Evidence for Spider Community Resilience to Invasion by Non-Native Spiders

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Spider Community Resilience to Invasion by Non-Native Spiders Biological Conservation 98 (2001) 241±249 www.elsevier.com/locate/biocon Evidence for spider community resilience to invasion by non-native spiders Jutta C. Burger a,*, Michael A. Patten b, Thomas R. Prentice a, Richard A. Redak c aDepartment of Entomology, University of California, Riverside, CA 92521, USA bDepartment of Biology, University of California, Riverside, CA 92521, USA cDepartment of Entomology and Center for Conservation Biology, University of California, Riverside, CA 92521, USA Received 14 June 2000; received in revised form 20 June 2000; accepted 17 August 2000 Abstract The negative impacts of non-native species are well documented; however, the ecological outcomes of invasions can vary widely. In order to determine the resilience of local communities to invasion by non-native spiders, we compared spider assemblages from areas with varying numbers of non-native spiders in California coastal sage scrub. Spiders were collected from pitfall traps over 2 years. Productive lowland coastal sites contained both the highest proportion of non-natives and the greatest number of spiders overall. We detected no negative associations between native and non-native spiders and therefore suggest that non-native spiders are not presently impacting local ground-dwelling spiders. Strong positive correlations between abundances of some natives and non-natives may be the result of similar habitat preferences or of facilitation between species. We propose that the eects of non- native species depend on resource availability and site productivity, which, in turn, aect community resilience. Our results support the contention that both invasibility and resilience are higher in diverse, highly linked communities with high resource availability rather than the classical view that species poor communities are more invasible. # 2001 Elsevier Science Ltd. All rights reserved. Keywords: Non-native species; Biological invasions; Invasibility; Community resilience; Arthropoda; Araneae 1. Introduction on population levels (but may or may not alter foraging behavior, habitat choice, etc.). That an entire ecosystem Non-native species frequently pose a threat to the can be aected, directly or indirectly, by an exotic spe- persistence of natives, presumably through competitive cies is exempli®ed by such classic cases as the brown tree exclusion or depredation. Several examples of the snake Boiga irregularis in Guam (Fritts and Rodda, devastating, community-wide eects of introduced 1998), the red imported ®re ant Solenopsis invicta in organisms exist (e.g., Enserink, 1999, Strayer, 1999), but Texas (Porter and Savignano, 1990), and cheatgrass these examples represent extreme cases. More com- Bromus tectorum in shrub-steppe vegetation (Brandt monly, we encounter non-native species seemingly and Rickard, 1994). The eects that non-native species coexisting with natives, and for the most part we are can have on populations of unrelated species have also unaware of their eects (Aniansson, 1999). been documented, as with European Starlings Sturnus Non-native organisms potentially exert four distinct vulgaris outcompeting nesting Northern Flickers Cola- types of eects on a native species or community. They petes auratus (Ingold, 1996) and Purple Martins Progne may (1) impact and degrade an entire community or subis (Brown, 1997). Reports of negative eects on ecosystem; (2) cause declines in speci®c, possibly unre- populations of related species are numerous. The non- lated, native species or small sets of unrelated species native cray®sh Orconectes rusticus outcompetes native (presumably through competition or predation); (3) Orconectes species in Wisconsin (Hill and Lodge, 1999), cause declines in closely related taxa (most likely bullfrogs Rana catesbiana deplete populations of native through competition); or (4) have no discernible eect Rana species throughout California (Hayes and Jen- nings, 1986), and Argentine ants, Linepithema humile, * Corresponding author. depress many native ant species' populations along E-mail address: [email protected] (J.C. Burger). urban interfaces in California (Holway, 1999, Suarez et 0006-3207/01/$ - see front matter # 2001 Elsevier Science Ltd. All rights reserved. PII: S0006-3207(00)00159-2 242 J.C. Burger et al. / Biological Conservation 98 (2001) 241±249 al., 1998). Published cases of exotics not aecting natives that have become established in southern Cali- natives are less common (Bauchau, 1997), but do exist. fornia within the last 100 years (Chamberlin and Ivie, For example, non-native ®shes in some streams of 1935, Gertsch, 1979, Platnick and Shadab, 1983, Plat- northern California are not signi®cantly changing native nick and Murphy, 1984). Four of these seven are gna- species assemblages (Baltz and Moyle, 1993), in contrast phosids, the most abundant and diverse group of native to their eects in other regions of North America ground-dwelling spiders in CSS (Prentice et al., 1998). (Moyle, 1995, Chapleau et al., 1997). They represent a single guild (sensu Root, 1967) of It is thus dicult to predict the degree to which non- wandering, generalist predators. One, Dysdera crocata natives are able to invade ecosystems. Elton (1958), (Dysderidae), is an isopod specialist (Gertsch, 1979). MacArthur (1970), Stachowicz