Desensitization of Rat Renal Thick Ascending Limb Cells to Vasopressin

Total Page:16

File Type:pdf, Size:1020Kb

Desensitization of Rat Renal Thick Ascending Limb Cells to Vasopressin Proc. Nati. Acad. Sci. USA Vol. 85, pp. 2407-2411, April 1988 Physiological Sciences Desensitization of rat renal thick ascending limb cells to vasopressin (Brattleboro rats/urine concentration/glucagon/calcitonin) JEAN-MARC ELALOUF*, DAOUDI CHABANE SARI, NICOLE ROINEL, AND CHRISTIAN DE ROUFFIGNAC Service de Biologie Cellulaire, Centre d'Etudes Nucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France Communicated by Gerhard Giebisch, December 8, 1987 ABSTRACT Previous studies from this laboratory have collecting duct but also enhances Cl, Na, K, Mg, and Ca demonstrated that vasopressin stimulates K, Mg, Ca, Cl, and reabsorption in the thick ascending limb of Henle's loop Na reabsorption by the thick ascending limb of Henle's loop (TALH) of the rat kidney (2-4). In addition, three hor- (TALH) of the rat kidney. Micropuncture of superficial neph- mones-glucagon, calcitonin, and parathyroid hormone rons and clearance experiments were performed to determine (PTH)-act on the same pool of adenylate cyclase as vaso- whether desensitization of the TALH to vasopressin may be pressin in the rat TALH (5) and also strongly stimulate K, demonstrated in vivo and whether such desensitization is Mg, and Ca reabsorption in this nephron segment (6, 7). The specific for the effects of vasopressin (i.e., homologous) or also present study was undertaken to determine whether (i) the alters the response to the other hormones acting on the same biological response of the TALH to vasopressin can be pool of adenylate cyclase in this nephron segment. Brattleboro desensitized in vivo, (ii) this desensitization is homologous or rats, with hereditary hypothalamic diabetes insipidus (DI), heterologous, and (iii) the TALH and the collecting ducts can were given i.m. injections of 1-desamino-8-D-arginine-vaso- be independently desensitized. Confirmation of iii would pressin {des-l-amino-[DArg8JVP (herein designated dDAVP); 2 provide further evidence that vasopressin can affect the two ,ug/day} for 3 days. The effects of maximal physiological doses segments independently; it was previously demonstrated that of arginine-8-vasopressin {[Arg8]VP (herein designated AVP); a higher concentration of vasopressin is required to induce a 20 pg/min per 100 g of body weight} were studied 2 days after biological response (8) or to stimulate the cyclase (9) in the the cessation of treatment, when the animals had returned to TALH than in the collecting duct. DI. The K, Mg, Ca, and, to a lesser extent, Cl and Na The present experiments were performed in vivo. The concentrations in the fluid leaving the TALH of superficial TALH functions were studied by micropuncture of superfi- nephrons were higher in dDAVP-treated than in untreated rats cial nephrons. Our attention was focused on the effects of given similar amounts of AVP during the experiments. A arginine-8-vasopressin {[Arg8]VP (herein designated AVP)} 50-60% desensitization of the TALH to AVP was still appar- on K, Mg, and Ca reabsorption in the loop of Henle since ent 2 days after stopping the dDAVP injections. Desensitization these effects are easier to detect than those on Cl and Na (3). is homologous, as judged from normal responses to physiolog- The Mg excretion rate in urine closely depends on the ical doses of glucagon and calcitonin, two hormones acting on reabsorption of Mg in the TALH (3, 6, 8, 10) and was the same cyclase pool as AVP in the rat TALH. The AVP- therefore also measured to assess TALH function. With dependent increase of urine osmolality, however, indicated regard to the collecting duct system, the response to AVP that its effects on the permeability to water of the collecting was studied by measuring the urine osmolality. The effects duct were scarcely affected in dDAVP-treated rats. It is of glucagon and calcitonin, which act on the same cyclase concluded that (i) AVP induces homologous desensitization in pool as vasopressin in the cortical and medullary TALH (5), the rat TALH and (ii) the TALH can be markedly desensitized were studied to determine whether the desensitization of the to AVP when the collecting duct response to this hormone is TALH was homologous or heterologous. To avoid undesir- poorly affected or even fully maintained. able interference from endogenous vasopressin, glucagon, calcitonin, and PTH, this study was performed on hormone- It is well documented that, for a variety of hormones acting deprived rats (3, 6-8, 10)-i.e., Brattleboro rats {lacking by way of membrane-bound receptors, the number of such AVP production (11)} that were acutely thyroparathyroidec- cell-surface receptors and the magnitude of the biological tomized (thus suppressing calcitonin and PTH) and given response induced by an agonist can be depressed by acute or somatostatin during the experiments to inhibit glucagon chronic increases