Categories for the Working Mathematician Emily
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homotopical Categories: from Model Categories to ( ,)-Categories ∞
HOMOTOPICAL CATEGORIES: FROM MODEL CATEGORIES TO ( ;1)-CATEGORIES 1 EMILY RIEHL Abstract. This chapter, written for Stable categories and structured ring spectra, edited by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill, surveys the history of homotopical categories, from Gabriel and Zisman’s categories of frac- tions to Quillen’s model categories, through Dwyer and Kan’s simplicial localiza- tions and culminating in ( ;1)-categories, first introduced through concrete mod- 1 els and later re-conceptualized in a model-independent framework. This reader is not presumed to have prior acquaintance with any of these concepts. Suggested exercises are included to fertilize intuitions and copious references point to exter- nal sources with more details. A running theme of homotopy limits and colimits is included to explain the kinds of problems homotopical categories are designed to solve as well as technical approaches to these problems. Contents 1. The history of homotopical categories 2 2. Categories of fractions and localization 5 2.1. The Gabriel–Zisman category of fractions 5 3. Model category presentations of homotopical categories 7 3.1. Model category structures via weak factorization systems 8 3.2. On functoriality of factorizations 12 3.3. The homotopy relation on arrows 13 3.4. The homotopy category of a model category 17 3.5. Quillen’s model structure on simplicial sets 19 4. Derived functors between model categories 20 4.1. Derived functors and equivalence of homotopy theories 21 4.2. Quillen functors 24 4.3. Derived composites and derived adjunctions 25 4.4. Monoidal and enriched model categories 27 4.5. -
256B Algebraic Geometry
256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live. -
Algebraic Topology
Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology . -
Model Category Theory in Homological Action
New York Journal of Mathematics New York J. Math. 20 (2014) 1077{1159. Six model structures for DG-modules over DGAs: model category theory in homological action Tobias Barthel, J.P. May and Emily Riehl The authors dedicate this paper to John Moore, who pioneered this area of mathematics. He was the senior author's adviser, and his mathematical philosophy pervades this work and indeed pervades algebraic topology at its best. Abstract. In Part 1, we describe six projective-type model structures on the category of differential graded modules over a differential graded algebra A over a commutative ring R. When R is a field, the six collapse to three and are well-known, at least to folklore, but in the general case the new relative and mixed model structures offer interesting alterna- tives to the model structures in common use. The construction of some of these model structures requires two new variants of the small object argument, an enriched and an algebraic one, and we describe these more generally. In Part 2, we present a variety of theoretical and calculational cofi- brant approximations in these model categories. The classical bar con- struction gives cofibrant approximations in the relative model structure, but generally not in the usual one. In the usual model structure, there are two quite different ways to lift cofibrant approximations from the level of homology modules over homology algebras, where they are classi- cal projective resolutions, to the level of DG-modules over DG-algebras. The new theory makes model theoretic sense of earlier explicit calcu- lations based on one of these constructions. -
Complicial Sets, an Overture
