From Pavement to Population Genomics: Characterizing a Long-Established Non-Native Ant in North America Through Citizen Science and Ddradseq
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trofička Niša Mirmekofagnog Predatora Tijekom Ontogenetičkog Razvoja
Trofička niša mirmekofagnog predatora tijekom ontogenetičkog razvoja Gajski, Domagoj Master's thesis / Diplomski rad 2019 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:211948 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb University of Zagreb Faculty of Science Department of Biology Domagoj Gajski Trophic niche of an ant-eating predator during its ontogenetic development Graduation Thesis Zagreb, 2019. This thesis was made during an internship at the Masaryk University (Brno, Czech Republic) under the supervision of Prof. Mgr. Stanislav Pekár, Ph.D. and Assoc. Prof. Dr. sc. Damjan Franjević from University of Zagreb, and submitted for evaluation to the Department of Biology, Faculty of Science, University of Zagreb in order to acquire the title Master of molecular biology. I would first like to thank my thesis advisors Prof. dr. mgr. Stanislav Pekar and dr. mgr. Lenka Petrakova of the arachnological lab at the Masaryk University. The door to their offices was always open whenever I ran into questions about my research or writing. They consistently allowed this paper to be my own work but steered me in the right direction whenever they thought I needed it. I would like to thank all the co-workers at the arachnological lab, that made each day of work more interesting by losing their spiders in the lab. They somehow always landed on my work desk. -
Range Expansion in an Introduced Social Parasite-Host Species Pair Abstract Keywords
1 Range expansion in an introduced social parasite-host species pair 2 Jackson A. Helms IV1*, Selassie E. Ijelu2, Nick M. Haddad1 3 1 Kellogg Biological Station, Department of Integrative Biology, Michigan State University, 3700 E Gull 4 Lake Dr, Hickory Corners, MI 49060, USA 5 2 University of Saint Francis, 2701 Spring St, Fort Wayne, IN 46808, USA 6 * Corresponding author: orcid.org/0000-0001-6709-6770, [email protected] 7 Abstract 8 Dispersal in social parasites is constrained by the presence of suitable host populations, limiting 9 opportunities for rapid range expansion. For this reason, although hundreds of ant species have 10 expanded their ranges through human transport, few obligate social parasites have done so. We 11 test the hypothesis that social parasites expand their ranges more slowly than their hosts by 12 examining the spread of an introduced social parasite-host species pair in North America—the 13 workerless ant Tetramorium atratulum and the pavement ant T. immigrans. In doing so we 14 report a new range extension of T. atratulum in the interior US. Consistent with host limitation 15 on dispersal, we found a time lag ranging from several years to over a century between the 16 arrivals of the host and parasite to a new region. The estimated maximum rate of range 17 expansion in the parasite was only a third as fast as that of the host. We suggest that relative to 18 free-living social insects, social parasites may be less able to rapidly shift their ranges in 19 response to changes in habitat or climate. -
Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider?
