Inhibitors on Lipoprotein Lipase Transcriptase

Total Page:16

File Type:pdf, Size:1020Kb

Inhibitors on Lipoprotein Lipase Transcriptase The effect of nucleoside/nucleotide reverse... JKCD September 2019, Vol. 9, No. 3 THE EFFECT OF NUCLEOSIDE/NUCLEOTIDE REVERSE TRANSCRIPTASE INHIBITORS AND PROTEASE INHIBITORS ON LIPOPROTEIN LIPASE Khawar Anwar1 , Sultan Zeb2, Abir Hussain 3, Ayub Jan4, Tahir S Pillay5 , Akbar Said Jan6 1Department of Bio-Chemistry, Shahida Islam Medical & Dental College, Lodhran 2Department of Anatomy, Northwest School of Medicine, Peshawar. 3Department of Community Dentistry, Frontier Medical & Dental College, Abbottabad. 4Public Health Student Abdul Wali Khan University, Mardan 5Departments of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, S. Africa. 6Department of Anaesthesiology, Northwest School of Medicine, Peshawar. ABSTRACT In the treatment of HIV/AIDS, protease inhibitors (PIs) and nucleoside/nucleotide analog reverse transcriptase inhibitors (NRTIs) are the major components of highly active antiretroviral therapy (HAART). The side effects of these drugs include various metabolic disorders, including insulin resistance, dyslipidemia, and lipodystrophy. The precise mechanistic basis of these remains mostly unknown. Objectives :In this study, we aimed to understand the enzymatic activity of lipoprotein lipase (LPL) under the influence of NRTIs and PIs. Material and Methods: Chinese hamster ovary cells transfected with the human insulin receptor (CHO-IR) were used for the first time to study the effects of NRTIs and PIs on the synthesis and release of LPL. The high level of expression of insulin receptor facilitated sensitive detection of any alteration in the phosphorylation of signaling proteins as compared to 3T3-L1 adipocytes. LPL activity in the supernatant and cell lysate was measured using a colorimetric method em- ploying para-nitrophenyl butyrate(pNPB) as a substrate. The most commonly used ARVs were tested. These included four PIs and six NRTIs. Results :The results showed that NRTIs stavudine and emtricitabine significantly inhibited the LPL activity from the CHO-IR cells. PIs indinavir and nelfinavir were also found to decrease LPL activity extracellularly when added to the assay reaction in vitro.Similarly, nelfinavir and atazanavir sulfate inhibited the activity of the LPL from the CHO-IR cells after 16-hour treatment. This suggested that these drugs may interfere with the enzyme activity intracellularly either at the level of its synthesis or its transportation from the cytoplasm to the cell surface. Conclusion :This finding suggests that protease inhibitors may play a role in inhibiting lipopro- tein lipase activity in vivo, and may thereby induce metabolic disorders in HIV-positive patients being treated with protease inhibitors Key Word: Lipoprotein lipase, Nucleoside/nucleotide reverse transcriptase inhibitors,Protease inhibitors Correspondence: Introduction Dr. Khawer Anwar, Assistant Professor, Bio-Chemistry Department, Shahida Lipoprotein lipase (LPL) is a central enzyme Islam Medical and Dental College Lodhran in lipid metabolism and transport. It is produced in Email: [email protected] Contact: +92-334-1140700 numerous cell types, but the skeletal muscle and the Available Online 30-September 2019 at http://www.jkcd.edu.pk DOI: https://doi.org/10.33279/2307-3934.2019.9126 1 The effect of nucleoside/nucleotide reverse... JKCD September 2019, Vol. 9, No. 3 parenchyma of adipose tissue are the significant sites LPL release from cells is increased by both of synthesis and physiological actions. insulin and heparin in a dose and time-dependent manner. The mechanisms by which insulin and The physiological location of LPL-mediated hy- heparin release LPL from the cells are not precisely drolysis of lipoproteins is at the capillary endothelial known. Some researchers have observed that heparin cell, but functional LPL is first synthesized by the acts as a secretagogue, thereby suggesting that the parenchymal cells and then translocated to its site released LPL is at first present in intracellular secre- of action 1-3. tory vesicles, which fuse with the plasma membrane There are four main levels of regulation, depend- upon stimulation with heparin. Other data indicate ing upon the location of LPL synthesis in different that there is a heparin-binding site on the LPL dimer, tissues. These are at the transcriptional, posttran- which binds to