of the concentration of the agonist in the secretion. blood (1). This phenomenon is called desensitization or METHODS hormone-induced refractoriness. For those cell types in which several hormones act through a common mechanism, Experiments were performed on 72 male rats (body weight, desensitization is considered of the homologous type if the 160-200 g) with hereditary diabetes insipidus (DI) (Brattle- alteration of the cellular response is selective for one ago- boro strain). The experimental procedures have been de- nist-i.e., the one that is responsible for the desensitization scribed in detail (3, 6, 8, 10) and will only be recalled briefly. process. Conversely, desensitization is referred to as heter- The animals were fed ad libitum until 17 hr before the ologous or nonspecific when one hormone induces cell experiments. Free access to water was allowed until anes- refractoriness to several hormones. thesia (inactin, 10 mg/100 g of body weight). The animals In the mammalian kidney vasopressin is known to act on were prepared to reduce the plasma concentration of endog- several different cell types, with distinct functional proper- enous calcitonin, PTH, and glucagon (3). For this purpose, a ties. This hormone increases the permeability to water of the Abbreviations: TALH, thick ascending limb of Henle's loop; AVP, arginine-8-vasopressin; dDAVP, 1-desamino-8-D-arginine-vasopres- The publication costs of this article were defrayed in part by page charge sin; DI, diabetes insipidus; PTH, parathyroid hormone; HD, hor- payment. This article must therefore be hereby marked "advertisement" mone-deprived; HDD, HD densensitized; HCT, human calcitonin. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. Downloaded by guest on September 26, 2021 2407 2408 Physiological Sciences: Elalouf et al. Proc. Natl. Acad. Sci. USA 85 (1988) thyroparathyroidectomy was performed immediately after filtrate samples were obtained by centrifuging plasma sam- anesthesia (i.e., 3 hr before the onset of clearance measure- ples on Amicon cuprophan membranes (19). ments), and somatostatin (Clin Midy Laboratory, Montpel- During experiments, the diuretic animals (i.e., the rats not lier, France) was administered i.v. at a rate of 70 ng/min per infused with AVP) were given NaCl solution (4 g/liter) 100 g of body weight from the end of surgery up to the end through the left femoral vein at a rate of 85 ILI/min to of the experiment to inhibit glucagon secretion (6). compensate for urinary losses (8). Another NaCl solution (4 Desensitization was achieved by i.m. injections of 1- g/liter) containing [3H]inulin, as a glomerular indicator, as desamino-8-D-arginine-vasopressin {des-1-amino-[DArg8]VP well as somatostatin and, where necessary, glucagon or (herein designated dDAVP); Ferring Pharmaceuticals, calcitonin was given at a constant rate of 20 Al/min. The Malmo, Sweden}. The peptide, dissolved in isotonic saline, nondiuretic animals (those given AVP during the experi- was administered once a day for 3 days at a dose of 1 ,ug/100 ment) were only infused at 20 Aul/min with a NaCl solution (9 g of body weight. It was shown previously that i.m. admin- g/liter) containing [3H]inulin and the required hormones. istration of such a pharmacological dose of dDAVP markedly However, when the urine flow rate from both kidneys decreases the number of [3H]vasopressin binding sites (12) exceeded 15 ,ul/min, these animals were also given a NaCl and the adenylate cyclase responsiveness to vasopressin in solution (4 g/liter) through the left femoral vein at a rate membranes prepared from the rat kidney medulla (12, 13). equaling the urinary losses (8). The peptide was given i.m. in saline to ensure a sudden and During the micropuncture experiments, the tubular fluid dramatic rise of the plasma dDAVP concentration. Bouby et samples were collected from late proximal and early acces- al. (14) have demonstrated that chronic administration of sible distal convolutions belonging to the same superficial much lower doses (200-500 ng/day) of dDAVP delivered nephrons. One hundred and thirteen nephrons were micro- progressively (with implantable osmotic minipumps or by punctured in these experiments (20-25 nephrons in each of s.c. injection in a peanut oil emulsion) promotes a hypertro- the five groups of rats studied). phy of the medullary TALH cells in the DI Brattleboro rat. Analytical Procedures. The [3H]inulin contents and the In this model, the TALH response to dDAVP is maintained osmolality and electrolyte concentration in the plasma and (15). In the present study, the higher dose and more rapid urine samples were measured as described (8). diffusion of dDAVP (due to i.m. administration) ensure that The electrolyte concentration in the tubular fluid and the maximal concentration of peptide reached in the blood plasma ultrafiltrate samples was determined with an electron should be at least 10-100 times higher than in the model of probe analyzer (Cameca, Camebax; Courbevoie, France) Bouby et al.
