Gyrator Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer

Total Page:16

File Type:pdf, Size:1020Kb

Gyrator Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2017 Gyrator Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer Parul Kaushal University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Kaushal, Parul, "Gyrator Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4752 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Parul Kaushal entitled "Gyrator Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. Syed Kamrul Islam, Major Professor We have read this thesis and recommend its acceptance: Yilu Liu, Benjamin J. Blalock Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Gyrator-Capacitor Modeling Approach to Study the Impact of Geomagnetically Induced Current on Single-Phase Core Transformer A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Parul Kaushal May 2017 Copyright © 2017 by Parul Kaushal All rights reserved. ii DEVOTION This thesis is devoted to my husband, Vishal Sharma, and to my entire family for their sustained support throughout my educational endeavors. iii ACKNOWLEDGEMENTS It gives me immense pleasure to express my sincere and whole hearted gratitude to Dr. Syed Kamrul Islam for his endless guidance, invaluable and untiring help, encouraging attitude and supervision throughout my research work at the University of Tennessee. I am thankful to Dr. Marcus Aaron Young of Mitsubishi for endless discussions to achieve my final goal and for his indefatigable support. My heartfelt thanks go to Dr. Yilu Liu and Dr. Benjamin J Blalock in serving as a member of my thesis committee. I would also like to acknowledge Oak Ridge National Laboratory (ORNL) for providing financial support for my graduate education. iv ABSTRACT Among various approaches used for determining the behavior of power transformers to model the geomagnetically induced current (GIC), the gyrator-capacitor approach is proposed. This approach offers a better understanding of magnetic components compared to other methods, particularly for multi-winding devices and is used to model GIC in a single-phase core type power transformer. In the gyrator-capacitor approach, the gyrator acts as a bridge between the electric and the magnetic circuits making it possible to simulate the two circuits simultaneously. Under GIC conditions, the transformer core suffers a half-cycle saturation, which is the main cause of the disturbances in the power system. In addition, the design of the transformer core is one of the other important factor to analyze the impact of GIC, as the single-phase and the three- phase transformers have different core design. The single-phase transformers are known to be more susceptible to GIC than their three-phase counterparts and even a small range of DC is sufficient to drive the core of a single-phase transformer in the saturation region. The behavior of single-phase transformer is analyzed as half-cycle saturation in the fluxes, following the simulations achieved for voltages, magnetizing current, exciting current and harmonics at different levels of DC by using different magnitude of GIC (increasing order). The harmonics obtained from the proposed approach are validated with the previously published research for single-phase transformers experiencing half-cycle saturation. Since the GIC affects the current waveforms and therefore, the deviation of the current waveform is also calculated in the form of total harmonic distortion (THD).To model a transformer using the gyrator-capacitor approach, P- SPICE software tool is used.The results from the analysis reveal that, the behavior of the transformer model is dependent on the source impedance and the half-cycle saturation is dependent on the DC source setting. v TABLE OF CONTENTS CHAPTER 1 INTRODUCTION AND GENERAL INFORMATION ........................................................... 1 1.1 Overview ............................................................................................................................... 1 1.2 Thesis Outline ....................................................................................................................... 5 CHAPTER 2 SINGLE-PHASE TRANSFORMER CONCEPT AND LITERATURE REVIEW ............... 6 2.1 Single-Phase Transformer Concept ........................................................................................ 6 2.2 Literature Review.................................................................................................................... 8 CHAPTER 3 MODELING APPROACHES AND THE PROPOSED APPROACH .................................. 10 3.1 Modeling Approaches ........................................................................................................... 10 CHAPTER 4 SINGLE-PHASE TRANSFORMER MODELING USING GYRATOR-CAPACITOR APPROACH ................................................................................................................................ 22 4.1 Single-Phase Transformer Gyrator-Capacitor Model ............................................................. 22 CHAPTER 5 SIMULATION RESULTS ......................................................................................................... 29 5.1 Transformer Behavior Without GIC (DC) ......................................................................... 