Small- and Medium-Scale LNG Terminals

Total Page:16

File Type:pdf, Size:1020Kb

Small- and Medium-Scale LNG Terminals POWER UP ON CLEAN AND AFFORDABLE GAS Small- and medium-scale LNG terminals A BANKABLE PROJECT WITH A COMPLETE VALUE CHAIN SOLUTIONS ADAPTED TO THE REQUIREMENTS OF SMALL-SCALE LNG The global trend Natural gas is today one of the world’s most needed feedstocks as well as an important energy source. Global consumption continues to increase significantly. The replacement of liquid fossil fuels, such as heavy fuel oil, marine diesel oil and diesel, contributes positively to the environment, with emissions of NOX, SOX, and particulates being almost entirely eliminated and CO2 emissions being notably reduced. By liquefying natural gas the volume is reduced by a factor of around 600. This enables efficient transport to end-users overseas, as well as on land where pipelines are not a suitable sustainable solution. 2 The growth of liquefied natural gas (LNG) consumption is z Availability of subsidies in the EU and China for driven by: LNG infrastructure projects z Environmental requirements on emission z Energy demand reduction - A need for lower energy costs in power generation and - LNG for feedstock. Natural gas is used as feedstock energy intensive industries. for about half of the commercial hydrogen production - Energy security considerations. in the world and it is currently the cheapest source of - A need for decentralized power generation in some hydrogen. The heavier feedstocks, like coal and oil, are areas. more complex to process; therefore, the capital costs are higher compared to natural gas. - Rapid growth of renewables in the power generation mix increases the demand for gas fuelled power plants to balance the load. - Fuel for marine vessels. As at the end of 2015, there were an estimated 90 vessels fuelled by LNG. It is cost competitive and contributes to a reduction in maritime greenhouse gas (GHG) emissions. - Fuel for heavy road transport. There are currently about 170,000 trucks and buses running on LNG in Asia, 3500 in North America, and 1500 in Europe. 3 Wärtsilä makes the difference P LAT FOR M S U P PLY V E S SEL ( P S V) F LOAT I N G S TORAGE & ( REGAS I FICATI ON ) U N IT L E G E N D OF F S HORE SERVI CE ( F S R U / F S U ) VES SEL (OS V) W Ä R T S I L Ä O F F E R I N G G A S L I N E S H I P R O U T E O I L & G A S P L AT F O R M P O W E R P L A N T L A R G E L IQUEFAC T ION P O W E R P L A N T L A R G E T E R M I N P LANT A L P O W E R P L A N T S M A L L L N G C A R R I E R REL IQUEFAC T ION U NI T R E L I Q U E FA C T I O N U N I T REG A S I F ICATI ON L N G C A R R I E R UN IT BU N KER I NG TER MI N AL L N G F U E L L ED BI O GAS PA S S ENG E R S HI P U P GRA D ING P L A NT BI O GAS P O W E R P L A N T AND F L O A T I N G S T O R A G E A N D L IQUEFACTION L N G S T O R A G E R E G A S I F I C A T I O N B A R G E ( F S R B ) P L A NT P O W E R P L A N T SATE L L ITE AND BUNK E R I N G TERMI NAL BUNK E R I NG V E S S EL LBG F I L L ING S AT E L L I T E T E R M I N A L STATI ON P O W E R B A R G E ANAEROBIC D IGE S TIO N SATEL LI TE P L A NT TERMI NAL L N G F UEL L ED CA R G O SHI P MINI L IQUEFAC T ION P LANT B U N K E R I N G T E R M I N A L SMA L L / MED IUM S MALL TE RMI NAL L IQUEFAC T ION P LANT J E T T Y L N G F I L L ING STATI ON S M A L L L N G C A R R I E R P O W E R P L A N T 4 P LAT FOR M S U P PLY V E S SEL ( P S V) F LOAT I N G S TORAGE & ( REGAS I FICATI ON ) U N IT L E G E N D OF F S HORE SERVI CE ( F S R U / F S U ) VES SEL (OS V) W Ä R T S I L Ä O F F E R I N G G A S L I N E S H I P R O U T E O I L & G A S P L AT F O R M P O W E R P L A N T L A R G E L IQUEFAC T ION P O W E R P L A N T L A R G E T E R M I N P LANT A L P O W E R P L A N T S M A L L L N G C A R R I E R REL IQUEFAC T ION U NI T R E L I Q U E FA C T I O N U N I T REG A S I F ICATI ON L N G C A R R I E R UN IT BU N KER I NG TER MI N AL L N G F U E L L ED BI O GAS PA S S ENG E R S HI P U P GRA D ING P L A NT BI O GAS P O W E R P L A N T AND F L O A T I N G S T O R A G E A N D L IQUEFACTION L N G S T O R A G E R E G A S I F I C A T I O N B A R G E ( F S R B ) P L A NT P O W E R P L