et al. (1999) and others Another, Oecobius annulipes (Oecobiidae), is a small, proposed that species-poor ecosystems are most easily relatively sessile web-builder. Yet another, Metaltella invaded. Such systems contain species depauperate simoni (Amphinectidae), is a moderately large ground communities that may re¯ect low resource availability dweller. or high levels of disturbance and result in a less ecient Based on generally accepted theory, if the hypothesis utilization of resource space. However, the bulk of of higher invasibility of low diversity sites is true, then experimental data suggest the opposite trend: areas of sites with lower species richness should have more non- high diversity are more likely to support invading spe- natives (and, by corollary, vice versa). Thus, our objec- cies (Levine and D'Antonio, 1999, Levin, 2000). Diver- tives were (1) to describe the pattern of occurrence of sity may re¯ect high resource availability, high non-native spiders across sites in CSS, (2) to determine productivity, and high structural complexity. the degree of association between native spiders, non- Similar disagreement exists as to which conditions native spiders, and their environment, and (3) to study most favor large scale eects on resident fauna (Levine the intraguild relationships between closely related and D'Antonio, 1999). Whatever the optimal conditions native and exotic gnaphosid spiders. We predicted that, for invasion and establishment may be, it is certain that if non-natives were impacting native spider commu- habitat fragmentation and anthropogenic in¯uences nities, their eects would be most obvious within the increase both the likelihood of invasion and the severity ecologically and behaviorally similar gnaphosids. of the invaders' eects on natives (Enserink, 1999). We have studied geographic patterns in local spider assem- blages in order to determine which of these processes 2. Methods may apply to ground-dwelling spider communities in southern Californian coastal sage scrub (CSS) habitats. 2.1. Field collection and identi®cation CSS is a major vegetation type in cismontane south- ern California (Westman, 1981). Its canopy is composed In order to describe patterns of abundances of native of drought-deciduous shrubs such as Artemisia cali- and non-native spiders, we sampled spiders from 60 fornica (Asteraceae) and Eriogonum fasciculatum (Poly- sites in undisturbed CSS and chaparral intergrades gonaceae). Its understory was historically composed of across coastal San Diego County, California, USA. a rich array of native annual forbs. Primarily as a result Sites were located at Marine Corps Base Camp Pendle- of urban development, associated changes in ®re fre- ton and Marine Corps Air Station Miramar (Prentice et quency, and increased pollution, CSS has become al., 1998). Spiders were collected during 1-month sam- increasingly fragmented and vulnerable to invasion by pling periods in December 1994 and 1995, May 1995 non-native plant and animal species (Westman, 1979, and 1996, and August 1995 from ®ve randomly placed Zedler et al., 1983, Stylinski and Allen, 1999). Both 473 ml (16 oz.) pitfall traps at each site. Traps remained non-native grasses (e.g. Bromus spp., Avena spp.) in place for the duration of the study. Collection cups and annual forbs (e.g. Erodium spp., Centaurea sol- contained a dilute aqueous solution of AlconoxTM stitialis) are now common in most CSS and are detergent and salt to increase miscibility and decrease threatening native species' persistence (Eliason and decay. Pitfall traps have been shown to be eective Allen, 1997). To our knowledge, only one invasive when estimating cursorial spider (and other arthropod) arthropod species, the Argentine ant, has been studied fauna richness and activity (Uetz and Unzicker, 1976) in CSS. This species outcompetes and eliminates native and are currently the most accepted method for con- ants in CSS within valleys along urban edges (Suarez ducting ecological studies on these species. Traps were et al., 1998). left open for 7 days during each collection period. All CSS contains a diverse spider fauna whose species mature (and distinct immature) spiders collected were composition and response to non-native invasion
Recommended publications
  • Spiders Collected in Southeast Arkansas by the Pit Trap Method Peggy Rae Dorris Henderson State University
    Journal of the Arkansas Academy of Science Volume 45 Article 8 1991 Spiders Collected in Southeast Arkansas by the Pit Trap Method Peggy Rae Dorris Henderson State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Dorris, Peggy Rae (1991) "Spiders Collected in Southeast Arkansas by the Pit Trap Method," Journal of the Arkansas Academy of Science: Vol. 45 , Article 8. Available at: http://scholarworks.uark.edu/jaas/vol45/iss1/8 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. 45 [1991], Art. 8 SPIDERS COLLECTED INSOUTHEAST ARKANSAS BYTHE PIT TRAP METHOD PEGGY RAE DORRIS P.O. Box 744 Henderson State University Arkadelphia, AR 71923 ABSTRACT By employing the pit-trap method, thousands of spiders were collected from primarily pine-hard- wood stands which had undergone different forestry treatments in Bradley and Drew counties. Fourteen families and 120 species of spiders werecollected, two of which were new state records. INTRODUCTION AGELENIDAE Agelenopsis naevia (Walckcnacr) InArkansas, spiders have rarely been collected by means of pitfall Agelenopsis pennsyhanica (C.
