The Study of Evolutionary Origin of the Antifreeze Gene in ​Rhagium

Total Page:16

File Type:pdf, Size:1020Kb

The Study of Evolutionary Origin of the Antifreeze Gene in ​Rhagium Roskilde Universitet / Roskilde University Den Naturvidenskabelige Bacheloruddannelse / The Natural Science Bachelor Programme _____________________________________________ The study of evolutionary origin of the antifreeze gene in Rhagium mordax. __________________________​ ____________​ _​ ___________________ Group members: Saudat Alishayeva Nicolaj Stelzner Grønvall Alexander Varnich Hansen Philip Kruse Nina Štrancar Project supervisor: Peter Kamp Busk Semester: 5th Semester Date: 18/12/2018 Abstract This project report details the attempt to isolate and sequence candidate sequences for the evolution of the antifreeze protein gene present in Rhagium mordax. Larvae of ​ ​ the R.mordax species were collected, their DNA extracted and underwent PCR ​ ​ amplification with the use of specially designed primers which targeted sequences similar to ones coding for antifreeze genes. In addition, to validate the species we have applied DNA barcoding method. PCR amplifications were analysed with gel electrophoresis. Several PCR products were observed and sent for direct Sanger sequencing. Due to a problem with sequencing, we have been unable to identify the sequences and draw the conclusions of the origin of the antifreeze gene. Although the sequencing failed, results from the previous steps indicate that the methods utilized in this project were feasible for the study of R. mordax genetics. ​ ​ 1 Table of contents Abstract 1 Table of contents 2 Introduction 4 1.1 Hypothesis 5 2. Theory 6 2.1 Historical Overview of the Discovery of the Antifreeze Proteins 6 2.2 Convergent Evolution and R. mordax 6 2.3 Mutations - Gene Duplication 8 2.4 Antifreeze Proteins and Their Function 10 2.5 Degenerate primer design 10 3. Experimental methods 15 3.1 Сollection of R. mordax 15 3.2 DNA barcoding and CO1 gene 16 3.3 DNA Extraction and Purification 16 3.4 Analysis of the DNA Quality and Concentration 17 3.5 Primers Design 18 3.5.1 Forward Primer 18 3.5.2 First Reverse Primer 19 3.5.3 Second Reverse Primer 19 3.5.4 Primer Modification 20 3.4.5 CO1 primers 21 3.6 Polymerase Chain Reaction 22 3.7 Gel Electrophoresis 22 3.8 Gel Samples Extraction and Purification 22 3.9 Sequencing 24 3.10 Bioinformatics analysis 25 4. Results 26 4.1 The first agarose gel 27 4.2 The second agarose gel 28 4.3 The third agarose gel 30 2 4.4 Sequencing 31 4.5 Bioinformatics analysis 32 5. Discussion 36 5.1 Purification of the larvae DNA with QIAamp mini kit 36 5.2 PCR settings 36 5.3 Gel-1 examination 37 5.4 Primers specificity 37 5.5 Gel-2 examination 38 5.6 Gel DNA extraction 38 5.7 Sequencing 39 5.8 Interpretation of bioinformatics analysis 40 6. Conclusion 41 7. Perspective 41 8. References 44 9. Appendix 47 3 1.Introduction Organisms around the world have evolved mechanisms to optimise their chances of survival to the different climate. One of such examples are organisms found in colder climates where there is a chance of freezing, which may cause damage to an organism. A discovery in the late 1960s by Arthur L. DeVries and his team shed light on how some Antarctic fish species preserve their blood in the liquid state despite being in ice-cold water (DeVries et al., 1970). The team has found glycoproteins ​ which were able to depress the freezing point of water. This revelation was just one of the later discovered proteins, which came to be commonly known as Antifreeze Proteins (AFPs), also labeled ice structuring proteins (ISPs) or more generally, ice-binding proteins (IBPs). In this project, we refer to them as AFPs (Davies, 2014). ​ ​ The proteins are not exclusive to fish but have been identified in organisms such as insects, vertebrates, bacteria, plants, and fungi (Bar Dolev et al., 2016). While they ​ ​ share a common function, their structure exhibits great variation, which hints they have evolved independently in different species during evolution (Davies, 2014). The ​ ​ mechanism behind the AFPs' function is their binding to ice crystals. The adsorption restricts crystal growth, and that causes the freezing point to be depressed (Bar ​ Dolev et al., 2016). The research of AFPs is not limited to their structure or function, but also extends to analysis of their core elements, such as AFP-coding DNA sequences. By obtaining the DNA sequence which codes an AFP, it is possible to analyse possible evolutionary origins between species that exhibit AFPs, observing effects on their function if mutations are implemented, or produce modified AFPs for utilisation in industry. 4 In this project, we designed primers based on AFP protein amino acid sequences originating from Rhagium mordax beetle and performed PCR followed by direct sequencing. 