Effects of Hydrological Management for Submersed Aquatic Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Hydrological Management for Submersed Aquatic Vegetation Clemson University TigerPrints All Theses Theses 12-2018 Effects of Hydrological Management for Submersed Aquatic Vegetation Biomass and Invertebrate Biomass and Diversity in South Carolina Coastal Impoundments Beau Anthony Bauer Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Bauer, Beau Anthony, "Effects of Hydrological Management for Submersed Aquatic Vegetation Biomass and Invertebrate Biomass and Diversity in South Carolina Coastal Impoundments" (2018). All Theses. 2969. https://tigerprints.clemson.edu/all_theses/2969 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EFFECTS OF HYDROLOGICAL MANAGEMENT FOR SUBMERSED AQUATIC VEGETATION BIOMASS AND INVERTEBRATE BIOMASS AND DIVERSITY IN SOUTH CAROLINA COASTAL IMPOUNDMENTS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Wildlife and Fisheries Biology by Beau Anthony Bauer December 2018 Accepted by: J. Drew Lanham, PhD, Committee Chair Richard M. Kaminski, PhD Patrick D. Gerard, PhD ABSTRACT Widgeongrass (Ruppia maritima) is a cosmopolitan submersed aquatic vegetation (SAV) of brackish wetlands. Management of SAV species is practiced in impounded tidal wetlands in coastal South Carolina to provide forage for waterfowl and other waterbirds. Widgeongrass also provides habitat and associated periphyton for aquatic invertebrates. I conducted an observational study to test effects of complete drawdown (CD) to dried substrate versus partial, shallow water (0–10 cm) drawdown (PD) during May–June 2016 on aquatic invertebrate and SAV biomasses and aquatic invertebrate diversity in managed brackish tidal impoundments (MTI) in the Ashepoo, Combahee, and Edisto Rivers Basin, South Carolina, because such data were lacking to inform managers of best practices to promote standing crops of invertebrates and SAV. I sampled sediments and SAV in 20 MTIs (8 complete and 12 partial drawdown MTIs) and three natural tidal marsh sites (control) during August 2016, November 2016, January 2017, and April 2017. I used mixed model analysis of variance to test (∝ = 0.10) effects of drawdown on SAV and benthic invertebrate biomasses (g[dry]/m2) and benthic invertebrate diversity (Shannon H′). I used mixed model analysis of covariance to test (∝ = 0.10) effects of drawdowns and SAV biomass (covariate) on total invertebrate biomass (benthic and epifaunal combined; g[dry]/m2) and diversity (Shannon H′). I detected a drawdown effect on SAV (P = 0.014) and benthic (P = 0.063) and total (P = 0.014) invertebrate biomasses for August 2016, benthic and total invertebrate biomasses for November 2016 (P = 0.022 and P = 0.041, respectively) and April 2017 (P = 0.042 and P = 0.030, respectively), and benthic invertebrate biomass for January 2017 (P = 0.079). I also detected a drawdown effect on benthic invertebrate diversity for August 2016 (P =0.007), November (P = 0.056) and April 2017 (P = 0.013) and total invertebrate diversity for August (P = 0.025) and April 2017 (P = 0.012). Additionally, I detected a significant positive effect of SAV biomass on total invertebrate biomass (0.089 ≤ P ≤ 0.002) and diversity (0.014 ≤ ii P ≤ 0.001) for November 2016 and April 2017, and benthic invertebrate biomass for August 2016, November 2016, and April 2017 (0.054 ≤ P ≤ 0.001). Submersed aquatic vegetation and benthic and total invertebrate biomasses at peak production in August 2016 were greatest and less variable in partially drawndown impoundments before Hurricane Matthew devastated SAV communities in October 2016. Partially drawndown MTIs exhibited greater benthic and total invertebrate biomasses and diversity for all sampling periods with detected treatment effects except January 2017 wherein both PD and CD MTIs exhibited greater benthic invertebrate biomass than unmanaged marsh (control) and April 2017 wherein benthic invertebrate diversity was greater in PD MTIs than both CD MTIs and unmanaged marsh. I present bioenergetic carrying capacity estimates (energetic use days [EUD/ha]), derived from my SAV and invertebrate biomass estimates by treatment for each sampling period, for dabbling ducks associated with South Carolina MTIs. Across sampling periods, EUDs for PD MTIs averaged 2.7 times greater than EUDs for CD MTIs. I recommend partial drawdowns to maximize invertebrate and SAV biomasses and MTI foraging carrying capacities for migratory ducks and other waterbirds in coastal South Carolina. However, I also recommend periodic complete drawdowns to consolidate flocculent soils and decompose organics to promote rooting by SAV. iii DEDICATION I dedicate