29 5.1.1 Input /Output Voltage Waveform in the Presence of Small Source Impedance ....... 30 5.1.2 Input /Output Current Waveform in the Presence of Small Source Impedance ........ 30 5.1.3 Input /Output Voltage Waveform in the Presence of Large Source Impedance ....... 31 5.1.4 Input /Output Current Waveform in the Presence of Large Source Impedance ........ 32 5.1.5 Flux Waveform ........................................................................................................... 33 5.1.6 Magnetizing Current Waveform ................................................................................. 34 5.2 Transformer Behavior With GIC(DC) ............................................................................... 35 5.2.1 Flux Waveform ........................................................................................................... 35 5.2.2 Exciting Current Waveform ....................................................................................... 38 5.2.3 Exciting Current Harmonics ....................................................................................... 41 5.2.4 Output Waveform ....................................................................................................... 43 vi CHAPTER 6 CONCLUSIONS AND FUTURE WORK ................................................................................ 46 REFERENCES ............................................................................................................................ 47 APPENDIX .................................................................................................................................. 51 VITA............................................................................................................................................. 55 vii LIST OF TABLES Table 3.1: Force and Flow Variables in Electric/Magnetic Domain. ........................................... 12 Table 3.2: Comparison of the Force and the Flow Variables in Electric /Magnetic Domain. ...... 14 Table 3.3: Analogs of Electric and Magnetic Quantities. ............................................................. 21 viii LIST OF FIGURES Figure 1.1.1:Transformer core operating under GIC conditions. ................................................... 4 Figure 1.1.2: Magnetizing current during half-cycle saturation. .................................................... 4 Figure 2.1.1:Schematic of a basic single-phase transformer. ......................................................... 7 Figure 3.1.1: Reluctance-resistance approach for magnetic circuit modeling. ............................. 12 Figure 3.1.2: Permeance-capacitance approach for magnetic circuit modeling. .......................... 14 Figure 3.1.3: Schematic representation of a gyrator. .................................................................... 16 Figure 3.1.4: Gyrator link. ............................................................................................................ 16 Figure 3.1.5: Gyrator-capacitor model for magnetic circuit modelling. ....................................... 18 Figure 3.1.6 : Gyrator-capacitor model with variable permeance. ..............................................
Recommended publications
  • Permanent Magnet Guidelines
    MMPA PMG-88 PERMANENT MAGNET GUIDELINES I. Basic physics of permanent magnet materials II. Design relationships, figures of merit and optimizing techniques III. Measuring IV. Magnetizing V. Stabilizing and handling VI. Specifications, standards and communications VII. Bibliography MAGNETIC MATERIALS PRODUCERS ASSOCIATION 8 SOUTH MICHIGAN AVENUE • SUITE 1000 • CHICAGO, ILLINOIS 60603 INTRODUCTION This guide is a supplement to our MMPA Standard No. 0100. It relates the information in the Standard to permanent magnet circuit problems. The guide is a bridge between unit property data and a permanent magnet component having a specific size and geometry in order to establish a magnetic field in a given magnetic circuit environment. The MMPA 0100 defines magnetic, thermal, physical and mechanical properties. The properties given are descriptive in nature and not intended as a basis of acceptance or rejection. Magnetic measure- ments are difficult to make and less accurate than corresponding electrical mea- surements. A considerable amount of detailed information must be exchanged between producer and user if magnetic quantities are to be compared at two locations. MMPA member companies feel that this publication will be helpful in allowing both user and producer to arrive at a realistic and meaningful specifica- tion framework. Acknowledgment The Magnetic Materials Producers Association acknowledges the out- standing contribution of Rollin J. Parker to this industry and designers and manufacturers of products usingpermanent magnet materials. Mr Parker the Technical Consultant to MMPA compiled and wrote this document. We also wish to thank the Standards and Engineering Com- mittee of MMPA which reviewed and edited this document. December 1987 3M July 1988 5M August 1996 1M December 1998 1 M CONTENTS The guide is divided into the following sections: Glossary of terms and conversion tables- A very important starting point since the whole basis of communication in the magnetic material industry involves measurement of defined unit properties.