A N T SATE L L ITE AND BUNK E R I N G TERMI NAL BUNK E R I NG V E S S EL LBG F I L L ING S AT E L L I T E T E R M I N A L STATI ON P O W E R B A R G E ANAEROBIC D IGE S TIO N SATEL LI TE P L A NT TERMI NAL L N G F UEL L ED CA R G O SHI P MINI L IQUEFAC T ION P LANT B U N K E R I N G T E R M I N A L SMA L L / MED IUM S MALL TE RMI NAL L IQUEFAC T ION P LANT J E T T Y L N G F I L L ING STATI ON S M A L L L N G C A R R I E R P O W E R P L A N T Clean and affordable energy for everyone While LNG previously only was an option for buyers that reserves or access to gas pipelines choose to invest in could absorb large quantities, conventional LNG infra- LNG in order to diversify their supply options. Implemen- structure is now being complemented by small-scale tation of Emission Control Areas for the maritime industry facilities serving smaller demand centres. Islands and makes LNG a very interesting fuel option for shipping other areas stifled by the cost of electricity or pollution companies. Increasingly, ports invest in bunkering termi- now have the opportunity to access LNG and improve the nals, bunkering vessels and bunker barges to maintain competitiveness and attractiveness for business and the their competitiveness and ability to serve a growing fleet living conditions of their citizens. Even countries with gas of LNG fuelled ships. 5 Small- and medium-scale LNG terminals While the LNG market continues to grow, ensuring access and availability is a key prerequisite. The need for LNG terminals is particularly relevant in places where the gas infrastructure is under-developed but the potential demand for gas-fired power generation and natural gas for other industrial uses is substantial. Alternatively, LNG terminals can complement the existing gas reserves or pipelines in order to improve fuel supply security. Wärtsilä’s terminal portfolio The storage tank is usually the most expensive part of a z Specifically adapted for the terminal unless marine facilities are part of the scope, and requirements of small-scale LNG through elimination of complexity the terminals are often defined according to the size of the and increase of flexibility tanks. Wärtsilä’s portfolio consists of terminals with various z Single use (e.g. providing fuel for a functions combined with a storage capacity in the range power plant) or multi-use (e.g.
Recommended publications
  • Large Floating Structure with Free-Floating, Self-Stabilizing Tanks for Hydrocarbon Storage
    energies Article Large Floating Structure with Free-Floating, Self-Stabilizing Tanks for Hydrocarbon Storage Jian Dai 1,* , Kok Keng Ang 2,*, Jingzhe Jin 3, Chien Ming Wang 4 , Øyvind Hellan 3 and Arnstein Watn 5 1 Department of Marine Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway 2 Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore 3 SINTEF Ocean, 7052 Trondheim, Norway 4 School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia 5 SINTEF, 7465 Trondheim, Norway * Correspondence: [email protected] (J.D.); [email protected] (K.K.A.) Received: 30 July 2019; Accepted: 6 September 2019; Published: 10 September 2019 Abstract: Hydrocarbon is a major source of energy for sustainable development. Storage of hydrocarbon products, however, requires a significant amount of land space to land-scarce countries like Singapore. This paper presents an alternative way of storing hydrocarbon in Singapore coastal waters through the innovative design of a floating hydrocarbon storage facility. The design comprises free-floating and self-stabilizing tanks enclosed by barges that form a floating hydrocarbon storage facility. The tanks are made of prestressed concrete and they are designed to be self-stabilized when floating in the sea water. Owing to the lack of available design guidelines, design requirements on the stability and motion criteria for floating storage tanks are developed based on a review of existing codes of practice and design specifications for both onshore tanks and offshore vessels. A comprehensive study on the hydrostatic performance of various proposed floating tank design concepts with different storage capacities is carried out.