this thesis to my late father, Troy Philip Bauer. He would not have understood a word of this, but he would have loved it. Thank you for teaching me to live life with unbridled passion and love. I would also like to recognize my best friend and brother-in-arms, James “Jim” Evans. I would not be here today if it were not for your unwavering courage, Semper Fi. iv ACKNOWLEDGMENTS I am deeply indebted and forever grateful to many persons, many of whose interactions and influences have led me on a long and fortuitous journey replete with stories and lessons that could be a separate (and likely more entertaining) tome itself. First and foremost I thank my wife, Jessica, who for some reason married a Marine, perpetual college student, and wildlife biologist. Without you I would not be the man I am today. Thank you for your love, support, and patience. I thank my children, Charlotte and James, for reining me in when I am stretched thin to focus on those matters in life that are truly important. I thank my mother, Dionna, whose steadfastness and love has weathered my highest highs and lowest lows. My sincerest thanks to Dr. Ernie Wiggers and Nemours Wildlife Foundation for taking a chance on me years ago and allowing me to pursue my master’s while serving as your employee. Your mentorship has been invaluable and sets the standard for what the wildlife profession can and should be. I would also be remiss without thanking my predecessor and mentor, the “legendary” Eddie Mills, for elucidating the nuances of the natural world around me. I also owe a great deal of developmental and professional thanks to Dr. Chris Marsh, who initially sent me on my path towards wetland management and invertebrates, whose advice built the foundation for this thesis, and insistence on quality family time kept me grounded. Thank you to my committee members: Dr. J. Drew Lanham for helping me connect the dots and recognizing the importance of where the lines intersect; Dr. Rick v Kaminski for being a steadfast colleague whose experience and expertise has set the standard for the scientist I aspire to be; and Dr. Patrick Gerard for being a voice of reason in the wilderness and keeping me from walking off statistical cliffs. I also need to thank Dr. Greg Yarrow for your support, confidence, and guidance and Jeremy Pike for getting me started with invertebrate sampling. This project could not have been done without the dedicated help of all the interns and technicians that assisted me over the years: Gillie Croft, Nick Masto, David Barron, Amanda Williams, Mandy Bellamy, David Barnes, Jenny Swonger, Castles Leland, and Randi Bowman. Nick, I would not have figured out all the methodology without you. Jenny, thank you for your enthusiasm as a member of “Team Mud and Bugs” and making excruciating field work enjoyable! Castles, I admire your tenacity and countless hours spent drying and weighing SAV. Randi, you were the missing piece that tied everything together. Your dedicated laboratory work was the capstone to a once daunting project. Lastly, I thank the staff and managers, especially Lew Crouch and Daniel Barrineau, of my study sites for working with me and allowing me access to their properties. vi TABLE OF CONTENTS Page TITLE PAGE .................................................................................................................... i ABSTRACT ..................................................................................................................... ii DEDICATION ................................................................................................................ iv ACKNOWLEDGMENTS ............................................................................................... v LIST OF TABLES .......................................................................................................... ix LIST OF FIGURES ........................................................................................................ xi CHAPTER I. EFFECTS OF HYDROLOGICAL MANAGEMENT ON WIDGEONGRASS AND OTHER SUBMERSED AQUATIC VEGETATION BIOMASS IN SOUTH CAROLINA COASTAL IMPOUNDMENTS .......................... 1 Introduction .............................................................................................. 1 Methods.................................................................................................... 5 Results ...................................................................................................... 9 Discussion .............................................................................................. 10 Literature Cited .....................................................................................