1.1 Hypothesis Our study hypothesizes that the gene responsible for the antifreeze protein has appeared in Rhagium mordax after a gene duplication event, as was previously ​ shown to be the case for the arctic fish Notothenia where similar antifreeze genes ​ ​ evolved by gene duplication. If a gene duplication event has taken place, then we expect to see a similar gene to rmAFP in the genome of R. mordax. The goal is thus ​ ​ to find sequences similar to the gene coding for AFPs, which could provide an insight from which sequences the rmAFP originated. 5 2. Theory 2.1 Historical Overview of the Discovery of the Antifreeze Proteins The antifreeze activity was first observed in the 1950s when a Norwegian scientist P.F. Scholander set out an expedition to reveal the mystery of the mechanism by which the Arctic fish Notothenia can survive in water with colder temperature than the ​ freezing point of their blood. He concluded from his experiments that there was “antifreeze” in the blood of Arctic fish. But only later, in the late 1960s, was the actual antifreeze protein was isolated from the Antarctic fish by Arthur DeVries. These proteins were later named antifreeze glycoproteins (AFGPs) or antifreeze glycopeptides to emphasize the difference with newly discovered non-glycoprotein biological antifreeze agents (AFPs). There are several possible explanations as to what led to the evolution of antifreeze genes. One of the hypotheses (Hudait, 2018) ​ states that the changes in climate during the glacial period could be a possible source of the selective forces that drove convergent evolution of the novel mechanisms as the means of adaptation to the cold conditions. 2.2 Convergent Evolution and R. mordax ​ Convergent evolution is the phenomenon of species developing same traits without transfer of genes. This can occur by emergencies of a similar character (in our case freezing of water) and leads to various molecular mechanisms that compensate for this specific environmental hazard. Only mechanisms that are alike are referred to as convergent evolution. According to (C. Deng et al. 2010) the antifreeze gene that was discovered in arctic ​ fish evolved from a mutated copy of gene that codes for sialic acid synthase (SAS) enzyme. The sequence alignment of the genes evolved in Rhagium mordax and ​ 6 Notothenia fish shows no significant similarities. Therefore it’s fair to assume that the antifreeze gene in R. mordax has evolved convergently with the Notothenia gene. ​ ​ ​ ​ Carl Linnaeus has identified all beetles as Coleoptera Order in 1758. (Linnaeus, ​ 1758, Systema Naturae) According to (Duman et al. 2004) antifreeze genes evolved ​ convergently within Coleoptera Order in 14 species: Figure 1: Antifreeze proteins of Coleoptera order (Duman et al. 2004). The publication does not consider Rhagium mordax., so on total there are about 15 ​ ​ species of beetles with the adaptation to similar condition. In case of Rhagium ​ mordax and inquisitor there is an ancestral heredity of the gene. Even though their ​ amino acid sequences coding for the antifreeze proteins are 30% diverse (Kristiansen, 2012), they share enough similarity to say that their most recent common ancestor had this gene. The Coleoptera order is the largest of all orders and contributes to 400 000 species of beetles. Since only 15 of species that belong to unrelated suborders have evolved to have the antifreeze gene it is convenient to assume that most of them have acquired this gene independently from each other. The structure of all antifreeze proteins is made of repetitive domains, forming because of very high content of Tyrosine amino acids. Moreover, the convergent evolution of those genes allowed some species to have more efficient antifreeze proteins than others hence to survive in even harsher conditions. For example, the beetle of our primary interest, R. mordax can survive temperatures that are down to ​ ​ 7 -20°C, while an interesting beetle from Alaska Cucujus clavipes puniceus is able to ​ survive in −58°C and its larvae is capable of living under −100°C (Sformo et al, ​ 2010). In most cases, evolution led not only to adaptation through the emergence of ​ convergent antifreeze genes in the beetles, but also to alternative mechanisms that suppress the melting point, such as having high high sugar and glycerol content in blood. In the case of previously mentioned Cucujus clavipes puniceus, the species ​ achieves prevention of ice crystal formation with combination of deliberate dehydration and antifreeze activity. In conclusion, the adaptation to frost environment is a convergent process of evolution that appeared to favour the antifreeze proteins together with combinatorial effects of several alternative factors. 2.3 Mutations - Gene Duplication Mutations are changes in the genetic code in an individual cell or in an entire organism. Mutations come in many different variants. One variant, the spontaneous mutation can be caused by errors in DNA replication as well as spontaneous lesions, among other things. Spontaneous mutations are also categorized. An example would be tautomerism, in which the isomer of one base is changed via. the repositioning of a hydrogen atom, which results in the base bonding differently, leading to replication errors due to incorrect base pairing (Griffiths et al, 2000).