    [Show full text]
  • Chapter 1 Magnetic Circuits and Magnetic Materials
    Chapter 1 Magnetic Circuits and Magnetic Materials The objective of this course is to study the devices used in the interconversion of electric and mechanical energy, with emphasis placed on electromagnetic rotating machinery. The transformer, although not an electromechanical-energy-conversion device, is an important component of the overall energy-conversion process. Practically all transformers and electric machinery use ferro-magnetic material for shaping and directing the magnetic fields that acts as the medium for transferring and converting energy. Permanent-magnet materials are also widely used. The ability to analyze and describe systems containing magnetic materials is essential for designing and understanding electromechanical-energy-conversion devices. The techniques of magnetic-circuit analysis, which represent algebraic approximations to exact field-theory solutions, are widely used in the study of electromechanical-energy-conversion devices. §1.1 Introduction to Magnetic Circuits Assume the frequencies and sizes involved are such that the displacement-current term in Maxwell’s equations, which accounts for magnetic fields being produced in space by time-varying electric fields and is associated with electromagnetic radiations, can be neglected. Z H : magnetic field intensity, amperes/m, A/m, A-turn/m, A-t/m Z B : magnetic flux density, webers/m2, Wb/m2, tesla (T) Z 1 Wb =108 lines (maxwells); 1 T =104 gauss Z From (1.1), we see that the source of H is the current density J . The line integral of the tangential component of the magnetic field intensity H around a closed contour C is equal to the total current passing through any surface S linking that contour.
    [Show full text]
  • Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with Dual-V Type Magnets
    energies Article Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets Wenjing Hu, Xueyi Zhang *, Hongbin Yin, Huihui Geng, Yufeng Zhang and Liwei Shi School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China; [email protected] (W.H.); [email protected] (H.Y.); [email protected] (H.G.); [email protected] (Y.Z.); [email protected] (L.S.) * Correspondence: [email protected]; Tel.: +86-137-089-41973 Received: 15 February 2020; Accepted: 17 March 2020; Published: 22 March 2020 Abstract: Due to the increasing energy crisis and environmental pollution, the development of drive motors for new energy vehicles (NEVs) has become the focus of popular attention. To improve the sine of the air-gap flux density and flux regulation capacity of drive motors, a new hybrid excitation synchronous motor (HESM) has been proposed. The HESM adopts a salient pole rotor with built-in dual-V permanent magnets (PMs), non-arc pole shoes and excitation windings. The fundamental topology, operating principle and analytical model for a magnetic field are presented. In the analytical model, the rotor magnetomotive force (MMF) is derived based on the minimum reluctance principle, and the permeance function considering a non-uniform air-gap is calculated using the magnetic equivalent circuit (MEC) method. Besides, the electromagnetic performance including the air-gap magnetic field and flux regulation capacity is analyzed by the finite element method (FEM). The simulation results of the air-gap magnetic field are consistent with the analytical results. The experiment and simulation results of the performance show that the flux waveform is sinusoidal-shaped and the air-gap flux can be adjusted effectively by changing the excitation current.
    [Show full text]
  • Design of Magnetic Circuits
    Design of Magnetic Circuits Fundamental Equations Circuit laws similar to those of electric circuits apply in magnetic circuits as well. That is, a magnetic circuit can be replaced by an equivalent electric circuit for Ohm’s Law to be applied. If the magnetomotive force of a magnet is F and the total magnetic flux is Φt, and assuming the magnetic resistance (reluctance) of the circuit is R, then the following equation is valid. (1) Assuming the vacant length of the circuit as ℓg and the vacant cross-sectional area as ag, the magnetic resistance is then given by the following equation. (2) μ is the magnetic permeability of the magnetic path and is equivalent to the magnetic permeability μ0 of a vacuum in the case of air. (μ0=4π×10-7 [H/m]) Yoke 〈Figure 7〉 Although the current in an electric circuit rarely leaks outside the circuit, as the difference in the magnetic permeability between the conductor yoke and insulated area in a magnetic circuit is not very large, leakage of the magnetic flux also becomes large in reality. The amount of the magnetic flux leakage is expressed by the leakage factor σ, which is the ratio of the total magnetic flux Φt generated in the magnetic circuit to the effective magnetic flux Φg of the vacant space. (3) In addition, the loss in the magnetic flux due to the joints in the magnetic circuit must also be taken into consideration. This is represented by the reluctance factor f. Since the leakage factor σ is equivalent to the increase in the vacant space area, and the reluctance factor f refers to the correction coefficient of the vacant space length, the corrected magnetic resistance becomes as follows.