the heparin sulphate-proteoglycan scriptional, translational, and post-translational extracellular matrix. Heparin treatment of cells shifts levels. These four levels are locally controlled by the plasma membrane-bound LPL by competition different factors in different tissues. This local con- with the HSP, resulting in the release of LPL into trol on LPL synthesis enables tissues to maintain a the cell culture medium 14-16. balance in lipid metabolism, and it also modulates Intracellular glucose levels also accelerate LPL other cellular functions and hormonal effects on the synthesis in adipocytes, and its boosting effect on local tissues 4. LPL is mainly associated with glycosylation of LPL plays an important role in lipid metabolism LPL, which is very important for the regular LPL and transport. It catalyzes the hydrolysis of Triacyl- enzymatic activity and its release. Glucose also glycerol (TAG) attached to circulating chylomicrons enhances the effects of insulin to increase LPL syn- and Very Low-Density Lipoprotein (VLDL). The thesis, but there is no evidence that glucose affects resulting reaction produces non-esterified fatty the transcriptional level (mRNA) of LPL synthesis, acids (NEFA) and 2-monoacylglycerol for tissue as observed with insulin 17,18. Different studies asso- utilization 3,5-7. NEFAs in white adipose tissue are ciate insulin resistance with decreased LPL activity, re-esterified for energy storage as TAG 5. Addition- hypertriglyceridaemia, elevated cholesterol and ally, fatty acids are oxidized to provide an energy chylomicronaemia19,20 source in the heart and to regulate thermogenesis in A recent study in insulin-resistant offspring brown adipose tissue 5. of type 2 diabetes parents revealed a link between Role of insulin, heparin, and glucose in lipo- insulin resistance and decreased mitochondrial con- protein lipase regulation tent, as evidenced by decreased mRNA and protein 21 As discussed above, the regulation of LPL syn- expression of LPL in muscle biopsies . Usually, thesis is essential for normal homeostasis of lipid free fatty acid delivery into skeletal muscle results in metabolism, and insulin is the primary regulator of mitochondrial biogenesis through activation of per- LPL synthesis in adipocytes and the translocation oxisome proliferator–activated receptor (PPAR)-δ. from there to the luminal domain of the endothelial The primary role of LPL here is to hydrolyze the cells. Generally insulin increases LPL activity but serum triglycerides and deliver free fatty acids to synthesis of LPL involves many steps including the muscle cells, as described above. LPL gene transcription, mRNA processing, trans- In many disorders such as diabetes, athero- port and translation, posttranslational modification sclerosis, and obesity, hypertriglyceridaemia is a (glycosylation) “activation” or “inactivation”, and characteristic feature. A well-known cause of genetic finally secretion 8-10. Insulin affects different steps hypertriglyceridaemia is the deficiency of lipoprotein of LPL synthesis in adipocytes such as during the lipase. In humans, type I hyperlipoproteinaemia, process of differentiation by enhancing gene tran- resulting from LPL deficiency, is a rare autosomal scription 11 while in fully differentiated adipocytes it recessive disease. It is characterized by low or no regulates LPL synthesis by increasing mRNA levels LPL activity resulting in hypertriglyceridaemia, de- and enzyme activity by both posttranscriptional and creased levels of HDL cholesterol, lipaemiaretinalis, post-translational modifications of LPL 11-13. and pancreatitis. There are three naturally occurring 2 The effect of nucleoside/nucleotide reverse... JKCD September 2019, Vol. 9, No. 3 mutations in LPL that affect lipid transport and activity in adipocytes and serum or plasma. Howev- metabolism and result in hypertriglyceridaemia and er, these methods are either expensive or laborious obesity in mice 22,23. and cumbersome. By contrast, an earlier method for assaying LPL in milk established that LPL-catalysed Disturbances in body fat distribution, dyslipid- hydrolysis of p-nitrophenyl butyrate (pNPB) could emia and insulin resistance, diabetes, and athero- be measured relatively easily and cheaply using the sclerosis in HIV patients are associated with ARV. appearance of p-nitrophenyl phosphate as an end However, the exact mechanisms of these changes product 34. have not been fully