COMPLICIAL SETS, AN OVERTURE EMILY RIEHL Abstract. The aim of these notes is to introduce the intuition motivating the notion of a complicial set, a simplicial set with certain marked \thin" simplices that witness a composition relation between the simplices on their boundary. By varying the marking conventions, complicial sets can be used to model (1; n)-categories for each n ≥ 0, including n = 1. For this reason, compli- cial sets present a fertile setting for thinking about weak infinite dimensional categories in varying dimensions. This overture is presented in three acts: the first introducing simplicial models of higher categories; the second defining the Street nerve, which embeds strict !-categories as strict complicial sets; and the third exploring an important saturation condition on the marked simplices in a complicial set and presenting a variety of model structures that capture their basic homotopy theory. Scattered throughout are suggested exercises for the reader who wants to engage more deeply with these notions. Contents 1. Introducing complicial sets 3 1.1. Quasi-categories as ( ; 1)-categories 3 1.2. Towards a simplicial1 model of ( ; 2)-categories 5 1.3. Stratified simplicial sets1 6 1.4. Complicial sets 7 1.5. n-trivialization and the n-core 9 2. The Street nerve of an !-category 10 2.1. !-categories 11 2.2. Orientals 13 2.3. The Street nerve as a strict complicial set 15 3. Saturated complicial sets 16 3.1. Weak complicial sets from strict !-categories 17 3.2. Saturation 19 3.3. Model categories of complicial sets 22 arXiv:1610.06801v1 [math.CT] 21 Oct 2016 References 23 As the objects that mathematicians study increase in sophistication, so do their natural habitats. -
The 2-Category Theory of Quasi-Categories
Advances in Mathematics 280 (2015) 549–642 Contents lists available at ScienceDirect Advances in Mathematics www.elsevier.com/locate/aim The 2-category theory of quasi-categories Emily Riehl a,∗, Dominic Verity b a Department of Mathematics, Harvard University, Cambridge, MA 02138, USA b Centre of Australian Category Theory, Macquarie University, NSW 2109, Australia a r t i c l e i n f o a b s t r a c t Article history: In this paper we re-develop the foundations of the category Received 11 December 2013 theory of quasi-categories (also called ∞-categories) using Received in revised form 13 April 2-category theory. We show that Joyal’s strict 2-category of 2015 quasi-categories admits certain weak 2-limits, among them Accepted 22 April 2015 weak comma objects. We use these comma quasi-categories Available online xxxx Communicated by the Managing to encode universal properties relevant to limits, colimits, Editors of AIM and adjunctions and prove the expected theorems relating these notions. These universal properties have an alternate MSC: form as absolute lifting diagrams in the 2-category, which primary 18G55, 55U35, 55U40 we show are determined pointwise by the existence of certain secondary 18A05, 18D20, 18G30, initial or terminal vertices, allowing for the easy production 55U10 of examples. All the quasi-categorical notions introduced here are equiv- Keywords: alent to the established ones but our proofs are independent Quasi-categories and more “formal”. In particular, these results generalise 2-Category theory Formal category theory immediately to model categories enriched over quasi-cate- gories. © 2015 Elsevier Inc. -
Algebraic Topology
EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY APPENDIX A: ALGEBRAIC TOPOLOGY WILLIAM FULTON NOTES BY DAVE ANDERSON In this appendix, we collect some basic facts from algebraic topology pertaining to the fundamental class of an algebraic variety, and Gysin push- forward maps in cohomology. Much of this material can be found in [Ful97, Appendix B], and we often refer there for proofs. This appendix is in rough form, and will probably change significantly. (Watch the version date.) 1. A brief review of singular (co)homology Let X be any space, let C∗X be the complex of singular chains on X, and ∗ let C X = Hom(C∗X, Z) be the complex of singular cochains. The singular homology modules are defined as HiX = hi(C∗X), and the singular cohomology modules are ∗ HiX = hi(C X). ∗ i One sets H∗X = HiX and H X = H X. We refer to [Spa66] for the details and basicL properties of these constructions,L summarizing the most relevant facts below. One sacrifices some geometric intuition in working with cohomology in- stead of homology, but one gains the advantage of an easily defined ring structure. If σ ∈ CkX is a singular simplex, let fiσ ∈ CiX be the restriction of σ to the front i-face of the standard simplex, and let bjσ be the restriction of σ to the back j-face. Then one defines the cup product HiX ⊗ HjX → Hi+jX by setting (c ∪ d)(σ)= c(fiσ) d(bjσ), for c ∈ CiX, d ∈ CjX, and σ an (i + j)-simplex. Date: April 9, 2007. -
De Rham Cohomology of Smooth Manifolds