    [Show full text]
  • University Physics 227N/232N Ch 27
    Vector pointing OUT of page University Physics 227N/232N Ch 27: Inductors, towards Ch 28: AC Circuits Quiz and Homework This Week Dr. Todd Satogata (ODU/Jefferson Lab) [email protected] http://www.toddsatogata.net/2014-ODU Monday, March 31 2014 Happy Birthday to Jack Antonoff, Kate Micucci, Ewan McGregor, Christopher Walken, Carlo Rubbia (1984 Nobel), and Al Gore (2007 Nobel) (and Sin-Itiro Tomonaga and Rene Descartes and Johann Sebastian Bach too!) Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 1 Testing for Rest of Semester § Past Exams § Full solutions promptly posted for review (done) § Quizzes § Similar to (but not exactly the same as) homework § Full solutions promptly posted for review § Future Exams (including comprehensive final) § I’ll provide copy of cheat sheet(s) at least one week in advance § Still no computer/cell phone/interwebz/Chegg/call-a-friend § Will only be homework/quiz/exam problems you have seen! • So no separate practice exam (you’ll have seen them all anyway) § Extra incentive to do/review/work through/understand homework § Reduces (some) of the panic of the (omg) comprehensive exam • But still tests your comprehensive knowledge of what we’ve done Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 2 Review: Magnetism § Magnetism exerts a force on moving electric charges F~ = q~v B~ magnitude F = qvB sin ✓ § Direction follows⇥ right hand rule, perpendicular to both ~v and B~ § Be careful about the sign of the charge q § Magnetic fields also originate from moving electric charges § Electric currents create magnetic fields! § There are no individual magnetic “charges” § Magnetic field lines are always closed loops § Biot-Savart law: how a current creates a magnetic field: µ0 IdL~ rˆ 7 dB~ = ⇥ µ0 4⇡ 10− T m/A 4⇡ r2 ⌘ ⇥ − § Magnetic field field from an infinitely long line of current I § Field lines are right-hand circles around the line of current § Each field line has a constant magnetic field of µ I B = 0 2⇡r Prof.
    [Show full text]
  • Power-Invariant Magnetic System Modeling
    POWER-INVARIANT MAGNETIC SYSTEM MODELING A Dissertation by GUADALUPE GISELLE GONZALEZ DOMINGUEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Electrical Engineering Power-Invariant Magnetic System Modeling Copyright 2011 Guadalupe Giselle González Domínguez POWER-INVARIANT MAGNETIC SYSTEM MODELING A Dissertation by GUADALUPE GISELLE GONZALEZ DOMINGUEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Mehrdad Ehsani Committee Members, Karen Butler-Purry Shankar Bhattacharyya Reza Langari Head of Department, Costas Georghiades August 2011 Major Subject: Electrical Engineering iii ABSTRACT Power-Invariant Magnetic System Modeling. (August 2011) Guadalupe Giselle González Domínguez, B.S., Universidad Tecnológica de Panamá Chair of Advisory Committee: Dr. Mehrdad Ehsani In all energy systems, the parameters necessary to calculate power are the same in functionality: an effort or force needed to create a movement in an object and a flow or rate at which the object moves. Therefore, the power equation can generalized as a function of these two parameters: effort and flow, P = effort × flow. Analyzing various power transfer media this is true for at least three regimes: electrical, mechanical and hydraulic but not for magnetic. This implies that the conventional magnetic system model (the reluctance model) requires modifications in order to be consistent with other energy system models. Even further, performing a comprehensive comparison among the systems, each system’s model includes an effort quantity, a flow quantity and three passive elements used to establish the amount of energy that is stored or dissipated as heat.