    [Show full text]
  • The Common Spiders of Antelope Island State Park
    THE COMMON SPIDERS OF ANTELOPE ISLAND STATE PARK by Stephanie M Cobbold Web-building Spiders ______________________________________________________________________________ Family Araneidae (orb web spiders) Build a circular spiral web on support lines that radiate out from the center The spider is often found waiting for prey in the center of its web Typical eye pattern: 4 median eyes clustered in a square shape Eye pattern Orb web SMC SMC Neoscona (back and front views) Banded Garden Spider (Argiope) 1 ______________________________________________________________________________ Family Theridiidae (cob web spiders) Abdomen usually ball or globe-shaped Have bristles on legs called combs. These combs are used to fling silk strands over captive prey. Web is loose, irregular and 3-dimensional commons.wikimedia.org Black Widow (Latrodectus hesperus) Theridion ________________________________________________________________________ Family Linyphiidae (sheet web spiders) Build flat, sheet-like or dome-shaped webs under which the spider hangs upside- down. Abdomen is usually longer than wide SMC Sheet web spider hanging under its web 2 ________________________________________________________________________ Family Dictynidae (mesh web spiders) Make small, irregular webs of hackled threads Often found near the tips of plants SMC ________________________________________________________________________ Family Agelenidae (funnel web spiders) Web is a silk mat with a funnel-shaped retreat at one end in which the spider waits in ambush
    [Show full text]
  • Overgrazed Shrublands Support High Taxonomic, Functional and Temporal
    Ecological Indicators 103 (2019) 599–609 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Overgrazed shrublands support high taxonomic, functional and temporal diversity of Mediterranean ground spider assemblages T ⁎ Dimitris Kaltsasa, , Eleni Panayiotoub, Konstantinos Kougioumoutzisc, Maria Chatzakid a Don Daleziou 45, 382 21 Volos, Greece b Palagia Alexandroupolis, PO Box 510, 681 00 Alexandroupolis, Greece c Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece d Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 681 00 Alexandroupolis, Greece ARTICLE INFO ABSTRACT Keywords: The phryganic and maquis shrublands form the most typical vegetal formations in the Eastern Mediterranean Indicator species that since thousands of years have been subject to various types of anthropogenic disturbance, including grazing. Gnaphosidae We studied the impact of sheep and goat grazing on 50 assemblages of ground spiders (Araneae: Gnaphosidae) in Crete phryganic, maquis and forest habitats from zero to 2000 m elevation on Crete, Greece using pitfall traps for one Maquis year at each sampling site. In total, 58 gnaphosid species and 16,592 individuals were collected. Cretan endemic Livestock grazing Gnaphosidae were negatively affected by intensive grazing and, contrary to findings on other taxa studied on the Habitat degradation island, they were sparse and rare throughout the study area. The species composition of gnaphosid assemblages was primarily determined by elevation. Trachyzelotes lyonneti, Urozelotes rusticus, Zelotes scrutatus, Anagraphis pallens and Berinda amabilis proved to be significant indicators of overgrazing. The vast majority of spiders belonging to synanthropic and nationally red-listed species were found in overgrazed sites.
    [Show full text]
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Higher-Level Phylogenetics of Linyphiid Spiders (Araneae, Linyphiidae) Based on Morphological and Molecular Evidence
    Cladistics Cladistics 25 (2009) 231–262 10.1111/j.1096-0031.2009.00249.x Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence Miquel A. Arnedoa,*, Gustavo Hormigab and Nikolaj Scharff c aDepartament Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-8028 Barcelona, Spain; bDepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA; cDepartment of Entomology, Natural History Museum of Denmark, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Accepted 19 November 2008 Abstract This study infers the higher-level cladistic relationships of linyphiid spiders from five genes (mitochondrial CO1, 16S; nuclear 28S, 18S, histone H3) and morphological data. In total, the character matrix includes 47 taxa: 35 linyphiids representing the currently used subfamilies of Linyphiidae (Stemonyphantinae, Mynogleninae, Erigoninae, and Linyphiinae (Micronetini plus Linyphiini)) and 12 outgroup species representing nine araneoid families (Pimoidae, Theridiidae, Nesticidae, Synotaxidae, Cyatholipidae, Mysmenidae, Theridiosomatidae, Tetragnathidae, and Araneidae). The morphological characters include those used in recent studies of linyphiid phylogenetics, covering both genitalic and somatic morphology. Different sequence alignments and analytical methods produce different cladistic hypotheses. Lack of congruence among different analyses is, in part, due to the shifting placement of Labulla, Pityohyphantes,
    [Show full text]
  • Records of the Hawaii Biological Survey for 1996
    Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J.