Recommended publications
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • 1.3 Impact of Invasive Aquatic Plants on Waterfowl
    1.3 Impact of Invasive Aquatic Plants on Waterfowl Ryan M. Wersal: Minnesota State University Mankato, Mankato MN; [email protected] Kurt D. Getsinger: US Army ERDC, Vicksburg MS; [email protected] Introduction Studies that evaluate the relationship between waterfowl and aquatic plants (native or nonnative) usually focus on the food habits and feeding ecology of waterfowl. Therefore, the purpose of this section is to describe the dynamics of waterfowl feeding in relation to aquatic plants. The habitats used by waterfowl for breeding, wintering and foraging are diverse and change based on the annual life cycle of waterfowl and seasonal conditions of the habitat. For example, waterfowl require large amounts of protein during migration, nesting and molting, and they fulfill this requirement by consuming aquatic invertebrates. As noted in Sections 1.1 and 1.2, a strong relationship exists between high numbers of aquatic invertebrates and diverse aquatic plant communities, so diverse plant communities also play an important role in waterfowl health by hosting the invertebrates needed to subsidize waterfowl migration, nesting and molting. After all, waterfowl native to the US have evolved alongside diverse plant communities that are likewise native to the US and utilize these plants and associated invertebrates to meet their energy needs. Metabolic energy demands of waterfowl are high during the winter months, so waterfowl need foods that are high in carbohydrates such as plant seeds, tubers and rhizomes during winter. Many waterfowl will sometimes abandon aquatic plant foraging while on their wintering grounds and feed instead on high-energy agricultural crops such as wheat, corn, rice and soybeans.
    [Show full text]
  • Nature Conservation
    J. Nat. Conserv. 11, – (2003) Journal for © Urban & Fischer Verlag http://www.urbanfischer.de/journals/jnc Nature Conservation Constructing Red Numbers for setting conservation priorities of endangered plant species: Israeli flora as a test case Yuval Sapir1*, Avi Shmida1 & Ori Fragman1,2 1 Rotem – Israel Plant Information Center, Dept. of Evolution, Systematics and Ecology,The Hebrew University, Jerusalem, 91904, Israel; e-mail: [email protected] 2 Present address: Botanical Garden,The Hebrew University, Givat Ram, Jerusalem 91904, Israel Abstract A common problem in conservation policy is to define the priority of a certain species to invest conservation efforts when resources are limited. We suggest a method of constructing red numbers for plant species, in order to set priorities in con- servation policy. The red number is an additive index, summarising values of four parameters: 1. Rarity – The number of sites (1 km2) where the species is present. A rare species is defined when present in 0.5% of the area or less. 2. Declining rate and habitat vulnerability – Evaluate the decreasing rate in the number of sites and/or the destruction probability of the habitat. 3. Attractivity – the flower size and the probability of cutting or exploitation of the plant. 4. Distribution type – scoring endemic species and peripheral populations. The plant species of Israel were scored for the parameters of the red number. Three hundred and seventy (370) species, 16.15% of the Israeli flora entered into the “Red List” received red numbers above 6. “Post Mortem” analysis for the 34 extinct species of Israel revealed an average red number of 8.7, significantly higher than the average of the current red list.
    [Show full text]
  • 1 Phylogenetic Regionalization of Marine Plants Reveals Close Evolutionary Affinities Among Disjunct Temperate Assemblages Barna
    Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages Barnabas H. Darua,b,*, Ben G. Holtc, Jean-Philippe Lessardd,e, Kowiyou Yessoufouf and T. Jonathan Daviesg,h aDepartment of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA bDepartment of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa cDepartment of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom dQuebec Centre for Biodiversity Science, Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada eDepartment of Biology, Concordia University, Montreal, QC, H4B 1R6, Canada; fDepartment of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, South Africa gDepartment of Biology, McGill University, Montreal, QC H3A 0G4, Canada hAfrican Centre for DNA Barcoding, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa *Corresponding author Email: [email protected] (B.H. Daru) Running head: Phylogenetic regionalization of seagrasses 1 Abstract While our knowledge of species distributions and diversity in the terrestrial biosphere has increased sharply over the last decades, we lack equivalent knowledge of the marine world. Here, we use the phylogenetic tree of seagrasses along with their global distributions and a metric of phylogenetic beta diversity to generate a phylogenetically-based delimitation of marine phytoregions (phyloregions). We then evaluate their evolutionary affinities and explore environmental correlates of phylogenetic turnover between them. We identified 11 phyloregions based on the clustering of phylogenetic beta diversity values. Most phyloregions can be classified as either temperate or tropical, and even geographically disjunct temperate regions can harbor closely related species assemblages.