Recommended publications
  • Reorganization of Neural Peptidergic Eminence After Hypophysectomy
    The Journal of Neuroscience, October 1994, 14(10): 59966012 Reorganization of Neural Peptidergic Systems Median Eminence after Hypophysectomy Marcel0 J. Villar, Bjiirn Meister, and Tomas Hiikfelt Department of Neuroscience, The Berzelius Laboratory, Karolinska Institutet, Stockholm, 171 77 Sweden Earlier studies have shown the formation of a novel neural crease to a final stage of a few, strongly immunoreactive lobe after hypophysectomy, an experimental manipulation fibers in the external layer at longer survival times. Vaso- that causes transection of neurohypophyseal nerve fibers active intestinal polypeptide (VIP)- and peptide histidine- and removal of pituitary hormones. The mechanisms that isoleucine (PHI)-IR fibers in hypophysectomized animals had underly this regenerative process are poorly understood. already contacted portal vessels 5 d after hypophysectomy, The localization and number of peptide-immunoreactive and from then on progressively increased in numbers. Fi- (-IR) fibers in the median eminence were studied in normal nally, most of the peptide fibers described above formed rats and in rats at different times of survival after hypophy- dense innervation patterns around the large blood vessels sectomy using indirect immunofluorescence histochemistry. along the lateral borders of the median eminence. The number of vasopressin (VP)-IR fibers increased in the The present results show that hypophysectomy induces external layer of the median eminence in 5 d hypophysec- a wide variety of changes in hypothalamic neurosecretory tomized rats. Oxytocin (OXY)-IR fibers decreased in the in- fibers. Not only is the expression of several peptides in these ternal layer and progressively extended into the external fibers modified following different survival times, but a re- layer.
    [Show full text]
  • Effect of Early Vasopressin Vs Norepinephrine On
    Protocol Number: CRO1888 VANISH Vasopressin vs Noradrenaline as Initial therapy in Septic Shock PROTOCOL NUMBER: CRO1888 EudraCT NUMBER: 2011-005363-24 SPONSOR: Imperial College London FUNDER: National Institute for Health Research DEVELOPMENT PHASE: PHASE IV STUDY COORDINATION CENTRE: Imperial Clinical Trials Unit PROTOCOL Version & Date: Version 2.1, 02.08.2013 Property of: Dr Anthony Gordon May not be used, divulged or published without the consent of: Dr Anthony Gordon Confidential Final Version2.1, 02.08.2013 Page 1 of 31 Downloaded From: https://jamanetwork.com/ on 09/29/2021 Protocol Number: CRO1888 Study Management Group Chief Investigator: Dr Anthony Gordon Co-investigators: Dr Stephen Brett Prof Gavin Perkins Prof Deborah Ashby Statistician: Dr Alexina Mason Trial Management: Ms Neeraja Thirunavukkarasu Study Coordination Centre For general queries, supply of trial documentation, and collection of data, please contact: Study Coordinator: Ms Neeraja Thirunavukkarasu Address: ICU – 11N, Charing Cross Hospital, Fulham Palace Road London W6 8RF E-mail: [email protected] Clinical Queries Clinical queries should be directed to Ms Neeraja Thirunavukkarasu who will direct the query to the appropriate person Sponsor Imperial College London is the main research Sponsor for this study. For further information regarding the sponsorship conditions, please contact the Head of Regulatory Compliance at: Joint Research Compliance Office 510, Lab block, 5th Floor Charing Cross Hospital Fulham Palace Road London W6 8RF Tel: 0203 311 0213 Fax: 0203 311 0203 Funder National Institute for Health Research – Research for Patient Benefit and Clinician Scientist award schemes This protocol describes the VANISH study and provides information about procedures for entering participants.
