Prediction and Analysis of Stochastic Convergence in the Standard And
Total Page:16
File Type:pdf, Size:1020Kb
Prediction and Analysis of Stochastic Convergence in the Standard and Extrapolated Power Methods Applied to Monte Carlo Fission Source Iterations by Bryan Elmer Toth A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering and Radiological Sciences) in the University of Michigan 2018 Doctoral Committee: Professor William R. Martin, Chair Dr. David P. Griesheimer, Bettis Atomic Power Laboratory Professor James Paul Holloway Professor Edward W. Larsen Professor Divakar Viswanath Bryan Elmer Toth [email protected] ORCID iD: 0000-0003-4219-5531 © Bryan Elmer Toth 2018 Dedication This dissertation is dedicated to the “best family ever” (A. Toth, personal communication, 2014). ii Acknowledgements The author would like to acknowledge that portions of this research were performed under appointment to the Rickover Graduate Fellowship Program sponsored by the Naval Reactors Division of the U.S. Department of Energy and the Nuclear Regulatory Commission Fellowship Program. iii Table of Contents Dedication...........................................................................................................................iii Acknowledgements.............................................................................................................iv List of Tables.....................................................................................................................vii List of Figures.....................................................................................................................ix List of Appendices............................................................................................................xix Abstract..............................................................................................................................xx Chapter 1 . Introduction.......................................................................................................1 1.1 Neutron Transport.......................................................................................................3 1.2 Power Method............................................................................................................8 1.3 Extrapolation..............................................................................................................9 1.4 Prior MC Extrapolation Research............................................................................14 Chapter 2 . Spectral Analysis of Standard and Extrapolated Monte Carlo........................18 2.1 Monte Carlo Eigenvalue Calculations......................................................................19 2.2 Expectations from the Stochastic Power Method.....................................................22 2.3 Expectations from Stochastic Extrapolation............................................................30 2.4 Implementation of Extrapolation..............................................................................33 2.5 Convergence Comparison.........................................................................................42 2.6 Estimating the Initial Source Bank Decomposition Coefficients.............................60 2.6.1 Decomposition Coefficients of Initial Starting Source from Prior Simulation...67 Chapter 3 . Monte Carlo Noise..........................................................................................68 3.1 Normality of the Decomposition Coefficients..........................................................69 3.1.1 Normality Under Analog Transport....................................................................70 3.1.2 Normality Under Implicit Capture......................................................................71 3.1.3 Normality of the Source Bank Decomposition Coefficients...............................75 iv 3.2 Verifying Gaussian Nature of Decomposition Coefficients.....................................75 3.3 Validation of Variance from Constant Multiplier Model..........................................85 3.3.1 Calculating the Representative Variances...........................................................85 3.3.2 Standard Power Method Converged Variances...................................................93 3.3.3 Extrapolated Power Method Converged Variances...........................................103 3.4 Estimating Representative Variances......................................................................112 3.4.1 Estimating Representative Variances Using the Eigenvectors..........................113 3.4.2 Estimating Representative Variances Without Eigenvectors............................130 Chapter 4 . Identifying, Predicting, and Optimizing Convergence..................................140 4.1 Defining Modal Convergence Measure..................................................................141 4.2 Defining a Modal Convergence Diagnostic...........................................................148 4.3 Selecting the Extrapolation Cutoff Cycle...............................................................160 Chapter 5 . Summary and Conclusions............................................................................177 Appendices.......................................................................................................................180 Bibliography....................................................................................................................193 v List of Tables Table 2.6.1: Parameters of 256-bin uniform slab with initial source in left-most bin.......62 Table 2.6.2: Properties of exponential fit to variances of Y/β1 estimates from cycles 401 to 1000 of uniform slab simulations with various numbers of histories per cycle. ........................................................................................................................64 Table 3.1.2.1: Events contributing to the moment expectation value................................73 Table 3.4.2.1: Representative variance ranges of non-fundamental modes from several test problems.................................................................................................135 Table 3.4.2.2: Estimated spectral mean variances of several test problems, which are compared with their empirically determined reference values.....................139 Table 4.2.1: Minimum number of discarded cycles for different modal relative entropy convergence criteria applied to the second mode of the uniform slab in Appendix A...................................................................................................158 Table 4.3.1: Parameters of uniform slab problem with 33-mode starting source that are used to predict the number of discarded cycles............................................171 Table 4.3.2: Number of discard cycles, mn,discard, required to converge various modes of the uniform slab problem for Dmax=3.18E-1 with mn,cutoff=100 along with relevant properties of the SBDC PDFs after their first sufficiently converged cycles. ......................................................................................................................171 Table 4.3.3: Number of discard cycles, mn,discard, required to converge various modes of the uniform slab problem for Dmax=5.0E-3 with mn,cutoff=100 along with relevant properties of the DC PDFs after their first sufficiently converged cycles....172 Table 4.3.4: While holding constant T=100 and α=1.0 the number of discard cycles were calculated for various eigenvalue ratios satisfying Dmax=5.0E-3..................178 Table 4.3.5: While holding constant T=0.0 and α=1.0, the number of discard cycles were vi calculated for various eigenvalue ratios satisfying Dmax=5.0E-3..................178 Table 4.3.6: While holding constant λn /λ1 = 0.99 and α=1.0, the number of discard cycles were calculated for various values of the grouped coefficient satisfying Dmax=5.0E-3..................................................................................................179 Table 4.3.7: While holding constant T=100 and λn /λ1 = 0.99, the number of discarded cycles were calculated for various extrapolation parameters satisfying Dmax=5.0E-3..................................................................................................179 Table A.1: Eigenvalues and eigenvalue ratios of the uniform slab..................................186 Table B.1: Macroscopic cross sections of the uniform slab.............................................188 Table D.1: Eigenvalues and eigenvalue ratios of the double peak slab...........................194 vii List of Figures Figure 1.3.1 The decay coefficient (1.3.10) and convergence rate (1.3.11) versus eigenvalue ratio for several different levels of extrapolation and the standard power method.................................................................................................13 Figure 2.2.1. Empirical data collected from a highly scattering uniform slab for the LHS and RHS of (2.2.21) for several non-fundamental modes..............................26 Figure 2.2.2. Uniform slab second mode expected DC versus cycle as estimated with empirical data, with constant normalization, and with adjusted constant normalization..................................................................................................29 Figure 2.2.3. Uniform slab third mode expected DC versus cycle as estimated with empirical data, with constant normalization, and with adjusted constant normalization..................................................................................................29