elucidated. HIV infection with acute and chronic effects of some antiretroviral drugs Preparation of CHO-IR cells for the assay of on regional fat distribution correlates with these side released lipoprotein lipase effects 24-26. It has already been reported that HIV CHO-IR cells were cultured and serum-starved, infection itself affects triglyceride metabolism and as described in sections 2.2.1 and 2.2.2. The cells lipoprotein lipase activity 27. were washed with PBS (2 ml) twice and left in an Hypertriglyceridaemia and impaired insulin additional fresh PBS (500 μl) containing insulin sensitivity can be observed even in HIV-negative (100ng/ml) (17nM) for one h at 37 °C in an incuba- subjects treated for short periods of time using pro- tor, to stimulate LPL activity.
Recommended publications
  • Genetic Determinants Underlying Rare Diseases Identified Using Next-Generation Sequencing Technologies
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2018 1:30 PM Genetic determinants underlying rare diseases identified using next-generation sequencing technologies Rosettia Ho The University of Western Ontario Supervisor Hegele, Robert A. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Rosettia Ho 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Medical Genetics Commons Recommended Citation Ho, Rosettia, "Genetic determinants underlying rare diseases identified using next-generation sequencing technologies" (2018). Electronic Thesis and Dissertation Repository. 5497. https://ir.lib.uwo.ca/etd/5497 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Rare disorders affect less than one in 2000 individuals, placing a huge burden on individuals, families and the health care system. Gene discovery is the starting point in understanding the molecular mechanisms underlying these diseases. The advent of next- generation sequencing has accelerated discovery of disease-causing genetic variants and is showing numerous benefits for research and medicine. I describe the application of next-generation sequencing, namely LipidSeq™ ‒ a targeted resequencing panel for the identification of dyslipidemia-associated variants ‒ and whole-exome sequencing, to identify genetic determinants of several rare diseases. Utilization of next-generation sequencing plus associated bioinformatics led to the discovery of disease-associated variants for 71 patients with lipodystrophy, two with early-onset obesity, and families with brachydactyly, cerebral atrophy, microcephaly-ichthyosis, and widow’s peak syndrome.
    [Show full text]
  • Unilateral Multiple Tuberous Xanthomas Mimicking Multiple Lipomatosis in Type Iia Hypercholesterolemia- a Case Report with Review
    Jebmh.com Case Report Unilateral Multiple Tuberous Xanthomas Mimicking Multiple Lipomatosis in Type IIa Hypercholesterolemia- A Case Report with Review Madhuri K.1, Yugank Anand2, Vamseedhar Annam3, Prakash C. J.4, Shreya D. Prabhu5, Harshitha K. S.6 1Postgraduate Student, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. 2Postgraduate Student, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. 3Professor, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. 4Professor, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. 5Postgraduate Student, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. 6Postgradute Student, Department of Pathology, Rajarajeswari Medical College and Hospital, Bangalore, Karnataka. INTRODUCTION The term Xanthoma was derived from a Greek word “Xanthos” meaning yellow Corresponding Author: and was generally used to describe lipid deposits in the subcutaneous plane.1 They Dr. Vamseedhar Annam, do not represent a particular disease, but are cutaneous markers for dyslipidaemia Professor, or may even arise without any underlying metabolic defect.2 Tuberous xanthomas Department of Pathology, present as yellow or reddish nodules located mainly over the extensor surface of Rajarajeswari Medical College and the extremities and buttocks.1 They may be confused with lipomas. Early diagnosis Hospital, Bangalore- 560074, Karnataka. and treatment may help to prevent complications such as coronary artery disease, E-mail: [email protected] 3 myocardial infarction and pancreatitis. We here report a case of unilateral multiple tuberous xanthomas in a young lady with elevated Low density lipoprotein levels DOI: 10.18410/jebmh/2020/183 consistent with familial hypercholesterolemia Type IIa. Financial or Other Competing Interests: None.