    [Show full text]
  • Vasopressin Versus Norepinephrine in Septic Shock: a Propensity Score Matched Efficiency Retrospective Cohort Study in the VASST Coordinating Center Hospital James A
    Russell et al. Journal of Intensive Care (2018) 6:73 https://doi.org/10.1186/s40560-018-0344-2 RESEARCH Open Access Vasopressin versus norepinephrine in septic shock: a propensity score matched efficiency retrospective cohort study in the VASST coordinating center hospital James A. Russell1,2*, Hugh Wellman3 and Keith R. Walley1,2 Abstract Purpose: It is not clear whether vasopressin versus norepinephrine changed mortality in clinical practice in the Vasopressin and Septic Shock Trial (VASST) coordinating center hospital after VASST was published. We tested the hypothesis that vasopressin changed mortality compared to norepinephrine using propensity matching of vasopressin to norepinephrine-treated patients in the VASST coordinating center hospital before (SPH1) and after (SPH2) VASST was published. Methods: Vasopressin-treated patients were propensity score matched to norepinephrine-treated patients based on age, APACHE II, respiratory, renal, and hematologic dysfunction, mechanical ventilation status, medical/surgical status, infection site, and norepinephrine dose. The propensity score estimated the probability that a patient would have received vasopressin given baseline characteristics. For sensitivity analysis, we then excluded patients who had underlying severe congestive heart failure. The primary outcome was 28-day mortality. Results: Vasopressin- and norepinephrine-treated patients were similar after matching in SPH1 (pre-VASST); vasopressin-treated patients (n = 158) had a significantly higher mortality than norepinephrine-treated patients (n = 158) (60.8 vs. 46.2%, p = 0.009). In SPH2 after matching, the 28-day mortality rates were not significantly different; 31.2% and 26.9% in the vasopressin (n = 93) and norepinephrine (n = 93) groups, respectively (p = 0.518). The day 1 vasopressin dose in SPH1 vs.
    [Show full text]
  • Responses Induced by Arginine-Vasopressin Injection in the Plasma Concentrations of Adrenocorticotropic Hormone, Cortisol, Growt
    249 Responses induced by arginine-vasopressin injection in the plasma concentrations of adrenocorticotropic hormone, cortisol, growth hormone and metabolites around weaning time in goats K Katoh, M Yoshida, Y Kobayashi, M Onodera, K Kogusa and Y Obara Department of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori, Aoba-ku, Sendai 981-8555, Japan (Requests for offprints should be addressed to Y Obara; Email: [email protected]) Abstract In order to assess the biological significance of weaning responses induced by stimulation with AVP were weaker and water deprivation on the control of plasma con- than those induced in 13-week-old goats. Additionally, centrations of adrenocorticotropic hormone (ACTH), cor- there were no responses in any hormone patterns to CRH tisol, growth hormone (GH) and metabolites in response stimulation in 4-week-old goats. In experiment 3, 13- to stimulation with arginine-vasopressin (AVP) and week-old goats were injected with CRH alone followed corticotropin-releasing hormone (CRH), we carried out by injection with AVP for two consecutive days of water three experiments in which male goats before and after deprivation. The animals were subjected to withdrawal of weaning were intravenously injected with AVP or CRH up to 20% of the total blood volume and water deprivation alone, or in combination with each other. In experiment 1, for up to 28 h. However, no significant differences in 17-week-old (post-weaning) goats were intravenously plasma ACTH, cortisol or GH levels were observed injected with AVP or CRH alone at the doses of 0·1, 0·3 between days 1 and 2.
