Notes on Category Theory

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Category Theory Notes on Category Theory with examples from basic mathematics Paolo Perrone www.paoloperrone.org Last update: February 2021 arXiv:1912.10642v6 [math.CT] 9 Feb 2021 Contents Contents 2 About these notes 5 Acknowledgements................................... .... 6 Notationandconventions . ...... 6 1 Basic concepts 7 1.1 Categories ...................................... ... 7 1.1.1 Categoriesasrelations . ..... 8 1.1.2 Categoriesasoperations. ..... 11 1.1.3 Categories as spaces and maps with extra structure . .......... 13 1.1.4 Set-theoreticalconsiderations . ......... 15 1.1.5 Isomorphismsandgroupoids. 16 1.1.6 Diagrams,informally. 18 1.1.7 Theoppositecategory . 20 1.2 Monoandepi ....................................... 22 1.2.1 Monomorphisms ................................. 22 1.2.2 Splitmonomorphisms . 23 1.2.3 Epimorphisms .................................. 25 1.2.4 Splitepimorphisms. 26 1.3 Functorsandfunctoriality . ........ 27 1.3.1 Functorsasmappingspreservingrelations . ......... 28 1.3.2 Functorsasmappingspreservingoperations . ......... 28 1.3.3 Functorsdefininginducedmaps . 30 1.3.4 Functorsandcocycles . 37 1.3.5 Functors,monoandepi . 39 1.3.6 Whatisnotafunctor? . ..... ...... ..... ...... ..... 42 1.3.7 Contravariantfunctorsandpresheaves . ........ 42 1.4 Naturaltransformations . ....... 45 1.4.1 Natural transformations as systems of arrows . ......... 45 1.4.2 Natural transformations as structure-preserving mappings. 46 1.4.3 Natural transformations as canonical maps . ......... 48 1.4.4 Whatisnotnatural? ............................. 51 1.4.5 Functorcategoriesanddiagrams . ...... 52 1.4.6 Whiskeringandhorizontalcomposition . ........ 54 2 CONTENTS 1.5 Studyingcategoriesbymeansoffunctors . .......... 57 1.5.1 Thecategoryofcategories. ..... 57 1.5.2 Subcategories ................................. 58 1.5.3 Full, faithful, essentially surjective . ............ 59 1.5.4 Equivalencesofcategories. ...... 61 2 Universal properties and the Yoneda lemma 66 2.1 Representable functors and the Yoneda embedding theorem............ 66 2.1.1 Extractingsetsfromobjects . ...... 66 2.1.2 Representablefunctors. ..... 67 2.1.3 TheYonedaembeddingtheorem . 70 2.2 TheYonedalemma .................................. 71 2.2.1 ProofoftheYonedalemma . 72 2.2.2 Particularcases ............................... 74 2.3 Universalproperties ...... ..... ...... ..... ...... ...... 76 2.3.1 Theuniversalpropertyofthecartesianproduct . .......... 77 2.3.2 Theuniversalpropertyofthetensorproduct . ......... 80 3 Limits and colimits 82 3.1 Generaldefinitions ................................ 82 3.2 Particular limits and colimits . ......... 86 3.2.1 Theposetcase: constrainedoptimization . ......... 86 3.2.2 Thegroupcase: invariantsandorbits . ....... 87 3.2.3 Productsandcoproducts . 89 3.2.4 Equalizersandcoequalizers. ...... 91 3.2.5 Pullbacksandpushouts . 93 3.2.6 Initial and terminal objects, trivial cases . ............ 97 3.3 Functors,limitsandcolimits . ......... 99 3.3.1 The power set and probability functors, and complexity ..........100 3.3.2 Continuousfunctorsandequivalence . ....... 102 3.3.3 The case of representable functors and presheaves . ...........102 3.4 Limitsandcolimitsofsets . ....... 103 3.4.1 Completenessofthecategoryofsets . ....... 103 3.4.2 GeneralproofofTheorem3.3.16 . 106 4 Adjunctions 108 4.1 Generaldefinitions ................................ 108 4.1.1 Free-forgetfuladjunctions . ....... 108 4.1.2 Galoisconnections ... ..... ...... ..... ...... .... 110 4.2 Unitandcounitasuniversalarrows . ........ 111 4.2.1 Alternativedefinitionofadjunctions . ........ 