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Distribution and Functional Characterisation of Antifreeze Proteins in Polar Diatoms
    Living inside Sea Ice - Distribution and Functional Characterisation of Antifreeze Proteins in Polar Diatoms Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. Nat. - am Fachbereich 2 (Biologie/Chemie) der Universit¨atBremen vorgelegt von Christiane Uhlig Bremen Oktober, 2011 1. Pr¨ufer: Prof. Kai Bischof 2. Pr¨ufer: Prof. Ulrich Bathmann F¨urmeine Mutter Monika Was Menschen in die Polargebiete trieb, war die Macht des Unbekannten ¨uber den men- schlichen Geist. Sie treibt uns zu den verborgenen Kr¨aftenund Geheimnissen der Natur, hinab in die unermesslich kleine mikroskopische Welt und desgleichen hinaus in die uner- forschten Weiten des Universums. Sie l¨asstuns keine Ruhe, bis wir den Planeten, auf dem wir leben, von der tiefsten Tiefen des Ozeans bis zu den h¨ochsten Schichten der Atmosph¨arekennen. Fridtjof Nansen Danksagung Ich danke Prof. Ulrich Bathmann und Prof. Kai Bischof f¨urdie Begutachtung dieser Arbeit. Prof. Rudolf Amann danke ich, dass er sich kurzfristig bereit erkl¨arthat die Aufgabe des 3. Pr¨uferzu ¨ubernehmen. Bei Prof. Kai Bischof und Andreas Krell bedanke ich mich f¨urdie Hilfe zur Einwerbung des Stipendiums, welches diese Arbeit ¨uberhaupt erst erm¨oglicht hat. Der Studienstiftung des deutschen Volkes danke ich f¨ur die finanzielle Unterst¨utzung. Ich bedanke mich ganz besonders bei der Meereis-Gruppe, die mehr ist als nur eine Ar- beitsgruppe. Besonders danke ich Gerhard Dieckmann, dass ich in Deiner Arbeitsgruppe meine Arbeit durchf¨uhrendurfte und f¨ur Deine Unterst¨utzungin allen m¨oglichen organ- isatorischen und pers¨onlichen Dingen. Klaus Valentin danke ich f¨urdie Unterst¨utzung, kreativen Titelvorschl¨ageund den Einsatz daf¨ur,dass ich noch eine Weile am AWI bleiben kann.