    [Show full text]
  • GIP-Dependent Expression of Hypothalamic Genes
    GIP-dependent expression of hypothalamic genes Suresh Ambati1, Jiuhua Duan1a, Diane L. Hartzell1, Yang-Ho Choi3, Mary Anne Della- Fera1 and Clifton A. Baile1,2 1Department of Animal and Dairy Science, 2Department of Foods and Nutrition, University of Georgia, Athens GA 30602, USA. 3Department of Animal Science and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 660-701, Korea Correspondence: Dr. Clifton A. Baile, 444 Rhodes Center, University of Georgia, Athens GA 30602-2771. Tel: (706) 542-4094; Fax: (706) 542-7925; e-mail: [email protected] Short Title: GIP-dependent expression of hypothalamic genes a Current address: Dept. of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada M5S 1A1 1 SUMMARY GIP (glucose dependent insulinotrophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavior related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 g GIP or 10 l artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9+4.5%), CART (25.9+2.7%), CREB1 (38.5+4.5%), GABRD (67.1+11%), JAK2 (22.1+3.6%), MAPK1 (33.8+7.8%), NPY (25.3 5.3%), OXT (49.1+5.1%), STAT3 (21.6+3.8%), and TH (33.9+8.5%).
    [Show full text]
  • Incidence of Hypotension After Discontinuation of Norepinephrine
    J Korean Med Sci. 2020 Jan 6;35(1):e8 https://doi.org/10.3346/jkms.2020.35.e8 eISSN 1598-6357·pISSN 1011-8934 Original Article Incidence of Hypotension after Emergency & Critical Care Medicine Discontinuation of Norepinephrine or Arginine Vasopressin in Patients with Septic Shock: a Systematic Review and Meta-Analysis Jae-Uk Song ,1* Jonghoo Lee ,2* Hye Kyeong Park ,3 Gee Young Suh ,4,5 and Kyeongman Jeon 4,5 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea 2Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Received: Jul 26, 2019 Medicine, Jeju, Korea Accepted: Nov 12, 2019 3Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea Address for Correspondence: 4Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Kyeongman Jeon, MD, PhD Medicine, Seoul, Korea Division of Pulmonary and Critical Care 5Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Medicine, Department of Medicine, and Sungkyunkwan University School of Medicine, Seoul, Korea Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. ABSTRACT E-mail: [email protected] Background: There has been no consensus regarding the discontinuation order *Jae-Uk Song and Jonghoo Lee contributed of vasopressors in patients recovering from septic shock treated with concomitant equally to this work. norepinephrine (NE) and arginine vasopressin (AVP). The aim of this study was to compare © 2020 The Korean Academy of Medical the incidence of hypotension within 24 hours based on whether NE or AVP was discontinued Sciences.
    [Show full text]
  • Balance of Brain Oxytocin and Vasopressin: Implications For
    Opinion Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors 1 2 Inga D. Neumann and Rainer Landgraf 1 Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany 2 Max Planck Institute of Psychiatry, Munich, Germany Oxytocin and vasopressin are regulators of anxiety, ([5] for review of human data), for opposing effects of OXT stress-coping, and sociality. They are released within and AVP on the fine-tuned regulation of emotional behav- hypothalamic and limbic areas from dendrites, axons, ior. Specifically, OXT exerts anxiolytic and antidepressive and perikarya independently of, or coordinated with, effects, whereas AVP predominantly increases anxiety- secretion from neurohypophysial terminals. Central oxy- and depression-related behaviors. We will therefore put tocin exerts anxiolytic and antidepressive effects, where- forward the hypothesis that a dynamic balance between as vasopressin tends to show anxiogenic and depressive the activities of brain OXT and AVP systems impacts upon actions. Evidence from pharmacological and genetic hypothalamic and limbic circuitries involved in a broad association studies confirms their involvement in indi- spectrum of emotional behaviors extending to psychopa- vidual variation of emotional traits extending to psycho- thology. pathology. Based on their opposing effects on emotional behaviors, we propose that a balanced activity of both Central release patterns of OXT and AVP: coordinated brain neuropeptide systems is important for appropriate and independent secretion into blood emotional behaviors. Shifting the balance between the Following their neuronal synthesis in the hypothalamic neuropeptide systems towards oxytocin, by positive supraoptic (SON) and paraventricular (PVN) nuclei (OXT, social stimuli and/or psychopharmacotherapy, may help AVP), or in regions of the limbic system (AVP), both to improve emotional behaviors and reinstate mental neuropeptides are centrally released to regulate neuronal health.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/27/2021 12:13:16PM Via Free Access 82 C Y Y CHENG, J Y S CHU and Others