    [Show full text]
  • Lipoprotein Lipase: a General Review Moacir Couto De Andrade Júnior1,2*
    Review Article iMedPub Journals Insights in Enzyme Research 2018 www.imedpub.com Vol.2 No.1:3 ISSN 2573-4466 DOI: 10.21767/2573-4466.100013 Lipoprotein Lipase: A General Review Moacir Couto de Andrade Júnior1,2* 1Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil 2Department of Food Technology, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil *Corresponding author: MC Andrade Jr, Post-Graduation Department, Nilton Lins University, Manaus, Amazonas, Brazil, Tel: +55 (92) 3633-8028; E-mail: [email protected] Rec date: March 07, 2018; Acc date: April 10, 2018; Pub date: April 17, 2018 Copyright: © 2018 Andrade Jr MC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Andrade Jr MC (2018) Lipoprotein Lipase: A General Review. Insights Enzyme Res Vol.2 No.1:3 Abstract Lipoprotein Lipase: Historical Hallmarks, Enzymatic Activity, Characterization, and Carbohydrates (e.g., glucose) and lipids (e.g., free fatty acids or FFAs) are the most important sources of energy Present Relevance in Human for most organisms, including humans. Lipoprotein lipase (LPL) is an extracellular enzyme (EC 3.1.1.34) that is Pathophysiology and Therapeutics essential in lipoprotein metabolism. LPL is a glycoprotein that is synthesized and secreted in several tissues (e.g., Macheboeuf, in 1929, first described chemical procedures adipose tissue, skeletal muscle, cardiac muscle, and for the isolation of a plasma protein fraction that was very rich macrophages). At the luminal surface of the vascular in lipids but readily soluble in water, such as a lipoprotein [1].
    [Show full text]
  • Difference Between Dyslipidemia and Hyperlipidemia Key Difference – Dyslipidemia Vs Hyperlipidemia
    Difference Between Dyslipidemia and Hyperlipidemia www.differenebetween.com Key Difference – Dyslipidemia vs Hyperlipidemia Dyslipidemia and hyperlipidemia are two medical conditions that affect the lipid levels of the body. Any deviation of the lipid level of the body from the normal and clinically appropriate values is identified as dyslipidemia. Hyperlipidemia is a form of dyslipidemia where the lipid levels are abnormally elevated. The key difference between dyslipidemia and hyperlipidemia is that dyslipidemia refers to any abnormality in the lipid levels whereas hyperlipidemia refers to an abnormal elevation in the lipid level. What is Dyslipidemia? Any abnormality in the lipid levels of the body is identified as dyslipidemia. Different forms of dyslipidemia include Hyperlipidemia Hypolipidemia Lipid levels of the body are abnormally reduced in this condition. Severe protein energy malnutrition, severe malabsorption, and intestinal lymphangiectasia are the causes. Hypolipoproteinemia This disease is caused by genetic or acquired causes. The familial form of hypolipoproteinemia is asymptomatic and does not require treatments. But there are some other forms of this condition which are extremely severe. Genetic disorders associated with this condition are, Abeta lipoproteinemia Familial hypobetalipoproteinemia Chylomicron retention disease Lipodystrophy Lipomatosis Dyslipidemia in pregnancy What is Hyperlipidemia? Hyperlipidemia is a form of dyslipidemia that is characterized by abnormally elevated lipid levels. Primary Hyperlipidemia Primary hyperlipidemias are due to a primary defect in the lipid metabolism. Classification Disorders of VLDL and chylomicrons- hypertriglyceridemia alone The commonest cause of these disorders is the genetic defects in multiple genes. There is a modest increase in the VLDL level. Disorders of LDL- hypercholesterolemia alone There are several subgroups of this category Heterozygous Familial Hypercholesterolemia This is a fairly common autosomal dominant monogenic disorder.