    [Show full text]
  • Effects of Antifreeze Protein III on Sperm Cryopreservation of Pacific Abalone, Haliotis Discus Hannai
    International Journal of Molecular Sciences Article Effects of Antifreeze Protein III on Sperm Cryopreservation of Pacific Abalone, Haliotis discus hannai Shaharior Hossen 1 , Md. Rajib Sharker 1,2, Yusin Cho 1, Zahid Parvez Sukhan 1 and Kang Hee Kho 1,* 1 Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Jeonnam, Korea; [email protected] (S.H.); [email protected] (M.R.S.); [email protected] (Y.C.); [email protected] (Z.P.S.) 2 Department of Fisheries Biology and Genetics, Faculty of Fisheries, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh * Correspondence: [email protected]; Tel.: +82-616-597-168; Fax: +82-616-597-169 Abstract: Pacific abalone (Haliotis discus hannai) is a highly commercial seafood in Southeast Asia. The aim of the present study was to improve the sperm cryopreservation technique for this valuable species using an antifreeze protein III (AFPIII). Post-thaw sperm quality parameters including motility, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA integrity, fertility, hatchability, and mRNA abundance level of heat shock protein 90 (HSP90) were determined to ensure improvement of the cryopreservation technique. Post-thaw motility of sperm cryopreserved with AFPIII at 10 µg/mL combined with 8% dimethyl sulfoxide (DMSO) (61.3 ± 2.7%), 8% ethylene glycol (EG) (54.3 ± 3.3%), 6% propylene glycol (PG) (36.6 ± 2.6%), or 2% glycerol (GLY) (51.7 ± 3.0%) was significantly improved than that of sperm cryopreserved without AFPIII. Post-thaw motility of sperm cryopreserved with 2% MeOH and 1 µg/mL of AFPIII was also improved than that of sperm cryopreserved without AFPIII.
    [Show full text]
  • Structure and Application of Antifreeze Proteins from Antarctic Bacteria Patricio A
    Muñoz et al. Microb Cell Fact (2017) 16:138 DOI 10.1186/s12934-017-0737-2 Microbial Cell Factories RESEARCH Open Access Structure and application of antifreeze proteins from Antarctic bacteria Patricio A. Muñoz1*, Sebastián L. Márquez1,2, Fernando D. González‑Nilo3, Valeria Márquez‑Miranda3 and Jenny M. Blamey1,2* Abstract Background: Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. Results: Diferent Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purifed AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to β-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side.
    [Show full text]
  • Replacement of the Antifreeze-Like Domain of Human N-Acetylneuraminic Acid Phosphate Synthase with the Mouse Antifreeze-Like
    Replacement of the antifreeze-like domain of human N-acetylneuraminic acid phosphate synthase with the mouse antifreeze-like domain impacts both N-acetylneuraminic acid 9-phosphate synthase and 2-keto-3-deoxy-D-glycero-D- galacto-nonulosonic acid 9-phosphate synthase activities Marshall Louis Reaves1,2, Linda Carolyn Lopez1 & Sasha Milcheva Daskalova1,* 1The Biodesign Institute, Arizona State University, Tempe Arizona, 85287, 2Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA Human NeuNAc-9-P synthase is a two-domain protein with In prokaryotes, the final stage of formation of N-ace- ability to synthesize both NeuNAc-9-P and KDN-9-P. Its tyl-D-neuraminic acid (NeuNAc) the most common sialic mouse counterpart differs by only 20 out of 359 amino acids acid in nature involves condensation of N-Acetyl-D-mannos- but does not produce KDN-9-P. By replacing the AFL domain amine (ManNAc) with phosphoenol pyruvate (PEP). The proc- of the human NeuNAc-9-P synthase which accommodates 12 ess, when irreversible, is catalyzed by the enzyme NeuNAc of these differences, with the mouse AFL domain we examined synthase (E.C. 4.1.3.19). The first bacterial gene, neuB gene, its importance for the secondary KDN-9-P synthetic activity. coding for the E. coli enzyme was identified in 1995 (2) and The chimeric protein retained almost half of the ability of the this later allowed overexpression and purification of sufficient human enzyme for KDN-9-P synthesis while the NeuNAc-9-P amount of protein for detailed characterization (3). Using the production was reduced to less than 10%.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Innis Road, Horsham + 5km radius SxBRC/16/604 Prepared for Don Baker (West Sussex County Council) 21st November 2016 Sussex Biodiversity Record Centre desktop report regarding Innis Road, Horsham + 5km radius 21st November 2016 Prepared for Don Baker West Sussex County Council SxBRC/16/604 The following information was requested: Information Available Requested Format Designated Sites, Habitats & Ownership Maps Yes PDF Sussex Protected Species Register Yes Excel Sussex Bat Inventory Yes Excel Sussex Notable Bird Report Yes Excel UK BAP Species Inventory Yes Excel Sussex Rare Species Inventory Yes Excel Sussex Invasive Alien Species Yes Excel Full Species List Yes Excel Environmental Survey Directory Yes PDF The following designations are within the search area: Local Wildlife Sites H06 ‐ Kilnwood Copse H07 ‐ Brookhurst Wood & Gill & Morris's Wood H08 ‐ Sparrow Copse H13 ‐ Denne Road Cemetery H22 ‐ High Wood H27 ‐ Sedgwick Park H32 ‐ Horsegills Wood H36 ‐ Leech Pool & Owlbeech Woods H37 ‐ Benland Wood H51 ‐ Warnham Mill Pond H65 ‐ St. Leonard's Forest Sites of Special Scientific Interest St Leonard's Forest St Leonard's Park Ponds Warnham Other Designations/Ownership Area of Outstanding Natural Beauty Country Park Environmental Stewardship Agreement Forestry Commission Local Geological Site Local Nature Reserve Notable Road Verge Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically.