    [Show full text]
  • Ferry LNG Study Draft Final Report
    Evaluating the Use of Liquefied Natural Gas in Washington State Ferries Draft Final Report Prepared For: Joint Transportation Committee Consultant Team Cedar River Group John Boylston January 2012 Joint Transportation Committee Mary Fleckenstein P.O. Box 40937 Olympia, WA 98504‐0937 (360) 786‐7312 [email protected] Cedar River Group Kathy Scanlan 755 Winslow Way E, Suite 202 Bainbridge Island, WA 98110 (206) 451‐4452 [email protected] The cover photo shows the Norwegian ferry operator Fjord1's newest LNG fueled ferry. Joint Transportation Committee LNG as an Energy Source for Vessel Propulsion EXECUTIVE SUMMARY The 2011 Legislature directed the Joint Transportation Committee to investigate the use of liquefied natural gas (LNG) on existing Washington State Ferry (WSF) vessels as well as the new 144‐car class vessels and report to the Legislature by December 31, 2011 (ESHB 1175 204 (5)); (Chapter 367, 2011 Laws, PV). Liquefied natural gas (LNG) provides an opportunity to significantly reduce WSF fuel costs and can also have a positive environmental effect by eliminating sulfur oxide and particulate matter emissions and reducing carbon dioxide and nitrous oxide emissions from WSF vessels. This report recommends that the Legislature consider transitioning from diesel fuel to liquefied natural gas for WSF vessels, making LNG vessel project funding decisions in the context of an overall LNG strategic operation, business, and vessel deployment and acquisition analysis. The report addresses the following questions: Security. What, if any, impact will the conversion to LNG fueled vessels have on the WSF Alternative Security Plan? Vessel acquisition and deployment plan. What are the implications of LNG for the vessel acquisition and deployment plan? Vessel design and construction.
    [Show full text]
  • Guide to Gas Station
    Storage Tank Section South Dakota Department of Environment and Natural Resources Owners/Operators Guide This handbook provides a general guidance on the storage tank systems. For specific requirements look at the underground storage tank system rules (Chapter 74:56:01 South Dakota Administrative Rules) which are located at the storage tank program web site. (http://denr.sd.gov/tanks) TABLE OF CONTENTS A. South Dakota’s Underground Storage Tank Program 1- Underground Storage Tank………………………………………. 04 2- Notification………………………………………………………….. 04 3- Plans and Specifications…………………………………………...05 4- Temporary Closure………………………………………………… 05 5- Permanent Closure………………………………………………… 06 6- Post Closure…………………………………………………………06 7- Reporting Spills…………………………………………………….. 06 B. Leak Detection………………………………………………………………….. 07 C. Leak Detection System on Tanks 1- Automatic Tank Gauging………………………………………….. 09 2- Secondary Containment With Interstitial Monitoring…………… 10 3- Statistical Inventory Reconciliation (SIR)……………………...… 12 4- Vapor Monitoring…………………………………………………… 13 5- Groundwater Monitoring (for tanks & piping)………………….… 14 6- Inventory Control And Tank Tightness Testing (for tanks only)..15 7- Manual Tank Gauging And Tank Tightness Testing…………… 17 8- Manual Tank Gauging for tanks 1000 gallon or less………..…. 18 D. Leak Detection System on Product Lines 1- Automatic Line Leak Detection………………………………..…. 20 2- Line Tightness Testing……………………………………………. 21 3- Sump Sensors………………. ……………………..…… 22 E. Leak Prevention Systems……………………………………………..…….. 23 1- What are the
    [Show full text]
  • NFPA 31 Faqs