    [Show full text]
  • Revista2vol87ingle Snaza Layout 1
    324 SYNDROME IN QUESTION ▲ Do you know this syndrome? * Você conhece esta síndrome? Aristóteles Rosmaninho 1 Teresa Pinto-Almeida 2 Iolanda Conde Fernandes 3 Susana Machado 4 Manuela Selores 5 CASE REPORT A 65 year-old man presented for evaluation of lesions were observed in his two brothers and father. multiple widespread nodules in his body. The lesions Some lesions were surgically excised because they were long standing and began during his childhood. caused functional discomfort. The histopathological More lesions appeared over time. On physical exami- examination showed the presence of globules of nation multiple, subcutaneous, soft, mobile and non mature white adipose tissue surrounded by thin painful nodules and tumors were observed in the fibrous capsules. The analytical study showed no sig- arms, legs and abdomen distorting the affected areas nificant abnormalities including lipid abnormalities. (Figures 1, 2 and 3). His past medical history was Based on the characteristic clinical history, family his- remarkable for diabetes mellitus and hepatocarcino- tory and histopathology the diagnosis of familial mul- ma secondary to chronic HBV infection. He denied tiple lipomatosis (FML) was made. alcohol consumption. Similar but less extensive A B C FIGURE 1: Multiple subcutaneous lesions in the abdomen FIGURE 2: Multiple subcutaneous lesions in the arms A B C FIGURE 3: Subcutaneous lesions in the legs Received on 03.08.2011. Approved by the Advisory Board and accepted for publication on 22.11.2011. * Work carried out at the Centro Hospitalar do Porto-Hospital de Santo António (EPE-HSA) - Porto, Portugal. Conflict of interest: None / Conflito de interesse: Nenhum Financial funding: None / Suporte financeiro: Nenhum 1 Intern in Dermatovenereology - Centro Hospitalar do Porto-Hospital de Santo António (EPE-HSA) - Porto, Portugal.
    [Show full text]
  • Sequence Diversity in Genes of Lipid Metabolism Christine Kim Garcia,1 Gabriele Mues,2 Yuanlan Liao,1 Tommy Hyatt,1 Nila Patil,3 Jonathan C
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Sequence Diversity in Genes of Lipid Metabolism Christine Kim Garcia,1 Gabriele Mues,2 Yuanlan Liao,1 Tommy Hyatt,1 Nila Patil,3 Jonathan C. Cohen,1 andHelen H. Hobbs 1,4 Departments of 1Internal Medicine and Molecular Genetics and 2Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9046, USA; 3Affymetrix, Inc., Santa Clara, California 95051, USA Elevated plasma lipoprotein levels play a crucial role in the development of coronary artery disease. Genetic factors strongly influence the levels of plasma lipoproteins, but the genes and sequence variations contributing to the most common forms of dyslipidemias are not known. We used GeneChip probe arrays to resequence the coding regions of 10 key genes of lipid metabolism. The sequences of these genes were analyzed in 80 dyslipidemic individuals. Fourteen nonsynonymous and twenty-two synonymous single nucleotide changes were identified that could be confirmed by conventional sequencing. Seven of the fourteen nonsynonymous sequence variants were polymorphisms with allele frequency >1% in the general population. The remaining seven were not found in normolipidemic controls (25 Caucasians and 25 African-Americans). The relationship between nonsynonymous sequence variations and various dyslipidemias was explored in association and family studies. No evidence was found for coding sequence variations in any of the 10 genes contributing to dyslipidemia. Only a single sequence variation, a missense mutation in the low density lipoprotein receptor gene, co-segregated with hyperlipidemia in the proband’s family. This study illustrates some of the difficulties associated with identifying sequence variations contributing to complex traits.