116 4.2.2 Example: the adjunction between categories and multigraphs . 119 3 CONTENTS 4.3 Adjunctions,limitsandcolimits . ..........124 4.3.1 Right-adjointsandbinaryproducts . ....... 124 4.3.2 GeneralproofofTheorem4.3.1 . 125 4.3.3 Examples .....................................126 4.4 Theadjointfunctortheoremforpreorders . ........... 127 4.4.1 Thecaseofconvexsubsets. 128 4.4.2 ProofofTheorem4.4.1. 128 4.4.3 Furtherconsiderationsandexamples . ....... 129 5 Monads and comonads 131 5.1 Monadsasextensionsofspaces . 132 5.1.1 Kleislimorphisms ............................... 137 5.1.2 TheKleisliadjunction . 143 5.1.3 Closureoperatorsandidempotentmonads . ....... 145 5.2 Monadsastheoriesofoperations . ....... 148 5.2.1 Algebrasofamonad .............................. 151 5.2.2 Freealgebras .................................. 155 5.2.3 TheEilenberg-Mooreadjunction . 156 5.3 Comonadsasextrainformation . ....... 159 5.3.1 Co-Kleislimorphisms . 162 5.3.2 Theco-Kleisliadjunction . 164 5.4 Comonadsasprocessesonspaces. ....... 165 5.4.1 Coalgebrasofacomonad . 168 5.4.2 Theadjunctionofcoalgebras . 172 5.5 Adjunctions,monadsandcomonads . ....... 173 5.5.1 The adjunction between categories and multigraphs is monadic . 177 Conclusion 180 Bibliography 181 4 About these notes These notes were originally developed as lecture notes for a course that I taught at the Max Planck Institute of Leipzig in the Summer semester of 2019. They are rather different from other material on category theory, partly in content, and largely in form: • The audience of the course was very varied, there were algebraic geometers and topolo- gists, as well as computer scientists, physicists and chemists; • The lecture notes were always written after the lecture had taken place, to reflect what was discussed in class, and include all the questions, remarks, and views of the participants. These notes should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor any of the disciplines where category theory is traditionally applied, such as algebraic geometry or theoretical computer science. The only knowledge that is assumed from the reader is linear algebra. Other assets of these notes are: • Thorough explanation of the Yoneda lemma and its significance, with both intuitive explanations, detailed proofs, and many specific examples; • Atreatmentofmonadsandcomonadsonanequalfooting,since comonads in the literature are often unjustly overlooked as “just the dual to monads”; • A detailed treatment of the relationship between categories and directed multigraphs. From the applied point of view, this shows why categorical thinking can help whenever some process is taking place on a graph. From the pure math point of view, this can be seen as the 1-dimensional first step into the theory of simplicial sets; • Many examples from different areas of mathematics (group theory, graph theory, proba- bility,. ). Not every example is helpful for every reader, but hopefully every reader can find at least one helpful example per concept. The reader is encouraged to read all the examples, this way they may even learn something new about a different field. One thing that is unfortunately not contained in these notes, since they are already quite long, is string diagrams. For those, we refer the interested reader for example to [Mar14] and [FS19]. While the tone of these notes is informal, the mathematics is rigorous, and every theorem is proven. I make no claim of scientific originality. Some of the technical content, and some of the examples, are taken from Emily Riehl’s book [Rie16], which was the recommended textbook for the “pure math” part of the course. Another considerable part, such