Open Journal of Animal Sciences, 2014, 4, 144-151 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2014.43019 Argentine Ant Affects Ant-Mimetic Arthropods: Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider? Yoshifumi Touyama1, Fuminori Ito2 1Niho, Minami-ku, Hiroshima City, Japan 2Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe, Japan Email: [email protected] Received 23 April 2014; revised 3 June 2014; accepted 22 June 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Argentine ant invasion changed colour-polymorphic composition of ant-mimetic jumping spider Myrmarachne in southwestern Japan. In Argentine ant-free sites, most of Myrmarachne exhibited all-blackish colouration. In Argentine ant-infested sites, on the other hand, blackish morph de- creased, and bicoloured (i.e. partly bright-coloured) morphs increased in dominance. Invasive Argentine ant drives away native blackish ants. Disappearance of blackish model ants supposedly led to malfunction of Batesian mimicry of Myrmarachne. Keywords Batesian Mimicry, Biological Invasion, Linepithema humile, Myrmecomorphy, Myrmarachne, Polymorphism 1. Introduction It has attracted attention of biologists that many arthropods morphologically and/or behaviorally resemble ants [1]-[4]. Resemblance of non-ant arthropods to aggressive and/or unpalatable ants is called myrmecomorphy (ant-mimicry). Especially, spider myrmecomorphy has been described through many literatures [5]-[9]. Myr- mecomorphy is considered to be an example of Batesian mimicry gaining protection from predators. -
Pavement Ants (Tetramorium Immigrans Santschi) Ryan S
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-219-20 June 2020 Pavement Ants (Tetramorium immigrans Santschi) Ryan S. Davis, Arthropod Diagnostician • Lori Spears, Cooperative Agricultural Pest Survey Coordinator • Austin Taylor, Entomology Assistant Quick Facts • Pavement ants are the most common pest ant in and around structures in Utah. • Worker pavement ants are all the same size and have only one queen. • Pavement ants feed on many foods, but prefer sweet and greasy foods. • Occasionally, pavement ants will injure plants. • Indoor problems with pavement ants are worst in spring and early summer. • Indoors, manage pavement ants using baits coupled with habitat modification, cleaning, Fig. 1. (left) Swarm of pavement ant workers in spring (Ryan proper food storage, and exclusion. Davis, Utah State University). Fig. 2. (right) Two workers fighting • Outside, use habitat modification, exclusion, (Ryan Davis, Utah State University). bait, and residual/nonresidual insecticides to manage pavement ants. or structure. They are attracted indoors by food, garbage and moisture, or swarm indoors when they nest in or near foundation cracks or voids. Pavement ants can also be abundant in gardens, and occasionally injure plants. They INTRODUCTION are found throughout the U.S. from the West Coast to the Pavement ants (Formicidae, Tetramorium immigrans) are Northeast. northern Utah’s most common pest ant in and around homes and structures. Until recently, the pavement IDENTIFICATION ant’s scientific name was Tetramorium caespitum, but recent genetic work has clarified that our common pest Pavement ants are most commonly recognized by their Tetramorium species in the U.S. is from Europe and has habit of gathering in large groups near cracks in the been given the name T. -
Larvae of the Green Lacewing Mallada Desjardinsi (Neuroptera: Chrysopidae) Protect Themselves Against Aphid-Tending Ants by Carrying Dead Aphids on Their Backs
Appl Entomol Zool (2011) 46:407–413 DOI 10.1007/s13355-011-0053-y ORIGINAL RESEARCH PAPER Larvae of the green lacewing Mallada desjardinsi (Neuroptera: Chrysopidae) protect themselves against aphid-tending ants by carrying dead aphids on their backs Masayuki Hayashi • Masashi Nomura Received: 6 March 2011 / Accepted: 11 May 2011 / Published online: 28 May 2011 Ó The Japanese Society of Applied Entomology and Zoology 2011 Abstract Larvae of the green lacewing Mallada desj- Introduction ardinsi Navas are known to place dead aphids on their backs. To clarify the protective role of the carried dead Many ants tend myrmecophilous homopterans such as aphids against ants and the advantages of carrying them for aphids and scale insects, and utilize the secreted honeydew lacewing larvae on ant-tended aphid colonies, we carried as a sugar resource; in return, the homopterans receive out some laboratory experiments. In experiments that beneficial services from the tending ants (Way 1963; Breton exposed lacewing larvae to ants, approximately 40% of the and Addicott 1992; Nielsen et al. 2010). These mutualistic larvae without dead aphids were killed by ants, whereas no interactions between ants and homopterans reduce the larvae carrying dead aphids were killed. The presence of survival and abundance of other arthropods, including the dead aphids did not affect the attack frequency of the non-honeydew-producing herbivores and other predators ants. When we introduced the lacewing larvae onto plants (Bristow 1984; Buckley 1987; Suzuki et al. 2004; Kaplan colonized by ant-tended aphids, larvae with dead aphids and Eubanks 2005), because the tending ants become more stayed for longer on the plants and preyed on more aphids aggressive and attack arthropods that they encounter on than larvae without dead aphids. -