    [Show full text]
  • A Case of Symmetrical Lipomatosis of the Tongue Presenting As Macroglossia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Oral Science International, November 2006, p.90-93 Copyright © 2006, Japanese Stomatology Society. All Rights Reserved. A Case of Symmetrical Lipomatosis of the Tongue Presenting as Macroglossia Yoshimi Ishikawa, Yu Katada, Masahiro Enomoto, Kensuke Kawada, Yoshiyuki Okamoto and Mikio Ozawa Department of Oral Surgery, Fujisawa City Hospital (Chief: Dr. Yoshimi Ishikawa) Abstract: Symmetrical lipomatosis is characterized by symmetrical infi ltration of adipose tissue into the head, neck, or upper trunk. By contrast, oral involvement is extremely rare. The present report describes a case of symmetrical lipomatosis of the tongue (SLT) presenting as macroglossia. The patient was a 63-year- old Japanese male who developed progressive dysarthria secondary to enlargement of the tongue. The pa- tient's medical history was notable for alcoholic hepatitis and hyperlipidemia. Marginal glossectomy was per- formed on both sides of the tongue to achieve volume reduction and restore normal speech. Histopathologic examination of the resected tissue revealed diffuse infi ltration with adipose tissue lacking a fi brous capsule. The patient's postoperative course was uneventful, and he remained free of recurrence or regrowth and func- tional defi cits at the 6-year follow-up time point. Key words: Symmetrical lipomatosis, Macroglossia, Dysarthria, Alcoholic hepatitis, Hyperlipidemia Introduction thria since developing painless swelling of the tongue Benign symmetrical lipomatosis (BSL) is character- border in 1993 was referred to our clinic on August 4, ized by symmetrical infi ltrating growth of non-encapsu- 1996. The patient was 165 cm tall and weighed 53 kg lated mature adipose tissue.
    [Show full text]
  • Renal Replacement Lipomatosis - a Rare but Also Underdiagnosed Entity
    IP Archives of Cytology and Histopathology Research 2020;5(3):244–247 Content available at: https://www.ipinnovative.com/open-access-journals IP Archives of Cytology and Histopathology Research Journal homepage: www.ipinnovative.com Case Report Renal replacement lipomatosis - A rare but also underdiagnosed entity Jyotsana Khatrri1, Madhvi Sanwalka1,*, Sumit Gupta1, Niyati Sakarwal2, Seema Awasthi3 1Dept. of Pathology, National Institute of Medical Sciences and Research, Jaipur, Rajasthan, India 2Dept. of Pathology, Kanishka Surgical & Super Speciality Hospital, Dehradun, Uttarakhand, India 3Dept. of Pathology, Teerthanker Mahaveer Medical College & Research Centre, Moradabad, Uttar Pradesh, India ARTICLEINFO ABSTRACT Article history: Renal replacement lipomatosis (RRL) is a rare condition that occurs as an end result of renal atrophy or Received 17-07-2020 replacement of renal parenchyma by excessive lipomatous tissue in renal sinus and perinephric space. We Accepted 07-08-2020 reported a case of RRL presented in our tertiary health centre. Left Nephrectomy was performed kidney Available online 20-10-2020 sent to our department for histopathology examination and after extensive literature search, a diagnosis of RRL was given. In majority of cases, RRL is associated with renal calculi. Idiopathic variety of RRL is not common. It is a rare entity and due to lack of experience the diagnosis may be missed. It has to be Keywords: differentiated from other fat-containing tumors such as xanthogranulomatous pyelonephritis, renal lipomas, RRL (Renal Replacement liposarcoma and angiomyolipoma. Lipomatosis) Idiopathic © 2020 Published by Innovative Publication. This is an open access article under the CC BY-NC license Nephrectomy (https://creativecommons.org/licenses/by-nc/4.0/) Adipose tissue 1.