    [Show full text]
  • Molekulární Fylogeneze Podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) Pomocí Mitochondriální 16S Rdna
    Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Bakalářská práce Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA Miroslava Sýkorová Školitel: PaedDr. Martina Žurovcová, PhD Školitel specialista: RNDr. Petr Švácha, CSc. České Budějovice 2008 Bakalářská práce Sýkorová, M., 2008. Molekulární fylogeneze podčeledí Spondylidinae a Lepturinae (Coleoptera: Cerambycidae) pomocí mitochondriální 16S rDNA [Molecular phylogeny of subfamilies Spondylidinae and Lepturinae based on mitochondrial 16S rDNA, Bc. Thesis, in Czech]. Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. 34 pp. Annotation This study uses cca. 510 bp of mitochondrial 16S rDNA gene for phylogeny of the beetle family Cerambycidae particularly the subfamilies Spondylidinae and Lepturinae using methods of Minimum Evolutin, Maximum Likelihood and Bayesian Analysis. Two included representatives of Dorcasominae cluster with species of the subfamilies Prioninae and Cerambycinae, confirming lack of relations to Lepturinae where still classified by some authors. The subfamily Spondylidinae, lacking reliable morfological apomorphies, is supported as monophyletic, with Spondylis as an ingroup. Our data is inconclusive as to whether Necydalinae should be better clasified as a separate subfamily or as a tribe within Lepturinae. Of the lepturine tribes, Lepturini (including the genera Desmocerus, Grammoptera and Strophiona) and Oxymirini are reasonably supported, whereas Xylosteini does not come out monophyletic in MrBayes. Rhagiini is not retrieved as monophyletic. Position of some isolated genera such as Rhamnusium, Sachalinobia, Caraphia, Centrodera, Teledapus, or Enoploderes, as well as interrelations of higher taxa within Lepturinae, remain uncertain. Tato práce byla financována z projektu studentské grantové agentury SGA 2007/009 a záměru Entomologického ústavu Z 50070508. Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně, pouze s použitím uvedené literatury.
    [Show full text]
  • Clear-Cut and Substrate Characteristics Important for the Occurrence of the Beetle Upis Ceramboides
    Department of Ecology Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Master’s thesis Uppsala 2013 Independent project/Degree project / SLU, Department of Ecology 2013:3 Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Supervisor: Thomas Ranius, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Erik Öckinger, Swedish University of Agricultural Sciences, Department of Ecology Credits: 30 hec Level: A1E Course title: Degree project in Biology/Examensarbete i biologi Course code: EX0009 Place of publication: Uppsala Year of publication: 2013 Cover picture: Ronny Naalisvaara Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2013:3 Online publication: http://stud.epsilon.slu.se Keywords: Upis ceramboides, dead wood, clear-cut, prescribed burning Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 1 Abstract Disturbances, such as fire and wind, are important for saproxylic beetles (= beetles depending on decaying wood) to gain substrate in boreal forests. Clear-cutting is an example of a man-made disturbance. Measures such as prescribed burning have been made to resemble natural disturbances. The aim of this study was to see which clear-cut characteristics are important for the occurrence of the saproxylic beetle Upis ceramboides. This is a species favored by open habitats and is said to respond positively to forest fires. The distribution area in Sweden for this species has decreased during the last two centuries and I wanted to see if there were differences between clear-cuts in Hälsingland, where it is very rare and decreasing, and Norrbotten where this study was conducted.
