON THE SYLOW THEOREMS 1. Introduction Several alternative proofs of the Sylow theorems are collected here. Section 2 has a proof of Sylow I by Sylow, Section 3 has a proof of Sylow I by Frobenius, and Section 4 has an extension of Sylow I and II to p-subgroups due to Sylow. Section 5 discusses some history related to the Sylow theorems and formulates (but does not prove) two extensions of Sylow III to p-subgroups, by Frobenius and Weisner. 2. Sylow I by Sylow In modern language, here is Sylow's proof that his subgroups exist. Pick a prime p dividing #G. Let P be a p-subgroup of G which is as large as possible. We call P a maximal p-subgroup. We do not yet know its size is the biggest p-power in #G. The goal is to show [G : P ] 6≡ 0 mod p, so #P is the largest p-power dividing #G. Let N = N(P ) be the normalizer of P in G. Then all the elements of p-power order in N lie in P . Indeed, any element of N with p-power order which is not in P would give a non-identity element of p-power order in N=P . Then we could take inverse images through the projection N ! N=P to find a p-subgroup inside N properly containing P , but this contradicts the maximality of P as a p-subgroup of G. Since there are no non-trivial elements of p-power order in N=P , the index [N : P ] is not divisible by p by Cauchy's theorem.
    [Show full text]
  • The Sylow Theorems and Classification of Small Finite Order Groups
    Union College Union | Digital Works Honors Theses Student Work 6-2015 The yS low Theorems and Classification of Small Finite Order Groups William Stearns Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Stearns, William, "The yS low Theorems and Classification of Small Finite Order Groups" (2015). Honors Theses. 395. https://digitalworks.union.edu/theses/395 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. THE SYLOW THEOREMS AND CLASSIFICATION OF SMALL FINITE ORDER GROUPS WILLIAM W. STEARNS Abstract. This thesis will provide an overview of various topics in group theory, all in order to accomplish the end goal of classifying all groups of order up to 15. An important precursor to classifying finite order groups, the Sylow Theorems illustrate what subgroups of a given group must exist, and constitute the first half of this thesis. Using these theorems in the latter sections we will classify all the possible groups of various orders up to isomorphism. In concluding this thesis, all possible distinct groups of orders up to 15 will be defined and the groundwork set for further study. 1. Introduction The results in this thesis require some background knowledge and motivation. To that end, material covered in an introductory course on abstract algebra should be sufficient. In particular, it is assumed that the reader is familiar with the concepts and definitions of: group, subgroup, coset, index, homomorphism, and kernel.
    [Show full text]
  • 6 Permutation Groups
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S) be the collection of all mappings from S into S. In this section, we will emphasize on the collection of all invertible mappings from S into S. The elements of this set will be called permutations because of Theorem 2.4 and the next definition. Definition 6.1 Let S be a nonempty set. A one-to-one mapping from S onto S is called a permutation. Consider the collection of all permutations on S. Then this set is a group with respect to composition. Theorem 6.1 The set of all permutations of a nonempty set S is a group with respect to composition. This group is called the symmetric group on S and will be denoted by Sym(S). Proof. By Theorem 2.4, the set of all permutations on S is just the set I(S) of all invertible mappings from S to S. According to Theorem 4.3, this set is a group with respect to composition. Definition 6.2 A group of permutations , with composition as the operation, is called a permutation group on S. Example 6.1 1. Sym(S) is a permutation group. 2. The collection L of all invertible linear functions from R to R is a permu- tation group with respect to composition.(See Example 4.4.) Note that L is 1 a proper subset of Sym(R) since we can find a function in Sym(R) which is not in L, namely, the function f(x) = x3.
    [Show full text]
  • Countable Torsion-Free Abelian Groups
    COUNTABLE TORSION-FREE ABELIAN GROUPS By M. O'N. CAMPBELL [Received 27 January 1959.—Read 19 February 1959] Introduction IN this paper we present a new classification of the countable torsion-free abelian groups. Since any abelian group 0 may be regarded as an extension of a periodic group (namely the torsion part of G) by a torsion-free group, and since there exists the well-known complete classification of the count- able periodic abelian groups due to Ulm, it is clear that the classification problem studied here is of great interest. By a group we shall always mean an abelian group, and the additive notation will be employed throughout. It is well known that all the maximal linearly independent sets of elements of a given group are car- dinally equivalent; the corresponding cardinal number is the rank of the group. Derry (2) and Mal'cev (4) have studied the torsion-free groups of finite rank only, and have given classifications of these groups in terms of certain equivalence classes of systems of matrices with £>-adic elements. Szekeres (5) attempted to abolish the finiteness restriction on rank; he extracted certain invariants, but did not derive a complete classification. By a basis of a torsion-free group 0 we mean any maximal linearly independent subset of G. A subgroup generated by a basis of G will be called a basal subgroup or described as basal in G. Thus U is a basal sub- group of G if and only if (i) U is free abelian, and (ii) the factor group G/U is periodic.
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]