    81 REVIEW Vasopressin-independent mechanisms in controlling water homeostasis Carrie Y Y Cheng*, Jessica Y S Chu* and Billy K C Chow School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China (Correspondence should be addressed to B K C Chow; Email: [email protected]) *(C Y Y Cheng and J Y S Chu contributed equally this work) Abstract The maintenance of body water homeostasis depends on the balance between water intake and water excretion. In the kidney, vasopressin (Vp) is a critical regulator of water homeostasis by controlling the insertion of aquaporin 2 (AQP2) onto the apical membrane of the collecting duct principal cells in the short term and regulating the gene expression of AQP2 in the long term. A growing body of evidence from both in vitro and in vivo studies demonstrated that both secretin and oxytocin are involved as Vp-independent mechanisms regulating the renal water reabsorption process, including the translocation and expression of AQP2. This review focuses on how these two hormones are potentially involved as Vp-independent mechanisms in controlling water homeostasis. Journal of Molecular Endocrinology (2009) 43, 81–92 Introduction sensation of thirst and the availability of water, and water excretion controlled by the antidiuretic hormone Osmoregulation involves sophisticatedly integrated Vp and the medullary osmotic gradient. physiological and behavioral responses to maintain the osmolality of the fluid bathing body cells. The regulation of renal handling of water and electrolytes by Vasopressin the antidiuretic hormone, vasopressin (Vp), and the regulation of water and salt intake by the dipsogenic Vp is a pleiotropic peptide which affects a wide range of peptide, angiotensin, are involved in the physiological peripheral and central regulated functions in order to and behavioral approaches respectively.
    [Show full text]
  • Vasopressin Mediates the Response of the Combined Dexamethasone/CRH Test in Hyper-Anxious Rats: Implications for Pathogenesis of Affective Disorders Martin E
    Vasopressin Mediates the Response of the Combined Dexamethasone/CRH Test in Hyper-anxious Rats: Implications for Pathogenesis of Affective Disorders Martin E. Keck, M.D., Alexandra Wigger, Ph.D., Tobias Welt, B.Sc., Marianne B. Müller, M.D., Angela Gesing, Ph.D., Johannes M.H.M. Reul, Ph.D., Florian Holsboer, M.D., Ph.D., Rainer Landgraf, Ph.D., and Inga D. Neumann, Ph.D. To investigate the neuroendocrine alterations linked to corticotrope cells. We tested this hypothesis by in situ inborn emotionality in two Wistar rat lines selectively bred hybridization and in vivo microdialysis, and found an for either high (HAB) or low (LAB) anxiety-related increase in both basal synthesis and release of vasopressin behavior, we administered the combined dexamethasone within the PVN of the male HAB rats. As expected, (DEX)/corticotropin-releasing hormone (CRH) test. DEX pretreatment with a selective vasopressin type 1 receptor (12:00 M. (noon); 30 ␮g/kg) resulted in a significantly less antagonist abolished the CRH-stimulated increase in efficient suppression of the diurnal increase in the ACTH secretion in the DEX-pretreated male HAB rats. circulating corticotropin (ACTH) levels in the male HAB The results indicate that vasopressin-mediated effects are rats than in the male LAB rats. In addition, plasma ACTH critically involved in the profound disturbance of the and corticosterone responses to subsequent CRH (7:30 P.M.; hypothalamic-pituitary-adrenocortical system in male HAB 50 ng/kg) were significantly higher in male HAB rats. The rats, thus revealing striking parallels to the neuroendocrine rise in ACTH after CRH in the DEX-pretreated male HAB situation in human depression.