    NFPA 31 FAQs Responses to FAQs are prepared by NFPA technical staff to assist users in reading and understanding NFPA codes and standards. The responses, however, are not Formal Interpretations issued pursuant to NFPA Regulations. Any opinions expressed are the personal opinions of the author(s), and do not necessarily represent the official position of the NFPA or its Technical Committees. In addition, the responses are neither intended, nor should be relied upon, to provide professional consultation or services. 1. We are installing a diesel‐driven emergency generator in the basement of a building. Does NFPA 31 apply to this installation? No, it does not. NFPA 37, Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines, applies to the installation of any stationary internal combustion engine, whether fueled by a liquid fuel (e.g., diesel fuel) or a gaseous fuel (e.g., propane or natural gas). NFPA 31, on the other hand, applies to equipment in which the liquid fuel is burned in a combustion chamber to produce heat, as opposed to motive power. 2. Can an oil‐fired water heater and an oil‐fired heating appliance both be connected to the same chimney? Subsection 6.3.3 of NFPA 31 allows two or more oil‐fired appliances to be connected to the same chimney, provided sufficient draft is maintained for safe operation of the appliances and provided all flue gases are removed. 3. Does NFPA 31 provide any guidance on how a chimney connector should be joined to a clay or metal thimble in a masonry chimney? Subsection 6.5.5 of NFPA 31 addresses this issue and basically states the same installation rules as does Subsection 9.7.1 of NFPA 211, Standard for Chimneys, Fireplaces, Vents, and Solid Fuel‐Burning Appliances: it requires that the chimney connector extend through to the inner wall of the chimney or the chimney liner and that it be firmly cemented in place.
    [Show full text]
  • Underground Storage Tank Program
    Underground Storage Tank Program 25 YEARS OF PROTECTING OUR LAND AND WATER Office of Solid Waste and EPA-510-B-09-001 Emergency Response (5401P) March 2009 www.epa.gov/oust 25 YEARS Printed on 50% recycled/recyclable paper with minimum 25% post-consumer fiber. OVERVIEW 2 25 Years Of Progress Through Strong Partnerships INSPECTIONS 4 Our Program’s Ounce Of Prevention Is Worth A Pound Of Cure REUSE 6 Reusing Abandoned Gas Stations Is Helping To Revitalize Neighborhoods TIMELINE 8 Milestones In The Underground Storage Tank Program REGULATIONS 10 UST Regulations Then and Now N E W F U E L S 12 Storing New Fuels In Old Tanks Can Be A Challenge SUSTAINABILITY 14 Greening Underground Storage Tank Operations And Cleanups FUTURE 16 Working Together Toward A Greener America 25 YEARS 25 25 Years Of Progress Through Strong Partnerships In 1983, CBS’s 60 Minutes aired a story titled “Check the Water,” Despite this great progress, challenges remain. The underground storage which brought national attention to families suffering from the effects tank program’s priorities are to: meet the mandate to inspect all 623,000 of a gasoline leak. Less than a year later, Congress passed and the federally-regulated tanks every three years, boost compliance rates to President signed a new law directing EPA to protect our nation’s land minimize future releases, and clean up old and new tank leaks. Beyond and water from underground storage tank (UST) leaks. At the time, these core activities, it is important to also encourage sustainable reuse there were approximately two million underground storage tanks.