    [Show full text]
  • The Stripline Circulator Theory and Practice
    The Stripline Circulator Theory and Practice By J. HELSZAJN The Stripline Circulator The Stripline Circulator Theory and Practice By J. HELSZAJN Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc. Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http:// www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]
  • Transient Simulation of Magnetic Circuits Using the Permeance-Capacitance Analogy
    Transient Simulation of Magnetic Circuits Using the Permeance-Capacitance Analogy Jost Allmeling Wolfgang Hammer John Schonberger¨ Plexim GmbH Plexim GmbH TridonicAtco Schweiz AG Technoparkstrasse 1 Technoparkstrasse 1 Obere Allmeind 2 8005 Zurich, Switzerland 8005 Zurich, Switzerland 8755 Ennenda, Switzerland Email: [email protected] Email: [email protected] Email: [email protected] Abstract—When modeling magnetic components, the R1 Lσ1 Lσ2 R2 permeance-capacitance analogy avoids the drawbacks of traditional equivalent circuits models. The magnetic circuit structure is easily derived from the core geometry, and the Ideal Transformer Lm Rfe energy relationship between electrical and magnetic domain N1:N2 is preserved. Non-linear core materials can be modeled with variable permeances, enabling the implementation of arbitrary saturation and hysteresis functions. Frequency-dependent losses can be realized with resistors in the magnetic circuit. Fig. 1. Transformer implementation with coupled inductors The magnetic domain has been implemented in the simulation software PLECS. To avoid numerical integration errors, Kirch- hoff’s current law must be applied to both the magnetic flux and circuit, in which inductances represent magnetic flux paths the flux-rate when solving the circuit equations. and losses incur at resistors. Magnetic coupling between I. INTRODUCTION windings is realized either with mutual inductances or with ideal transformers. Inductors and transformers are key components in modern power electronic circuits. Compared to other passive com- Using coupled inductors, magnetic components can be ponents they are difficult to model due to the non-linear implemented in any circuit simulator since only electrical behavior of magnetic core materials and the complex structure components are required.
    [Show full text]
  • Magnetism and Magnetic Circuits
    UNIVERSITY OF BABYLON BASIC OF ELECTRICAL ENGINEERING LECTURE NOTES Magnetism and Magnetic Circuits The Nature of a Magnetic Field: Magnetism refers to the force that acts between magnets and magnetic materials. We know, for example, that magnets attract pieces of iron, deflect compass needles, attract or repel other magnets, and so on. The region where the force is felt is called the “field of the magnet” or simply, its magnetic field. Thus, a magnetic field is a force field. Using Faraday’s representation, magnetic fields are shown as lines in space. These lines, called flux lines or lines of force, show the direction and intensity of the field at all points. The field is strongest at the poles of the magnet (where flux lines are most dense), its direction is from north (N) to south (S) external to the magnet, and flux lines never cross. The symbol for magnetic flux as shown is the Greek letter (phi). What happens when two magnets are brought close together? If unlike poles attract, and flux lines pass from one magnet to the other. الصفحة 321 Saad Alwash UNIVERSITY OF BABYLON BASIC OF ELECTRICAL ENGINEERING LECTURE NOTES If like poles repel, and the flux lines are pushed back as indicated by the flattening of the field between the two magnets. Ferromagnetic Materials (magnetic materials that are attracted by magnets such as iron, nickel, cobalt, and their alloys) are called ferromagnetic materials. Ferromagnetic materials provide an easy path for magnetic flux. The flux lines take the longer (but easier) path through the soft iron, rather than the shorter path that they would normally take.
    [Show full text]
  • MAGNETISM and Its Practical Applications
    Mechanical Engineering Laboratory A short introduction to… MAGNETISM and its practical applications Michele Togno – Technical University of Munich, 28 th March 2014 – 4th April 2014 Mechanical Engineering laboratory - Magnetism - 1 - Magnetism A property of matter A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but it is responsible for the most notable property of a magnet: a force that pulls on ferromagnetic materials, such as iron, and attracts or repels other magnets. History of magnetism Magnetite Fe 3O4 Sushruta, VI cen. BCE (lodestone) (Indian surgeon) J.B. Biot, 1774-1862 A.M. Ampere, 1775-1836 Archimedes (287-212 BCE) William Gilbert, 1544-1603 H.C. Oersted, 1777-1851 (English physician) C.F. Gauss, 1777-1855 F. Savart, 1791-1841 M. Faraday, 1791-1867 J.C. Maxwell, 1831-1879 Shen Kuo, 1031-1095 (Chinese scientist) H. Lorentz, 1853-1928 Mechanical Engineering laboratory - Magnetism - 2 - The Earth magnetic field A sort of cosmic shield Mechanical Engineering laboratory - Magnetism - 3 - Magnetic domains and types of magnetic materials Ferromagnetic : a material that could exhibit spontaneous magnetization, that is a net magnetic moment in the absence of an external magnetic field (iron, nickel, cobalt…). Paramagnetic : material slightly attracted by a magnetic field and which doesn’t retain the magnetic properties when the external field is removed (magnesium, molybdenum, lithium…). Diamagnetic : a material that creates a magnetic field in opposition to an externally applied magnetic field (superconductors…). Mechanical Engineering laboratory - Magnetism - 4 - Magnetic field and Magnetic flux Every magnet is a magnetic dipole (magnetic monopole is an hypothetic particle whose existence is not experimentally proven right now).