The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance. -
Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs
20182018 Green RoofsUrban and Naturalist Urban Biodiversity SpecialSpecial Issue No. Issue 1:16–38 No. 1 A. Nagase, Y. Yamada, T. Aoki, and M. Nomura URBAN NATURALIST Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs Ayako Nagase1,*, Yoriyuki Yamada2, Tadataka Aoki2, and Masashi Nomura3 Abstract - Urban biodiversity is an important ecological goal that drives green-roof in- stallation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and mainte- nance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity. Introduction Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006). -
Research Article Nonintegrated Host Association of Myrmecophilus Tetramorii, a Specialist Myrmecophilous Ant Cricket (Orthoptera: Myrmecophilidae)
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 568536, 5 pages http://dx.doi.org/10.1155/2013/568536 Research Article Nonintegrated Host Association of Myrmecophilus tetramorii, a Specialist Myrmecophilous Ant Cricket (Orthoptera: Myrmecophilidae) Takashi Komatsu,1 Munetoshi Maruyama,2 and Takao Itino1,3 1 Department of Biology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan 2 Kyushu University Museum, Hakozaki 6-10-1, Fukuoka 812-8581, Japan 3 Institute of Mountain Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan Correspondence should be addressed to Takashi Komatsu; [email protected] Received 10 January 2013; Accepted 19 February 2013 Academic Editor: Alain Lenoir Copyright © 2013 Takashi Komatsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Myrmecophilus ant crickets (Orthoptera: Myrmecophilidae) are typical ant guests. In Japan, about 10 species are recognized on the basis of morphological and molecular phylogenetic frameworks. Some of these species have restricted host ranges and behave intimately toward their host ant species (i.e., they are host specialist). We focused on one species, M. tetramorii, which uses the myrmicine ant Tetramorium tsushimae as its main host. All but one M. tetramorii individuals were collected specifically from nests of T. tsushimae in the field. However, behavioral observation showed that all individuals used in the experiment received hostile reactions from the host ants. There were no signs of intimate behaviors such as grooming of hosts or receipt of mouth-to-mouth feeding from hosts, which are seen in some host-specialist Myrmecophilus species among obligate host-ant species. -
The Organization of Societal Conflicts by Pavement Ants Tetramorium
Current Zoology, 2016, 62(3), 277–284 doi: 10.1093/cz/zow041 Advance Access Publication Date: 4 April 2016 Article Article The organization of societal conflicts by pavement ants Tetramorium caespitum: an agent-based model of amine-mediated Downloaded from https://academic.oup.com/cz/article-abstract/62/3/277/2897747 by guest on 08 December 2019 decision making a a,b a Kevin M. HOOVER , Andrew N. BUBAK , Isaac J. LAW , c c a Jazmine D. W. YAEGER , Kenneth J. RENNER , John G. SWALLOW , and a,* Michael J. GREENE aDepartment of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA, bNeuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA, and cDepartment of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA *Address correspondence to Michael J. Greene. E-mail: [email protected]. Received on 27 December 2015; accepted on 2 March 2016 Abstract Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant’s brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the ter- ritory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nest- mate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. -
Tetramorium Immigrans Santschi, 1927 (Hymenoptera: Formicidae) Nowy Gatunek Potencjalnie Inwazyjnej Mrówki W Polsce