as the adjoint functor theorem for preorders, is taken from Brendan Fong and David Spivak’s book [FS19], which was 5 CONTENTS the recommended textbook for the “applied” part of the course. Finally, many ideas about how to present certain mathematical concepts are novel, and are to be credited not only to me, but also to the participants of the course. (Part of the treatment of monads already appeared in the introduction of my PhD thesis [Per18].) Since these are informal lecture notes, most results are presented without citing the original work in which they were discovered. If however you find that you should be cited for a result used here, or that some citation here is incorrect or incomplete, please contact me. Just as well, feel free to contact me if you find any mistakes, or if you find that something is not clearly written. (Thanks to all the readers who reported such mistakes already.) Paolo Perrone. Acknowledgements There are many people who helped me developing these notes, helped me understanding the ideas behind these notes, and helped me finding ways to explain these ideas to new learners. • First of all, I want to thank all the participants of the course, without whom these notes wouldn’t exist. I want to thank in particular Emma Chollet, Wilmer Leal, Guillermo Restrepo and Sharwin Rezagholi, who came up with many original ideas during the lectures, now recorded in these notes. • I also want to thank Carmen Constantin, Jules Hedges, Jürgen Jost, Slava Matveev, David Spivak, and more recently Walter Tholen, for the interesting discussions, some of which were reflected in the way I taught this course and wrote these notes. • Finally I want to thank Tobias Fritz, who had the patience to teach category theory to me. Notation and conventions We will follow for the most part the notation and conventions of [Rie16]. The typesetting is slightly different. • We denote categories by boldface capitalized words, such as C and Set. • We denote functors by uppercase letters, such as : C → Set. (We compose functors on the left.) • We denote objects of a category by uppercase letters such as -,.,,. • We denote morphisms of a category by lowercase letters, such as 5 : → . (We compose
Recommended publications
  • A General Theory of Localizations
    GENERAL THEORY OF LOCALIZATION DAVID WHITE • Localization in Algebra • Localization in Category Theory • Bousfield localization Thank them for the invitation. Last section contains some of my PhD research, under Mark Hovey at Wesleyan University. For more, please see my website: dwhite03.web.wesleyan.edu 1. The right way to think about localization in algebra Localization is a systematic way of adding multiplicative inverses to a ring, i.e. given a commutative ring R with unity and a multiplicative subset S ⊂ R (i.e. contains 1, closed under product), localization constructs a ring S−1R and a ring homomorphism j : R ! S−1R that takes elements in S to units in S−1R. We want to do this in the best way possible, and we formalize that via a universal property, i.e. for any f : R ! T taking S to units we have a unique g: j R / S−1R f g T | Recall that S−1R is just R × S= ∼ where (r; s) is really r=s and r=s ∼ r0=s0 iff t(rs0 − sr0) = 0 for some t (i.e. fractions are reduced to lowest terms). The ring structure can be verified just as −1 for Q. The map j takes r 7! r=1, and given f you can set g(r=s) = f(r)f(s) . Demonstrate commutativity of the triangle here. The universal property is saying that S−1R is the closest ring to R with the property that all s 2 S are units. A category theorist uses the universal property to define the object, then uses R × S= ∼ as a construction to prove it exists.