    [Show full text]
  • Enhancement of Insect Antifreeze Protein Activity by Solutes of Low Molecular Mass
    The Journal of Experimental Biology 201, 2243–2251 (1998) 2243 Printed in Great Britain © The Company of Biologists Limited 1998 JEB1557 ENHANCEMENT OF INSECT ANTIFREEZE PROTEIN ACTIVITY BY SOLUTES OF LOW MOLECULAR MASS NING LI, CATHY A. ANDORFER AND JOHN G. DUMAN* Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA *Author for correspondence (e-mail: [email protected]) Accepted 20 May; published on WWW 14 July 1998 Summary Antifreeze proteins (AFPs) lower the non-equilibrium Glycerol is the only one of these enhancing solutes that is freezing point of water (in the presence of ice) below the known to be present at these concentrations in melting point, thereby producing a difference between the overwintering D. canadensis, and therefore the freezing and melting points that has been termed thermal physiological significance of most of these enhancers is hysteresis. In general, the magnitude of the thermal unknown. The mechanism(s) of this enhancement is also hysteresis depends upon the specific activity and unknown. concentration of the AFP. This study describes several low- The AFP used in this study (DAFP-4) is nearly identical molecular-mass solutes that enhance the thermal hysteresis to previously described D. canadensis AFPs. The mature activity of an AFP from overwintering larvae of the beetle protein consists of 71 amino acid residues arranged in six 12- Dendroides canadensis. The most active of these is citrate, or 13-mer repeats with a consensus sequence consisting of which increases the thermal hysteresis nearly sixfold from Cys-Thr-X3-Ser-X5-X6-Cys-X8-X9-Ala-X11-Thr-X13, where 1.2 °C in its absence to 6.8 °C.
    [Show full text]
  • Drive Towards Environmentally Friendly Inhibitors for Natural Gas Hydrate
    V. Foltin et al. Drive Towards Environmentally Friendly Inhibitors for Natural Gas Hydrate... ISSN 1848-0071 553.981+544.475=111 Recieved: 2013-11-12 Accepted: 2014-01-15 Original scientific paper DRIVE TOWARDS ENVIRONMENTALLY FRIENDLY INHIBITORS FOR NATURAL GAS HYDRATE FORMATION PREVENTION VIKTOR FOLTIN, JÁN RAJZINGER¹ Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Mathematics and Physics, Slovakia ¹Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Slovakia e-mail: [email protected] This work summarizes methods for prevention of gas pipeline clogging by natural gas hydrate formation – with emphasis on development of environmentally friendly hydrate inhibitors. The work highlights advantages and disadvantages of current solutions and encourages future studies on new type of inhibitors based on ice-structuring proteins. Key words: natural gas hydrate, hydrate inhibitors, flow assurance, antifreeze proteins, ice-structuring proteins, Rhagium mordax. Nastojanja oko ekološki prihvatljivih inhibitora za sprečavanje hidrata prirodnog plina. Ovaj rad sažima metode za prevenciju začepljenja plinovoda uvjetovanu stvaranjem hidrata plina - s naglaskom na razvoj ekološki prihvatljivih inhibitora hidrata. Rad naglašava prednosti i nedostatke postojećih rješenja i potiče buduće studije o novoj vrsti inhibitora utemeljenoj na led-strukturirajućim proteinima. Ključne riječi: hidrat prirodnog plina, inhibitori hidrata, osiguranje protoka, antifriz proteini, led-strukturirajući proteini, Rhagium mordax. INTRODUCTION Natural gas hydrate is a clathrate of formation and clogging of gas pipelines and natural gas guest molecule embedded in a distribution systems [1, 2, 3, 4, 5]. This work cage of water host molecules formed at high summarizes recent advances in hydrate pressure and low temperature conditions.