    [Show full text]
  • Removal-Fill: Channel History & Proposed Changes
    Review of Proposed Earthwork Projects in the Port of Coos Bay Presentation by: Michael Graybill Presented to: League of Women Voters 31 January 2019 Two Closely Related Dredging Projects Are Under Consideration in Coos Bay: DREDGING PROJECT #1 The Jordan Cove Energy Project 5.7 million cubic yards (Not including maintenance volume) DREDGING PROJECT #2. The Coos Bay Navigation Channel Expansion project 18 million cubic yards (Not including maintenance volume) Two Closely Related Dredging Projects Are Under Consideration in Coos Bay: DREDGING PROJECT #1 The Jordan Cove Energy Project 5.7 million cubic yards (Not including maintenance volume) 23.7 Million Cubic Yards! DREDGING PROJECT #2. The Coos Bay Navigation Channel Expansion project 18 million cubic yards (Not including maintenance volume) DREDGING PROJECT #1 The Jordan Cove Energy Project 5.7 million cubic yards (Does not include maintenance volume) Land disposal DREDGING PROJECT #2. The Coos Bay Navigation Channel Expansion project 18 million cubic yards (Does not including maintenance volume) Ocean disposal DREDGING PROJECT #1 The Jordan Cove Energy Project 5.7 million cubic yards (Does not include maintenance volume) Land disposal DREDGING PROJECT #2. The Coos Bay Navigation Channel Expansion Project 18 million cubic yards (Does not include maintenance volume) Ocean disposal Project #1 Proposed Earthwork: Jordan Cove Energy Project Project has 3 Elements: 1. Natural Gas Pipeline 229-mile route; mostly over land; crosses 400+ wetlands and water bodies Hardly any dredging but massive excavation work to bury pipe Extensive Horizontal Directional Drilling of pipeline under the Bay 2. LNG Factory on N Spit Factory super chills gas to a liquid (-220 degrees F) No dredging needed to build factory Much filling needed to elevate facility above tsunami zone 3.
    [Show full text]
  • KANSAS STORAGE TANK PROGRAM ABOVEGROUND STORAGE TANK OVERVIEW April 4, 2018
    KANSAS STORAGE TANK PROGRAM ABOVEGROUND STORAGE TANK OVERVIEW April 4, 2018 http://www.kdheks.gov/tanks/index.html Copies of this document are available at: http://www.kdheks.gov/tanks/download/ast_overview.pdf As the state’s environmental and public health agency, KDHE promotes responsible choices to protect the health and environment for all Kansans. Through education, direct services, and the assessment of data and trends, coupled with policy development and enforcement, KDHE will improve health and the quality of life. We prevent illness, injuries and foster a safe and sustainable environment for the people of Kansas. KANSAS DEPARTMENT OF HEALTH AND ENVIRONMENT BUREAU OF ENVIRONMENTAL REMEDIATION Storage Tank Section 1000 SW Jackson, Suite 410 Topeka, KS 66612-1367 1 Table of Contents Page Table of Contents 2 Aboveground Tanks Regulated by the KDHE 3 Temporary Aboveground Storage Tanks 4 Requirements for New Tank Construction 4 Registration and Permitting of Aboveground Tanks 5 Registration of Small Tanks 6 Secondary Containment 6 EPA Secondary Containment Requirements (SPCC) 6 The Kansas Petroleum Storage Tank Release Trust Funds Overview 7 K.A.R. 28-44-28 and K.A.R. 28-44-29 10 KDHE AST Contact Information 11 Spill Hotline phone numbers 12 EPA Region 7 Contact information 12 2 Aboveground Tanks Regulated by the KDHE The Kansas Department of Health and Environment, Bureau of Environmental Remediation (BER) is responsible for regulating releases from aboveground storage tanks (ASTs), as defined in the Kansas Storage Tank Act. Aboveground storage tanks are defined as having more than 90% of the tank volume, including piping located aboveground or above the floor of an underground area such as a basement.