    [Show full text]
  • Frobenius and the Derived Centers of Algebraic Theories
    Frobenius and the derived centers of algebraic theories William G. Dwyer and Markus Szymik October 2014 We show that the derived center of the category of simplicial algebras over every algebraic theory is homotopically discrete, with the abelian monoid of components isomorphic to the center of the category of discrete algebras. For example, in the case of commutative algebras in characteristic p, this center is freely generated by Frobenius. Our proof involves the calculation of homotopy coherent centers of categories of simplicial presheaves as well as of Bousfield localizations. Numerous other classes of examples are dis- cussed. 1 Introduction Algebra in prime characteristic p comes with a surprise: For each commutative ring A such that p = 0 in A, the p-th power map a 7! ap is not only multiplica- tive, but also additive. This defines Frobenius FA : A ! A on commutative rings of characteristic p, and apart from the well-known fact that Frobenius freely gen- erates the Galois group of the prime field Fp, it has many other applications in 1 algebra, arithmetic and even geometry. Even beyond fields, Frobenius is natural in all rings A: Every map g: A ! B between commutative rings of characteris- tic p (i.e. commutative Fp-algebras) commutes with Frobenius in the sense that the equation g ◦ FA = FB ◦ g holds. In categorical terms, the Frobenius lies in the center of the category of commutative Fp-algebras. Furthermore, Frobenius freely generates the center: If (PA : A ! AjA) is a family of ring maps such that g ◦ PA = PB ◦ g (?) holds for all g as above, then there exists an integer n > 0 such that the equa- n tion PA = (FA) holds for all A.
    [Show full text]
  • Complete Objects in Categories
    Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion.
    [Show full text]
  • Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
    Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types.
    [Show full text]
  • Diagram Chasing in Abelian Categories
    Diagram Chasing in Abelian Categories Daniel Murfet October 5, 2006 In applications of the theory of homological algebra, results such as the Five Lemma are crucial. For abelian groups this result is proved by diagram chasing, a procedure not immediately available in a general abelian category. However, we can still prove the desired results by embedding our abelian category in the category of abelian groups. All of this material is taken from Mitchell’s book on category theory [Mit65]. Contents 1 Introduction 1 1.1 Desired results ...................................... 1 2 Walks in Abelian Categories 3 2.1 Diagram chasing ..................................... 6 1 Introduction For our conventions regarding categories the reader is directed to our Abelian Categories (AC) notes. In particular recall that an embedding is a faithful functor which takes distinct objects to distinct objects. Theorem 1. Any small abelian category A has an exact embedding into the category of abelian groups. Proof. See [Mit65] Chapter 4, Theorem 2.6. Lemma 2. Let A be an abelian category and S ⊆ A a nonempty set of objects. There is a full small abelian subcategory B of A containing S. Proof. See [Mit65] Chapter 4, Lemma 2.7. Combining results II 6.7 and II 7.1 of [Mit65] we have Lemma 3. Let A be an abelian category, T : A −→ Ab an exact embedding. Then T preserves and reflects monomorphisms, epimorphisms, commutative diagrams, limits and colimits of finite diagrams, and exact sequences. 1.1 Desired results In the category of abelian groups, diagram chasing arguments are usually used either to establish a property (such as surjectivity) of a certain morphism, or to construct a new morphism between known objects.
    [Show full text]
  • A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
    A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience.
    [Show full text]
  • Arxiv:Math/9407203V1 [Math.LO] 12 Jul 1994 Notbr 1993
    REDUCTIONS BETWEEN CARDINAL CHARACTERISTICS OF THE CONTINUUM Andreas Blass Abstract. We discuss two general aspects of the theory of cardinal characteristics of the continuum, especially of proofs of inequalities between such characteristics. The first aspect is to express the essential content of these proofs in a way that makes sense even in models where the inequalities hold trivially (e.g., because the continuum hypothesis holds). For this purpose, we use a Borel version of Vojt´aˇs’s theory of generalized Galois-Tukey connections. The second aspect is to analyze a sequential structure often found in proofs of inequalities relating one characteristic to the minimum (or maximum) of two others. Vojt´aˇs’s max-min diagram, abstracted from such situations, can be described in terms of a new, higher-type object in the category of generalized Galois-Tukey connections. It turns out to occur also in other proofs of inequalities where no minimum (or maximum) is mentioned. 