    [Show full text]
  • Antifreeze Protein Improves the Cryopreservation Efficiency of Hosta Capitata by Regulating the Genes Involved in the Low-Temper
    horticulturae Study Protocol Antifreeze Protein Improves the Cryopreservation Efficiency of Hosta capitata by Regulating the Genes Involved in the Low-Temperature Tolerance Mechanism Phyo Phyo Win Pe 1,2,†, Aung Htay Naing 3,† , Chang Kil Kim 3,* and Kyeung Il Park 1,* 1 Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea; [email protected] 2 Department of Horticulture, Yezin Agricultural University, Nay Pyi Taw 15013, Myanmar 3 Department of Horticulture, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected] (C.K.K.); [email protected] (K.I.P.) † Phyo Phyo Win Pe and Aung Htay Naing equally contributed to this work. Abstract: In this study, whether the addition of antifreeze protein (AFP) to a cryopreservative solution (plant vitrification solution 2 (PVS2)) is more effective in reducing freezing injuries in Hosta capitata than PVS2 alone at different cold exposure times (6, 24, and 48 h) is investigated. The upregulation of C-repeat binding factor 1 (CBF1) and dehydrin 1 (DHN1) in response to low temperature was observed in shoots. Shoots treated with distilled water (dH2O) strongly triggered gene expression 6 h after cold exposure, which was higher than those expressed in PVS2 and PVS2+AFP. However, 24 h after cold exposure, gene expressions detected in dH2O and PVS2 treatments were similar and Citation: Pe, P.P.W.; Naing, A.H.; higher than PVS2 + AFP. The expression was highest in PVS2+AFP when the exposure time was Kim, C.K.; Park, K.I. Antifreeze extended to 48 h. Similarly, nitric reductase activities 1 and 2 (Nia1 and Nia2) genes, which are Protein Improves the responsible for nitric oxide production, were also upregulated in low-temperature-treated shoots, Cryopreservation Efficiency of Hosta as observed for CBF1 and DHN1 expression patterns during cold exposure periods.
    [Show full text]
  • A Check-List of Longicorn Beetles (Coleoptera: Cerambycidae)
    Евразиатский энтомол. журнал 18(3): 199–212 © EUROASIAN ENTOMOLOGICAL doi: 10.15298/euroasentj.18.3.10 JOURNAL, 2019 A check-list of longicorn beetles (Coleoptera: Cerambycidae) of Tyumenskaya Oblast of Russia Àííîòèðîâàííûé ñïèñîê æóêîâ-óñà÷åé (Coleoptera: Cerambycidae) Òþìåíñêîé îáëàñòè V.A. Stolbov*, E.V. Sergeeva**, D.E. Lomakin*, S.D. Sheykin* Â.À. Ñòîëáîâ*, Å.Â. Ñåðãååâà**, Ä.Å. Ëîìàêèí*, Ñ.Ä. Øåéêèí* * Tyumen state university, Volodarskogo Str. 6, Tyumen 625003 Russia. E-mail: [email protected]. * Тюменский государственный университет, ул. Володарского 6, Тюмень 625003 Россия. ** Tobolsk complex scientific station of the UB of the RAS, Acad. Yu. Osipova Str. 15, Tobolsk 626152 Russia. E-mail: [email protected]. ** Тобольская комплексная научная станция УрО РАН, ул. акад. Ю. Осипова 15, Тобольск 626152 Россия. Key words: Coleoptera, Cerambycidae, Tyumenskaya Oblast, fauna, West Siberia. Ключевые слова: жесткокрылые, усачи, Тюменская область, фауна, Западная Сибирь. Abstract. A checklist of 99 Longhorn beetle species (Cer- rambycidae of Tomskaya oblast [Kuleshov, Romanen- ambycidae) from 59 genera occurring in Tyumenskaya Oblast ko, 2009]. of Russia, compiled on the basis of author’s material, muse- The data on the fauna of longicorn beetles of the um collections and literature sources, is presented. Eleven Tyumenskaya oblast are fragmentary. Ernest Chiki gave species, Dinoptera collaris (Linnaeus, 1758), Pachytodes the first references of the Cerambycidae of Tyumen erraticus (Dalman, 1817), Stenurella bifasciata (Müller, 1776), Tetropium gracilicorne Reitter, 1889, Spondylis bu- oblast at the beginning of the XX century. He indicated prestoides (Linnaeus, 1758), Pronocera sibirica (Gebler, 11 species and noted in general the northern character 1848), Semanotus undatus (Linnaeus, 1758), Monochamus of the enthomofauna of the region [Csíki, 1901].
    [Show full text]