    [Show full text]
  • 6.685 Electric Machines, Course Notes 2: Magnetic Circuit Basics
    Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Class Notes 2 Magnetic Circuit Basics c 2003 James L. Kirtley Jr. 1 Introduction Magnetic Circuits offer, as do electric circuits, a way of simplifying the analysis of magnetic field systems which can be represented as having a collection of discrete elements. In electric circuits the elements are sources, resistors and so forth which are represented as having discrete currents and voltages. These elements are connected together with ‘wires’ and their behavior is described by network constraints (Kirkhoff’s voltage and current laws) and by constitutive relationships such as Ohm’s Law. In magnetic circuits the lumped parameters are called ‘Reluctances’ (the inverse of ‘Reluctance’ is called ‘Permeance’). The analog to a ‘wire’ is referred to as a high permeance magnetic circuit element. Of course high permeability is the analog of high conductivity. By organizing magnetic field systems into lumped parameter elements and using network con- straints and constitutive relationships we can simplify the analysis of such systems. 2 Electric Circuits First, let us review how Electric Circuits are defined. We start with two conservation laws: conser- vation of charge and Faraday’s Law. From these we can, with appropriate simplifying assumptions, derive the two fundamental circiut constraints embodied in Kirkhoff’s laws. 2.1 KCL Conservation of charge could be written in integral form as: dρ J~ · ~nda + f dv = 0 (1) ZZ Zvolume dt This simply states that the sum of current out of some volume of space and rate of change of free charge in that space must be zero.
    [Show full text]
  • Reluctance Network Analysis for Complex Coupled Inductors
    Journal of Power and Energy Engineering, 2017, 5, 1-14 http://www.scirp.org/journal/jpee ISSN Online: 2327-5901 ISSN Print: 2327-588X Reluctance Network Analysis for Complex Coupled Inductors Jyrki Penttonen1,2*, Muhammad Shafiq2, Matti Lehtonen1 1Department of Electrical Engineering, Aalto University, Espoo, Finland 2Vensum Ltd., Helsinki, Finland How to cite this paper: Penttonen, J., Abstract Shafiq, M. and Lehtonen, M. (2017) Reluc- tance Network Analysis for Complex The use of reluctance networks has been a conventional practice to analyze Coupled Inductors. Journal of Power and transformer structures. Basic transformer structures can be well analyzed Energy Engineering, 5, 1-14. by using the magnetic-electric analogues discovered by Heaviside in the 19th http://dx.doi.org/10.4236/jpee.2017.51001 century. However, as power transformer structures are getting more complex Received: December 16, 2016 today, it has been recognized that changing transformer structures cannot be Accepted: January 7, 2017 accurately analyzed using the current reluctance network methods. This paper Published: January 10, 2017 presents a novel method in which the magnetic reluctance network or arbi- Copyright © 2017 by authors and trary complexity and the surrounding electrical networks can be analyzed as a Scientific Research Publishing Inc. single network. The method presented provides a straightforward mapping This work is licensed under the Creative table for systematically linking the electric lumped elements to magnetic cir- Commons Attribution International License (CC BY 4.0). cuit elements. The methodology is validated by analyzing several practical http://creativecommons.org/licenses/by/4.0/ transformer structures. The proposed method allows the analysis of coupled Open Access inductor of any complexity, linear or non-linear.
    [Show full text]