    [Show full text]
  • Key Technologies of LNG Carrier and Recent MHI Activity- Variation Of
    Mitsubishi Heavy Industries Technical Review Vol. 47 No. 3 (September 2010) 1 Technology Trends and MHI Activities for LNG Carriers - Diverse Shipbuilding and Marine Products in the LNG Supply Chain - SAI HIRAMATSU*1 KAZUYOSHI HIRAOKA*1 YOSHIKAZU FUJINO*1 KENJI TSUMURA*1 With natural gas garnering greater attention as an energy option with low environmental impact, shipbuilding and marine products in the liquefied natural gas (LNG) supply chain have become increasingly diverse. Mitsubishi Heavy Industries, Ltd., (MHI) through a variety of activities, has been introducing many products that meet customer needs. Taking a long-term perspective, MHI continues to be active in the development of products that offer dependability, economic efficiency, and low fuel consumption, such as continuous tank-cover LNG carriers with drastic weight reductions and performance improvements, fuel-efficient and environmentally-friendly ultra-steam turbine (UST) and slow-speed diesel with gas injection and re-liquefaction (SSD-GI) propulsion plants, regasification vessels that significantly reduce fuel consumption during the regasification process, and reliable highly economic LNG floating production storage and offloading units. |1. Introduction Mitsubishi Heavy Industries, Ltd., (MHI) has built forty-two liquefied natural gas (LNG) carriers since delivery of its first in 1983. While safe, reliable, and economically efficient LNG carrier technologies are being developed through the design and shipbuilding process, the recent rise in LNG demand has generated diverse customer needs for shipbuilding and marine products in the LNG supply chain. This article describes MHI’s activities in the development of highly novel products that take into account diverse supply sources, the need for lower environmental impact, and product development requirements at both upper and lower supply chain streams.
    [Show full text]
  • Chapter 17 Storage Tanks
    Chapter 17 Storage Tanks TABLE OF CONTENTS Part A STORAGE TANK SYSTEMS: INTRODUCTION.......................... 1 Section 1. Authority. .................................... 1 Section 2. Codes and standards referenced in this Chapter.. 1 Section 3. Purpose......................................... 2 Section 4. Applicability. ................................ 2 (a) Exemptions ....................................... 2 (b) Exclusions........................................ 2 (c) Deferrals......................................... 2 Section 5. Definitions. .................................. 3 PART B STORAGE TANK SYSTEMS: TECHNICAL SPECIFICATIONS............. 9 Section 6. Design and Construction Standards for UST Systems. 9 (a) Tanks. ........................................... 9 (b) Piping. .......................................... 11 (c) Spill and overfill prevention equipment. ......... 12 (d) Installation. .................................... 13 (e) Certification of Installation. ................... 13 Section 7. Substandard USTs. ............................. 15 Section 8. Repairs Allowed. .............................. 15 PART C STORAGE TANK SYSTEMS: GENERAL OPERATING REQUIREMENTS........ 18 Section 9. Notification Requirements. .................... 18 (a) New UST Systems. ................................. 18 (b) Existing Storage Tank Systems. ................... 18 (c) Annual Registration. ............................. 18 (d) Fees. ............................................ 18 (e) Certification. ................................... 19
    [Show full text]
  • LNG Fuelled Ships Norwegian Experience
    LNG fuelled ships Norwegian experience Per Magne Einang Research Director MARINTEK www.marintek.com ECSA – EMSA meeting Brussels 24th of November 2009 MARINTEK 1 MARINTEK Independent research and development institute Trondheim Norway MARINTEK 2 Gas engine development since 1984 Wärtsilä Vasa 32 Rolls-Royce B-type Rolls-Royce K-type Dual Fuel gas engines Lean Burn gas engines - Constant speed (generator load) - Variable speed (propeller load) MARINTEK 3 Kystgass Snøhvit - base load LNG plant Visjjygon ”Kystgass” Deep sea LNG Coastal LNG ship Regional LNG depot Local LNG skip Local depot Coastal LNG ship MARINTEK 4 LNG distribution and production capacity MARINTEK 5 Small scale receiving terminals in Norway (2009) Receiving LNG terminals LNG receiving terminals in opp(g)eration (green) and under construction (blue) Total number of 30 terminals Wide span in size 100m3 - 3500m3 LNG Source of LNG Local production (marked P) Karmøy 20000 ton/year Kollsnes1 40000 ton/year Kollsnes2 80000 ton/year Tjelbergodden 10000 ton/year Total 150000 ton/year MARINTEK 6 Small receivinggp terminal at an aluminum plant LNG ship 1000m3 LNG MARINTEK 7 New LNG carrier capacity of 7500m3 (Opera te d b y A nt ony V ed er) MARINTEK 8 Lyse gas LNG i Risavika Stavanger Cappyacity 300 000 tons/y ear Starting gq 4. quarter 2010 Possible second train 300 000 tons/year MARINTEK 9 Nordic LNG (Lyse Gas and Skaugen) Logistic solutions with ships Six multi gas (LNG, Ethylene, LPG) carriers of 10 000 cbm and two of 12 000 cbm MARINTEK 10 Large LNG terminals in Europe MARINTEK 11 LNG chain – energy consumption MARINTEK 12 Well – to – wheel analyses, road transport WllWell – to – TkTank (ti)(energy consumption processes) 1.