    [Show full text]
  • Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis Nicole Peters
    Georgia State University ScholarWorks @ Georgia State University Neuroscience Institute Dissertations Neuroscience Institute 8-13-2019 Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis Nicole Peters Follow this and additional works at: https://scholarworks.gsu.edu/neurosci_diss Recommended Citation Peters, Nicole, "Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/neurosci_diss/45 This Dissertation is brought to you for free and open access by the Neuroscience Institute at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Neuroscience Institute Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. IDENTIFYING THE ROLE OF VASOPRESSIN AND OXYTOCIN IN THE MICROBIOTA-GUT-BRAIN-BEHAVIOR AXIS by NICOLE PETERS Under the Direction of Geert de Vries, PhD ABSTRACT The gut microbiota is a complex ecosystem of microorganisms that form a bidirectional communication pathway with the brain, called the gut-brain axis. In addition to their roles in mediating host metabolism and digestion, a wealth of research is identifying roles for the gut microbiota in neural development and function, immune modulation, and behavioral expression. Many neural targets of gut-brain axis signaling have been identified, but little attention has been paid to vasopressin and oxytocin. Vasopressin and oxytocin are neuropeptides that are targets of immune signaling and are implicated in the control of anxiety-like, depressive-like, and social behaviors, making them likely mediators in the communication between the gut and the brain. As the immune system is a main signaling pathway in the gut-brain axis, it is possible that vasopressin and oxytocin would be affected through immune system activation to result in behavioral alterations seen in microbiota dysbiosis.
    [Show full text]
  • Cholecystokinin Evokes Secretion of Oxytocin and Vasopressin from Rat
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 5198-5201, July 1989 Neurobiology Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium (neurohypophysis/receptors/neurosecretion/neuropeptide/protein kinase C) C. A. BONDY*t, R. T. JENSEN*, L. S. BRADY§, AND H. GAINER* *Laboratory of Neurochemistry, National Institute of Neurological and Communicative Disorders and Stroke, tDigestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, and §Unit on Functional Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Communicated by William A. Hagins, April 5, 1989 ABSTRACT Cholecystokinin (CCK) and its receptors are albumin (1.5 mg/ml)] maintained at 370C and equilibrated abundantly represented in the central nervous system. However, with frequent washes for 90 min prior to starting the exper- a specific role or mechanism ofaction for CCKin this context has iment. The incubation and stimulus assembly have been not been established. CCK coexists with oxytocin in magnocel- described in detail elsewhere (4). The stream of 02 suffusing lular neurons of the hypothalamic-neurohypophysial system, the medium was turned offduring periods of peptide addition sharing common neurosecretory vesicles with oxytocin in the (and for the same period in control preparations) to avoid neural lobe of the pituitary. The neural lobe, which consists oxidation of CCK and related peptides, which can destroy primarily of oxytocin- and vasopressin-containing axons and their activity. Medium was collected at 5- or 10-min intervals nerve terminals and their surrounding glia, provides a relatively for determination of OT and VP content by specific radio- simple model system allowing for the study of the regulation of immunoassay as described (4).
    [Show full text]
  • Thyrotropin-Releasing Hormone (TRH) Inhibits Vasopressin and Oxytocin Release from Rat Hypothalamo-Neurohypophysial Explants in Vitro
    Thyrotropin-releasing hormone (TRH) inhibits vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants in vitro Joanna Ciosek and Bozena Stempniak Department of Pathophysiology, Medical University of L6di 60 Narutowicz St. 90-136 E6di, Poland Abstract. Incubation of hypothalamo-neurohypophysial explants in Locke's solution containing 28 nM/L thyrotropin-releasing hormone (TRH) resulted in an inhibition of vasopressin and oxytocin secretion during depolarization due to excess potassium. These data suggest the involvement of TRH in the regulatory mechanisms of vasopressin and oxytocin release; the inhibitory effect of TRH cannot be excluded. Key words: thyrotropin-releasing hormone, vasopressin, oxytocin 36 J, Ciosek and B. Stempniak INTRODUCTION pophysial explants. They were fed normal pelleted laboratory diet and kept at room temperature about Thyrotropin-releasing hormone (TRH; p-Glu-a- +20° C. A 14-h light, 10-h dark cycle was provided -His-a-Pro-NH2) is the hypothalamic peptide that (artificial illumination 6.00 a.m. - 8.00 p.m.). Before regulates the synthesis and secretion of thyrotropin experiments they were given tap water ad libitum. and prolactin from the anterior pituitary gland (Murdoch et al. 1983, Carr et al. 1989). TRH has been Experimental design shown to be involved in a number of various endocrine and biological functions in the central nervous system, The vasopressin and oxytocin release from the acting as a neurotransmitter or neuromodulator hypothalamo-neurohypophysial explants was esti- (Griffiths 1985, Reichlin 1986, Siren and Feuerstein mated in vitro, TRH being added to the incubation 1987). Much of the hypothalamic TRH is synthesized media (Lg and Lq; see below).
    [Show full text]