Acta entomologica silesiana Vol. 26: (online 002): 1–5 ISSN 1230-7777, ISSN 2353-1703 (online) Bytom, February 8, 2018 Tetramorium immigrans SANTSCHI, 1927 (Hymenoptera: Formicidae) nowy gatunek potencjalnie inwazyjnej mrówki w Polsce http://doi.org/10.5281/zenodo.1169156 LECH BOROWIEC1, SEBASTIAN SALATA2 1, 2 Katedra Bioróżnorodności i Taksonomii Ewolucyjnej, Uniwersytet Wrocławski, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: 1 [email protected], 2 [email protected] ABSTRACT. Tetramorium immigrans SANTSCHI, 1927 (Hymenoptera: Formicidae) a new species of potentially invasive ant in fauna of Poland. Occurrence of Tetramorium immigrans SANTSCHI, 1927 in Poland is discussed. This potentially invasive ant is known only from urban area of Wrocław city (SW Poland, Lower Silesia) where is very common in anthropogenic, denuded of plants areas, like pavements, concrete car parks or dried artificial hills with rare vegetation and pebbly ground. Localities in Wrocław are northernmost in Europe for this species. KEY WORDS: faunistics, invasive ant, Lower Silesia. WSTĘP Mrówki (Hymenoptera: Formicidae) są grupą owadów często przenoszonych przez człowieka i łatwo adoptujących się do odmiennych środowisk. Stąd duża liczba gatunków zawleczonych i inwazyjnych, zwłaszcza w rejonach ciepłych, subtropikalnych i tropikalnych. Część z tych gatunków w krajach o borealnym klimacie utrzymuje się tylko w magazynach, szklarniach lub ciepłych pomieszczeniach w ogrodach zoologicznych. W faunie Polski notowano do tej pory 7 gatunków zawleczonych, z których 4 mają stale utrzymujące się populacje: Hypoponera ergatandria (FOREL, 1893), Lasius neglectus (VAN LOON, BOOMSMA et ANDRASFAlvY, 1990), Monomorium pharaonis (LINNAEUS, 1758) i Tetramorium insolens (SMITH, 1861). Tylko Lasius neglectus jest notowany spoza zamkniętych pomieszczeń, z kolonii występujących w środowisku miejskim Warszawy (CZECHOWSKI et al. -
Producer Grant Program
Farmer Rancher Grant Program Final Report Form PROJECT IDENTIFICATION Name: Steve Tennes Address: 4648 Otto Road City, State, Zip Code: Charlotte, MI 48813 Phone: 571-543-1019 Project Title: Integrating Bats into Organic Pest Management Project Number: FNC09-755 Project Duration: two years Date of Report: 2013 PROJECT BACKGROUND Country Mill Farms is a 120-acre, fruit and vegetable farm with a farm market that offers “family fun on the farm.” Apple and pumpkins are the major cash crops. We also grow peaches, farm products directly to the consumer. Over the last three years we have made a major effort to make our farm sustainable and energy independent. We now use our apple prunings along with pressed canola seeds (canola cake) to heat our farm market. For the past two years, half of our orchard has been certified organic. We have several experiments going on in the orchard in order to reduce off farm inputs. One example is the use of legumes like white and red clover planted in the tree rows to fix nitrogen that is then incorporated beneath the apple trees. This practice now provides 100 percent of the fertility needs of our trees. We do have an organic orchard that has no synthetic pesticides being used since 2005. This orchard uses insect traps as a primary form of control for Plum Curculio. Furthermore pheromone mating disruption is the primary form of control for codling and oriental fruit moths since 2006. Finally, we have established native flowering plants to increase native pollinators and beneficial insects since 2008. PROJECT DESCRIPTION GOALS: a) Determine whether the addition of bat houses (artificial habitat) to apple orchards increases bat activity. -
Functional Response and the Effects of Insecticidal Seed Treatment on the Soybean Aphid Parasitoid, Binodoxys Communis
Functional response and the effects of insecticidal seed treatment on the soybean aphid parasitoid, Binodoxys communis. A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY MEGAN E CARTER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Advisor: Dr. George Heimpel August 2013 © MEGAN E CARTER 2013 Acknowledgements There are so many people who have helped me get to this point in my career. I first, would like to thank my advisor, Dr. George Heimpel for his patience and guidance and for making me the scientist I am today. I would also like to thank my committee members, Dr. Ian MacRae and Dr. Seth Neave for their time and input along the way. I am also so thankful for Dr. Mark Asplen and all of his time and energy, and for taking me under his wing and guiding me through this entire process. Thanks as well, to Dr. Julie Peterson for always finding a way to make her comments on papers seem so cheery. Thank you to the entire Heimpel lab; Dr. Christine Dieckhoff, Dr. Thelma Heidel- Baker, Joe Kaser, Matt Kaiser, Emily Mohl, and Jonathan Dregni, for providing such a supportive working environment. If I ever needed anything, I knew I could always count on you. Thank you also to the undergraduate students that counted aphids and washed dishes day in and day out: Trevor Christensen, Logan Fees, Emily Paulus and Chris Rezac. I would like to thank my funding agencies; Minnesota Soybean Research and Promotion Council as well as the North Central Soybean Research Program.