VU University, Amsterdam Bachelorthesis De Rham Cohomology of smooth manifolds Supervisor: Author: Prof. Dr. R.C.A.M. Patrick Hafkenscheid Vandervorst Contents 1 Introduction 3 2 Smooth manifolds 4 2.1 Formal definition of a smooth manifold . 4 2.2 Smooth maps between manifolds . 6 3 Tangent spaces 7 3.1 Paths and tangent spaces . 7 3.2 Working towards a categorical approach . 8 3.3 Tangent bundles . 9 4 Cotangent bundle and differential forms 12 4.1 Cotangent spaces . 12 4.2 Cotangent bundle . 13 4.3 Smooth vector fields and smooth sections . 13 5 Tensor products and differential k-forms 15 5.1 Tensors . 15 5.2 Symmetric and alternating tensors . 16 5.3 Some algebra on Λr(V ) ....................... 16 5.4 Tensor bundles . 17 6 Differential forms 19 6.1 Contractions and exterior derivatives . 19 6.2 Integrating over topforms . 21 7 Cochains and cohomologies 23 7.1 Chains and cochains . 23 7.2 Cochains . 24 7.3 A few useful lemmas . 25 8 The de Rham cohomology 29 8.1 The definition . 29 8.2 Homotopy Invariance . 30 8.3 The Mayer-Vietoris sequence . 32 9 Some computations of de Rham cohomology 35 10 The de Rham Theorem 40 10.1 Singular Homology . 40 10.2 Singular cohomology . 41 10.3 Smooth simplices . 41 10.4 De Rham homomorphism . 42 10.5 de Rham theorem . 44 1 11 Compactly supported cohomology and Poincar´eduality 47 11.1 Compactly supported de Rham cohomology . 47 11.2 Mayer-Vietoris sequence for compactly supported de Rham co- homology . 49 11.3 Poincar´eduality . -
Emily Riehl Wins the AWM - Joan & Joseph Birman Research Prize in Topology and Geometry
PRESS RELEASE April 23, 2020 Emily Riehl wins the AWM - Joan & Joseph Birman Research Prize in Topology and Geometry The Association for Women in Mathematics category theory have become the standard (AWM) will present the fourth AWM Joan & references, and her draft book on ∞-categories is Joseph Birman Research Prize in Topology and already finding immediate use by researchers. Geometry to Emily Riehl, Associate Professor of Riehl is an internationally recognized scholar for Mathematics at Johns Hopkins University at the her important research works in category theory Joint Mathematics Meetings in Washington, DC and her innovative ideas about mentorship and in January 2021. Established in 2013, the AWM communication of mathematics. Joan & Joseph Birman Research Prize recognizes exceptional research in topology and geometry by a woman early in her career. The biennial presentation of this prize serves to highlight to the community outstanding contributions by women in the fields of topology and geometry and to advance the careers of the prize recipients. The award is made possible by a generous contribution from Joan and Joseph Birman. Citation The 2021 Joan & Joseph Birman Research Prize in Topology and Geometry is awarded to Emily Riehl for her deep and foundational work in category theory and homotopy theory. Riehl has proved many fundamental theorems in category theory and its relations to homotopy theory and has produced a large body of exceptional research as well as expository and pedagogical work. Her work is transforming the ways we work with higher categorical objects, drawing on classical category-theory tools and constructions to illustrate and simplify higher Photo by Liz Flyntz categorical constructions. -
Arxiv:0711.0540V1 [Math.AT] 4 Nov 2007
UMKEHR MAPS RALPH L. COHEN AND JOHN R. KLEIN Abstract. In this note we study umkehr maps in generalized (co)homology theories arising from the Pontrjagin-Thom construc- tion, from integrating along fibers, pushforward homomorphisms, and other similar constructions. We consider the basic properties of these constructions and develop axioms which any umkehr homo- morphism must satisfy. We use a version of Brown representability to show that these axioms completely characterize these homomor- phisms, and a resulting uniqueness theorem follows. Finally, moti- vated by constructions in string topology, we extend this axiomatic treatment of umkehr homomorphisms to a fiberwise setting. 