    [Show full text]
  • A Comparative Exergoeconomic Evaluation of the Synthesis Routes for Methanol Production from Natural Gas
    applied sciences Article A Comparative Exergoeconomic Evaluation of the Synthesis Routes for Methanol Production from Natural Gas Timo Blumberg 1,*, Tatiana Morosuk 2 and George Tsatsaronis 2 ID 1 Department of Energy Engineering, Zentralinstitut El Gouna, Technische Universität Berlin, 13355 Berlin, Germany 2 Institute for Energy Engineering, Technische Universität Berlin, 10587 Berlin, Germany; [email protected] (T.M.); [email protected] (G.T.) * Correspondence: [email protected]; Tel.: +49-30-314-23343 Received: 30 October 2017; Accepted: 20 November 2017; Published: 24 November 2017 Abstract: Methanol is one of the most important feedstocks for the chemical, petrochemical, and energy industries. Abundant and widely distributed resources as well as a relative low price level make natural gas the predominant feedstock for methanol production. Indirect synthesis routes via reforming of methane suppress production from bio resources and other renewable alternatives. However, the conventional technology for the conversion of natural gas to methanol is energy intensive and costly in investment and operation. Three design cases with different reforming technologies in conjunction with an isothermal methanol reactor are investigated. Case I is equipped with steam methane reforming for a capacity of 2200 metric tons per day (MTPD). For a higher production capacity, a serial combination of steam reforming and autothermal reforming is used in Case II, while Case III deals with a parallel configuration of CO2 and steam reforming. A sensitivity analysis shows that the syngas composition significantly affects the thermodynamic performance of the plant. The design cases have exergetic efficiencies of 28.2%, 55.6% and 41.0%, respectively.
    [Show full text]
  • The Future of Gasification
    STRATEGIC ANALYSIS The Future of Gasification By DeLome Fair coal gasification projects in the U.S. then slowed significantly, President and Chief Executive Officer, with the exception of a few that were far enough along in Synthesis Energy Systems, Inc. development to avoid being cancelled. However, during this time period and on into the early 2010s, China continued to build a large number of coal-to-chemicals projects, beginning first with ammonia, and then moving on to methanol, olefins, asification technology has experienced periods of both and a variety of other products. China’s use of coal gasification high and low growth, driven by energy and chemical technology today is by far the largest of any country. China markets and geopolitical forces, since introduced into G rapidly grew its use of coal gasification technology to feed its commercial-scale operation several decades ago. The first industrialization-driven demand for chemicals. However, as large-scale commercial application of coal gasification was China’s GDP growth has slowed, the world’s largest and most in South Africa in 1955 for the production of coal-to-liquids. consistent market for coal gasification technology has begun During the 1970s development of coal gasification was pro- to slow new builds. pelled in the U.S. by the energy crisis, which created a political climate for the country to be less reliant on foreign oil by converting domestic coal into alternative energy options. Further growth of commercial-scale coal gasification began in “Market forces in high-growth the early 1980s in the U.S., Europe, Japan, and China in the coal-to-chemicals market.
    [Show full text]