    [Show full text]
  • Koexistence a Rozdělení Niky U Pavouků Rodu Philodromus
    Masarykova univerzita Přírodovědecká fakulta Ústav botaniky a zoologie Koexistence a rozdělení niky u pavouků rodu Philodromus Diplomová práce Autor: Radek Michalko Brno 2012 Vedoucí DP: doc. Mgr. Stano Pekár Ph.D. 1 Souhlasím s uloţením této diplomové práce v knihovně Ústavu botaniky a zoologie PřF MU v Brně, případně v jiné knihovně MU, s jejím veřejným půjčováním a vyuţitím pro vědecké, vzdělávací nebo jiné veřejně prospěšné účely, a to za předpokladu, ţe převzaté informace budou řádně citovány a nebudou vyuţívány komerčně. V Brně 8.1.2012 ………………………………… Podpis 2 PODĚKOVÁNÍ Zejména bych chtěl poděkovat vedoucímu mé diplomové práce panu docentu Stanu Pekárovi, ţe mi umoţnil pracovat na tomto tématu, za trpělivé vedení a uţitečné rady. Dále bych chtěl velice poděkovat mým rodičům, bez jejichţ osobní a finanční podpory by tato práce nevznikla. Rovněţ bych chtěl poděkovat Lence Sentenské, Evě Líznarové, Pavlovi Šebkovi a Stanovi Korenkovi za podporu a cenné rady všeho druhu. 3 ABSTRAKT Koexistence a rozdělení niky pavouků rodu Philodromus V této diplomové práci byl zkoumán mechanismus umoţňující koexistenci mezi Philodromus albidus, P. aureolus a P. cespitum. Studie probíhala na území významného krajinného prvku U Kříţe v Brně Starém Lískovci. Studované území se skládá ze třech typů biotopů: listnatý les, křoviny a monokultura švestek. Pavouci byli získáváni pomocí sklepávání. U zkoumaných druhů byly porovnávány různé dimenze niky. Prostorová nika byla zkoumána na základě mikro- aţ makrobiotopových preferencí. Trofická nika byla zkoumána na základě velikosti a typu přirozené kořisti a pomocí laboratorních experimentů potravních preferencí. Časová nika byla zkoumána na základě fenologie jednotlivých druhů. Studované druhy se lišily v prostorové a trofické nice.
    [Show full text]
  • Distribution of Spiders in Coastal Grey Dunes
    kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof.
    [Show full text]
  • Newsletter of the Biological Survey of Canada (Terrestrial Arthropods)
    Spring 1999 Vol. 18, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ............(inside front cover) News and Notes Activities at the Entomological Societies’ Meeting ...............1 Summary of the Scientific Committee Meeting.................2 EMAN National Meeting ...........................12 MacMillan Coastal Biodiversity Workshop ..................13 Workshop on Biodiversity Monitoring.....................14 Project Update: Family Keys ..........................15 Canadian Spider Diversity and Systematics ..................16 The Quiz Page..................................28 Selected Future Conferences ..........................29 Answers to Faunal Quiz.............................31 Quips and Quotes ................................32 List of Requests for Material or Information ..................33 Cooperation Offered ..............................39 List of Email Addresses.............................39 List of Addresses ................................41 Index to Taxa ..................................43 General Information The Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) appears twice yearly. All material without other accreditation is prepared by the Secretariat for the Biological Survey. Editor: H.V. Danks Head, Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, Ontario K1P 6P4 TEL: 613-566-4787 FAX: 613-364-4021 E-mail: [email protected] Queries,
    [Show full text]
  • Increased Abundance of Native and Non-Native Spiders with Habitat Fragmentation
    Diversity and Distributions, (Diversity Distrib.) (2008) 14, 655–665 Blackwell Publishing Ltd BIODIVERSITY Increased abundance of native and non- RESEARCH native spiders with habitat fragmentation Douglas T. Bolger1*, Karen H. Beard2, Andrew V. Suarez3 and Ted J. Case4 1Environmental Studies Program, HB6182, ABSTRACT Dartmouth College, Hanover, NH 03755, USA, 2Department of Forest, Range, and Wildlife Sciences Habitat fragmentation and invasive species often contribute to the decline of native taxa. and Ecology Center, Utah State University, Logan, Since the penetration of non-native species into natural habitat may be facilitated by 3 Utah 84322, USA, Department of Entomology and habitat fragmentation, it is important to examine how these two factors interact. Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA, 4Department of Previous research documented that, in contrast to most other arthropod taxa, Biology, University of California, San Diego, La spiders increased in density and morphospecies richness with decreasing fragment Jolla, CA 92093, USA area and increasing fragment age (time since insularization) in urban habitat fragments in San Diego County, California, USA. We tested whether a specific mech- anism, an increase in non-native species with fragmentation, is responsible for this pattern. We found that both native and non-native taxa contributed to the pattern. Abundance of native spiders per pitfall trap sample increased significantly with decreasing fragment size (i.e. a negative density–area relationship) and abundance of non-natives increased significantly with increasing fragment age. The proportion of non-native individuals also increased significantly with age. One non-native species, Oecobius navus, comprised the majority of non-native individuals (82.2%) and a significant proportion of total individuals (25.1%).
    [Show full text]
  • Redalyc.RECORDS of EPIGEAL SPIDERS in BAHÍA BLANCA IN
    Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México ZANETTI, Noelia Inés RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Acta Zoológica Mexicana (nueva serie), vol. 32, núm. 1, abril, 2016, pp. 32-44 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57544858004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0065-1737 (NUEVA SERIE) 32(1) 2016 RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Noelia Inés ZANETTI Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (1876), Prov. Buenos Aires, Argentina / Cátedra de Parasitología Clínica, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca (8000), Prov. Buenos Aires, Argentina. E-mail: <[email protected]> Recibido: 05/03/2015; aceptado: 28/10/2015 Zanetti, N. I. 2016. Records of epigeal spiders in Bahía Blanca, in the Zanetti, N. I. 2016. Registros de arañas epigeas en Bahía Blanca, en temperate region of Argentina. Acta Zoológica Mexicana (n. s.), la región templada de Argentina. Acta Zoológica Mexicana (n. s.), 32(1): 32-44. 32(1): 32-44. ABSTRACT. Ecological surveys of diversity and seasonal patterns RESUMEN. A pesar del alto potencial de la diversidad de especies y of spiders in relation with cadavers have rarely been conducted, de- abundancia de arañas, raramente han sido conducidos censos ecológi- spite the high potential species diversity and abundance of spiders.
    [Show full text]
  • YSF 2020-PROGRAMME-1.Pdf
    YOUNG SYSTEMATISTS' FORUM Day 1 Monday 23rd November 2020, Zoom [all timings are GMT+0] 11.50 Opening remarks David Williams, President of the Systematics Association 12.00 Rodrigo Vargas Pêgas Species Concepts and the Anagenetic Process Importance on Evolutionary History 12.15 Katherine Odanaka Insights into the phylogeny and biogeography of the cleptoparasitic bee genus Nomada 12.30 Minette Havenga Association among global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans 12.45 David A. Velasquez-Trujillo Phylogenetic relationships of the whiptail lizards of the genus Holcosus COPE 1862 (Squamata: Teiidae) based on morphological and molecular evidence 13.00 Break 10 minutes 13.10 Arsham Nejad Kourki The Ediacaran Dickinsonia is a stem-eumetazoan 13.25 Flávia F.Petean The role of the American continent on the diversification of the stingrays’ genus Hypanus Rafinesque, 1818 (Myliobatiformes: Dasyatidae) 13.40 Peter M.Schächinger Discovering species diversity in Antarctic marine slugs (Mollusca: Gastropoda) 13.55 Alison Irwin Eight new mitogenomes clarify the phylogenetic relationships of Stromboidea within the gastropod phylogenetic framework 14.10 Break 20 minutes 14.30 Érica Martinha Silva de The lineages of foliage-roosting fruit bat Uroderma spp. (Chiroptera: Souza Phyllostomidae 14.45 Melissa Betters Rethinking Informative Traits: Environmental Influence on Shell Morphology in Deep-Sea Gastropods 15.00 J. Renato Morales-Mérida- New lineages of Holcosus undulatus (Squamata: Teiidae) in Guatemala 15.15 Roberto
    [Show full text]