1. Introduction Cardinal characteristics of the continuum are certain cardinal numbers describing combinatorial, topological, or analytic properties of the real line R and related spaces like ωω and P(ω). Several examples are described below, and many more can be found in [4, 14]. Most such characteristics, and all those under consideration ℵ in this paper, lie between ℵ1 and the cardinality c =2 0 of the continuum, inclusive. So, if the continuum hypothesis (CH) holds, they are equal to ℵ1. The theory of such characteristics is therefore of interest only when CH fails. That theory consists mainly of two sorts of results. First, there are equations and (non-strict) inequalities between pairs of characteristics or sometimes between arXiv:math/9407203v1 [math.LO] 12 Jul 1994 one characteristic and the maximum or minimum of two others.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • Stable Isomorphism Vs Isomorphism of Vector Bundles: an Application to Quantum Systems
    Alma Mater Studiorum · Universita` di Bologna Scuola di Scienze Corso di Laurea in Matematica STABLE ISOMORPHISM VS ISOMORPHISM OF VECTOR BUNDLES: AN APPLICATION TO QUANTUM SYSTEMS Tesi di Laurea in Geometria Differenziale Relatrice: Presentata da: Prof.ssa CLARA PUNZI ALESSIA CATTABRIGA Correlatore: Chiar.mo Prof. RALF MEYER VI Sessione Anno Accademico 2017/2018 Abstract La classificazione dei materiali sulla base delle fasi topologiche della materia porta allo studio di particolari fibrati vettoriali sul d-toro con alcune strut- ture aggiuntive. Solitamente, tale classificazione si fonda sulla nozione di isomorfismo tra fibrati vettoriali; tuttavia, quando il sistema soddisfa alcune assunzioni e ha dimensione abbastanza elevata, alcuni autori ritengono in- vece sufficiente utilizzare come relazione d0equivalenza quella meno fine di isomorfismo stabile. Scopo di questa tesi `efissare le condizioni per le quali la relazione di isomorfismo stabile pu`osostituire quella di isomorfismo senza generare inesattezze. Ci`onei particolari casi in cui il sistema fisico quantis- tico studiato non ha simmetrie oppure `edotato della simmetria discreta di inversione temporale. Contents Introduction 3 1 The background of the non-equivariant problem 5 1.1 CW-complexes . .5 1.2 Bundles . 11 1.3 Vector bundles . 15 2 Stability properties of vector bundles 21 2.1 Homotopy properties of vector bundles . 21 2.2 Stability . 23 3 Quantum mechanical systems 28 3.1 The single-particle model . 28 3.2 Topological phases and Bloch bundles . 32 4 The equivariant problem 36 4.1 Involution spaces and general G-spaces . 36 4.2 G-CW-complexes . 39 4.3 \Real" vector bundles . 41 4.4 \Quaternionic" vector bundles .
    [Show full text]
  • Category Theory
    CMPT 481/731 Functional Programming Fall 2008 Category Theory Category theory is a generalization of set theory. By having only a limited number of carefully chosen requirements in the definition of a category, we are able to produce a general algebraic structure with a large number of useful properties, yet permit the theory to apply to many different specific mathematical systems. Using concepts from category theory in the design of a programming language leads to some powerful and general programming constructs. While it is possible to use the resulting constructs without knowing anything about category theory, understanding the underlying theory helps. Category Theory F. Warren Burton 1 CMPT 481/731 Functional Programming Fall 2008 Definition of a Category A category is: 1. a collection of ; 2. a collection of ; 3. operations assigning to each arrow (a) an object called the domain of , and (b) an object called the codomain of often expressed by ; 4. an associative composition operator assigning to each pair of arrows, and , such that ,a composite arrow ; and 5. for each object , an identity arrow, satisfying the law that for any arrow , . Category Theory F. Warren Burton 2 CMPT 481/731 Functional Programming Fall 2008 In diagrams, we will usually express and (that is ) by The associative requirement for the composition operators means that when and are both defined, then . This allow us to think of arrows defined by paths throught diagrams. Category Theory F. Warren Burton 3 CMPT 481/731 Functional Programming Fall 2008 I will sometimes write for flip , since is less confusing than Category Theory F.
    [Show full text]
  • N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
    N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y).
    [Show full text]