1. Introduction The classical umkehr homomorphism of Hopf [H], assigns to a map f : M → N of closed manifolds of the same dimension a “wrong way” homomorphism f! : H∗(N) → H∗(M) on singular homology. Hopf showed that this map is compatible with intersection pairings. Freuden- ∗ ∗ thal [F] showed that f! corresponds to the homomorphism f : H (N) → H∗(M) induced by f on cohomology by means of the Poincar´edual- ity isomorphisms for M and N. This identification allows one to give a definition of the umkehr homomorphism for a map between closed manifolds of any dimension. Variants of the umkehr homomorphism, such as those defined by arXiv:0711.0540v1 [math.AT] 4 Nov 2007 the Pontrjagin-Thom construction, intersections of chains, integration along fibers, and the Becker-Gottlieb transfer, have played central roles in the development of differential and algebraic topology. Similarly, the “push-forward” constructions in cohomology, Chow groups, and K-theory, have been important techniques in algebraic geometry and index theory. -
Homotopical Categories: from Model Categories to $(\Infty, 1) $-Categories
HOMOTOPICAL CATEGORIES: FROM MODEL CATEGORIES TO (∞,)-CATEGORIES EMILY RIEHL Abstract. This chapter, written for Stable categories and structured ring spectra, edited by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill, surveys the history of homotopical categories, from Gabriel and Zisman’s categories of frac- tions to Quillen’s model categories, through Dwyer and Kan’s simplicial localiza- tions and culminating in (∞,)-categories, first introduced through concrete mod- els and later re-conceptualized in a model-independent framework. This reader is not presumed to have prior acquaintance with any of these concepts. Suggested exercises are included to fertilize intuitions and copious references point to exter- nal sources with more details. A running theme of homotopy limits and colimits is included to explain the kinds of problems homotopical categories are designed to solve as well as technical approaches to these problems. Contents . The history of homotopical categories . Categories of fractions and localization .. The Gabriel–Zisman category of fractions . Model category presentations of homotopical categories .. Model category structures via weak factorization systems .. On functoriality of factorizations .. The homotopy relation on arrows .. The homotopy category of a model category .. Quillen’s model structure on simplicial sets . Derived functors between model categories .. Derived functors and equivalence of homotopy theories .. Quillen functors .. Derived composites and derived adjunctions arXiv:1904.00886v3 [math.AT] 16 Jul 2020 .. Monoidal and enriched model categories .. Quillen equivalences between homotopy theories .. Extending homological algebra to homotopical algebra . Homotopy limits and colimits .. Weak limits and colimits in the homotopy category .. Homotopy limits and colimits of general shapes .. Homotopy limits and colimits of Reedy diagrams . -
Algebraic Model Structures
Algebraic model structures Emily Riehl Harvard University http://www.math.harvard.edu/~eriehl 18 September, 2011 Homotopy Theory and Its Applications AWM Anniversary Conference ICERM Emily Riehl (Harvard University) Algebraic model structures September 2011 1 / 16 Outline 1 Flavors of the theory of algebraic model structures 2 The monoidal algebraic model structure on sSet Emily Riehl (Harvard University) Algebraic model structures September 2011 2 / 16 Weak factorization systems Any model structure has two weak factorization systems(wfs): (cofibrations, trivial fibrations) (trivial cofibrations, fibrations) The left and right classes satisfy factorization and lifting axioms. Examples (retracts of rel. cell complexes, trivial Serre fibrations) on Top (anodyne extensions, Kan fibrations) on sSet (injections with projective cokernel, surjections) on A-mod (monomorphisms, epimorphisms) on Set Emily Riehl (Harvard University) Algebraic model structures September 2011 3 / 16 \Algebraic" perspective Thinking \algebraically" to characterize maps or objects satisfying a certain property, assign to each one a particular structure that demonstrates the property. Examples a surjective map in Set or A-mod admits a (set-based) section a relative cell complex admits a cellular decomposition for any Kan complex, can choose fillers for all horns (Co)algebras for (co)monads For all of these examples there is a monad or a comonad whose algebras or coalgebras have exactly this form. Emily Riehl (Harvard University) Algebraic model structures September 2011 4 /