    [Show full text]
  • Clinical and Research Learnings from a Hybrid, Targeted Sequencing Panel for Dyslipidemias Jacqueline S
    Dron et al. BMC Medical Genomics (2020) 13:23 https://doi.org/10.1186/s12920-020-0669-2 RESEARCH ARTICLE Open Access Six years’ experience with LipidSeq: clinical and research learnings from a hybrid, targeted sequencing panel for dyslipidemias Jacqueline S. Dron1,2 , Jian Wang1, Adam D. McIntyre1, Michael A. Iacocca1,2,3, John F. Robinson1, Matthew R. Ban1, Henian Cao1 and Robert A. Hegele1,2,4* Abstract Background: In 2013, our laboratory designed a targeted sequencing panel, “LipidSeq”, to study the genetic determinants of dyslipidemia and metabolic disorders. Over the last 6 years, we have analyzed 3262 patient samples obtained from our own Lipid Genetics Clinic and international colleagues. Here, we highlight our findings and discuss research benefits and clinical implications of our panel. Methods: LipidSeq targets 69 genes and 185 single-nucleotide polymorphisms (SNPs) either causally related or associated with dyslipidemia and metabolic disorders. This design allows us to simultaneously evaluate monogenic—caused by rare single-nucleotide variants (SNVs) or copy-number variants (CNVs)—and polygenic forms of dyslipidemia. Polygenic determinants were assessed using three polygenic scores, one each for low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol. Results: Among 3262 patient samples evaluated, the majority had hypertriglyceridemia (40.1%) and familial hypercholesterolemia (28.3%). Across all samples, we identified 24,931 unique SNVs, including 2205 rare variants predicted disruptive to protein function, and 77 unique CNVs. Considering our own 1466 clinic patients, LipidSeq results have helped in diagnosis and improving treatment options. Conclusions: Our LipidSeq design based on ontology of lipid disorders has enabled robust detection of variants underlying monogenic and polygenic dyslipidemias.
    [Show full text]
  • The Diagnosis and Management of Lipodystrophy Syndromes: a Multi-Society Practice Guideline
    SPECIAL FEATURE Consensus Statement The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline Rebecca J. Brown1,2, David Araujo-Vilar3, Pik To Cheung4, David Dunger5, Abhimanyu Garg6, Michelle Jack7, Lucy Mungai8, Elif A. Oral9, Nivedita Patni10, Kristina Rother2, Julia von Schnurbein11, Ekaterina Sorkina12, Takara Stanley13, Corinne Vigouroux14, Martin Wabitsch11, Rachel Williams15, Tohru Yorifuji16 1 Committee Chair; all other authors appear in alphabetical order; 2 National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 3 Department of Medicine, University of Santiago de Compostela, Spain; 4 Department of Paediatrics and Adolescent Medicine, The University of Hong Kong; 5 Department of Paediatrics, University of Cambridge Box 116 Level 8, Cambridge Biomedical Campus, Cambridge CB2 0QQ), MRL Wellcome Trust MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, UK, MRC Epidemiology Unit, University of Cambridge; 6 Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA; 7 Royal N Shore Hospital, Northern Clinical School, University of Sydney St Leonards NSW 2126; 8 Department of Paediatrics and Child Health, University of Nairobi, Kenya; 9 Brehm Center for Diabetes and Division of Metabolism, Endocrinology, and Diabetes; Department of Internal Medicine; University of Michigan Medical School and Health
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,093,699 Sehon Et Al
    US006093699A United States Patent (19) 11 Patent Number: 6,093,699 Sehon et al. (45) Date of Patent: Jul. 25, 2000 54 METHOD FOR GENE THERAPY Sehon, A.H., "Conversion of Antigens to Tolerogenic INVOLVING SUPPRESSION OF AN IMMUNE Derivatives by Conjugation w/mPEG” (1987) Molecular RESPONSE Cell Biology, 65:pp. 205-219. 75 Inventors: Alec Sehon, Winnipeg, Canada; Judith Marshall, Eliot, “Gene Therapy’s Growing Pains” (1995), A. Kapp, Atlanta, Ga., Glen M. Lang, Science, 269: pp. 1050–1054. Winnipeg, Canada; Yong Ke, Carmel, “Report and Recommendations of the Panel to Assess the Ind. NIH Investment in Research on Gene Therapy” (1995). Sehon, S.H., “Down Regulation of IgE Antibodies by Sup 73 Assignees: The University of Manitoba, pressogenic Conjugates' (1983) Academi Press Japan, Inc. Manitoba, Canada; Emory University, pp. 483-491. Atlanta, Ga. Sehon, A.H., “Modulation of Antibody Responses by Con 21 Appl. No.: 08/339,245 jugates of Antigens with Monomethoxypolyethylene Gly col”, from Immunobiology of Proteins and Peptides V, 22 Filed: Nov. 10, 1994 Plenum Publishing Corp., (1989). Related U.S. Application Data Sehon, A.H., “Immunological Strategies for Therapeutic Destruction and HIB-Infected Cells in Asymptomatic 63 Continuation-in-part of application No. 07/877,368, May 4, Patients”, MCR Group for Allergy Research, pp. 570-574. 1992, Pat. No. 5,447.722, which is a continuation of appli cation No. 07/707,972, May 23, 1991, abandoned, which is Sehon, A.H., Potential use of Allergens Modified with a continuation of application No. 07/478,049, Feb. 7, 1990, Monomethoxypolyethylene Glycol for Immunotherapy of abandoned, which is a continuation of application No.
    [Show full text]
  • Introduction HDL Metabolism
    A continuous publication, open access, peer-reviewed journal ACCESS ONLINE REVIEW Primary genetic disorders affecting high density lipoprotein (HDL) Constantine E Kosmas MD, PhD1, Delia Silverio MD2, Andreas Sourlas3, Frank Garcia MD2, Peter D Montan MD2, Eliscer Guzman MD4 1Division of Cardiology, Department of Medicine, Mount Sinai Hospital, New York, NY, USA; 2Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA; 3School of Medicine, University of Crete, Heraklion, Greece; 4Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA Abstract atherosclerotic disease. This review aims to describe certain There is extensive evidence demonstrating that there is a clear genetic disorders associated with either low or high plasma inverse correlation between plasma high density lipoprotein HDL-C and discuss their clinical features, associated risk for cholesterol (HDL-C) concentration and cardiovascular cardiovascular events, and treatment options. disease (CVD). On the other hand, there is also extensive Keywords: apolipoprotein A-I (ApoA-I), cardiovascular disease evidence that HDL functionality plays a very important role (CVD), genetic disorders, high density lipoprotein (HDL). in atheroprotection. Thus, genetic disorders altering certain enzymes, lipid transfer proteins, or specific receptors crucial for Citation the metabolism and adequate function of HDL, may positively Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. or negatively affect the HDL-C levels and/or HDL functionality Primary genetic disorders affecting high density lipoprotein (HDL). and subsequently either provide protection or predispose to Drugs in Context 2018; 7: 212546. DOI: 10.7573/dic.212546 Introduction describe certain genetic disorders associated with either low or high plasma HDL-C concentration and we will discuss their There is extensive evidence demonstrating that there is a clear clinical features, associated risk for cardiovascular events, and inverse correlation between plasma high density lipoprotein treatment options.
    [Show full text]