    [Show full text]
  • The Genus Ruppia L. (Ruppiaceae) in the Mediterranean Region: an Overview
    Aquatic Botany 124 (2015) 1–9 Contents lists available at ScienceDirect Aquatic Botany journal homepage: www.elsevier.com/locate/aquabot The genus Ruppia L. (Ruppiaceae) in the Mediterranean region: An overview Anna M. Mannino a,∗, M. Menéndez b, B. Obrador b, A. Sfriso c, L. Triest d a Department of Sciences and Biological Chemical and Pharmaceutical Technologies, Section of Botany and Plant Ecology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy b Department of Ecology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain c Department of Environmental Sciences, Informatics & Statistics, University Ca’ Foscari of Venice, Calle Larga S. Marta, 2137 Venice, Italy d Research Group ‘Plant Biology and Nature Management’, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium article info abstract Article history: This paper reviews the current knowledge on the diversity, distribution and ecology of the genus Rup- Received 23 December 2013 pia L. in the Mediterranean region. The genus Ruppia, a cosmopolitan aquatic plant complex, is generally Received in revised form 17 February 2015 restricted to shallow waters such as coastal lagoons and brackish habitats characterized by fine sediments Accepted 19 February 2015 and high salinity fluctuations. In these habitats Ruppia meadows play an important structural and func- Available online 26 February 2015 tional role. Molecular analyses revealed the presence of 16 haplotypes in the Mediterranean region, one corresponding to Ruppia maritima L., and the others to various morphological forms of Ruppia cirrhosa Keywords: (Petagna) Grande, all together referred to as the “R. cirrhosa s.l. complex”, which also includes Ruppia Aquatic angiosperms Ruppia drepanensis Tineo.
    [Show full text]
  • Seagrasses of Florida: a Review
    Page 1 of 1 Seagrasses of Florida: A Review Virginia Rigdon The University of Florida Soil and Water Science Departments Introduction Seagrass communities are noted to be some of the most productive ecosystems on earth, as they provide countless ecological functions, including carbon uptake, habitat for endangered species, food sources for many commercially and recreationally important fish and shellfish, aiding nutrient cyling, and their ability to anchor the sediment bottom. These communites are in jeopardy and a wordwide decline can be attributed mainly to deterioration in water quality, due to anthropogenic activities. Seagrasses are a diverse group of submerged angiosperms, which grow in estuaries and shallow ocean shelves and form dense vegetative communities. These vascular plants are not true grasses; however, their “grass-like” qualities and their ability to adapt to a saline environment give them their name. While seagrasses can be found across the globe, they have relatively low taxonomic diversity. There are approximately 60 species of seagrasses, compared to roughly 250,000 terrestrial angiosperms (Orth, 2006). These plants can be traced back to three distinct seagrass families (Hydrocharitaceae, Cymodoceaceace complex, and Zosteraceae), which all evolved 70 million to 100 million years ago from a individual line of monocotyledonous flowering plants (Orth, 2006). The importance of these ecosystems, both ecologically and economically is well understood. The focus of this paper will be to discuss the species of seagrass in Florida, the components which affect their health and growth, and the major factors which threaten these precious and unique ecosystems, as well as programs which are in place to protect and preserve this essential resource.
    [Show full text]
  • The Rise of Ruppia in Seagrass Beds: Changes in Coastal Environment and Research Needs
    In: Handbook on Environmental Quality ISBN: 978-1-60741-420-9 Editors: E. K. Drury, T. S. Pridgen, pp. - © 2009 Nova Science Publishers, Inc. Chapter 12 THE RISE OF RUPPIA IN SEAGRASS BEDS: CHANGES IN COASTAL ENVIRONMENT AND RESEARCH NEEDS Hyun Jung Cho*1, Patrick Biber*2 and Cristina Nica1 1 Department of Biology; Jackson State University; 1400 Lynch St., Jackson, MS 39217, USA 2 Department of Coastal Sciences; The University of Southern Mississippi; 703 East Beach Drive, Ocean Springs, MS 39564 ABSTRACT It is well known that the global seagrass beds have been declining due to combining effects of natural/anthropogenic disturbances. Restoration efforts have focused on revegetation of the lost seagrass species, which may well work in cases the seagrass loss is recent and the habitat quality has not been altered substantially. Recent studies in several estuaries in the U.S. report the similar change in the seagrass community structures: much of the habitats previously dominated by stable seagrasses (Thalassia testudinum and Syringodium filiforme in tropical and Zostera marina in temperate regions) are now replaced by Ruppia maritima, an opportunistic, pioneer species that is highly dependent on sexual reproduction. The relative increases of R. maritima in seagrass habitats indicate that: (1) the coastal environmental quality has been altered to be more conducive to this species; (2) the quality of environmental services that seagrass beds play also have been changed; and (3) strategies for seagrass restoration and habitat management need to be adjusted. Unlike Zostera or Thalassia, Ruppia maritima beds are known for their seasonal and annual fluctuations. The authors’ previous and on-going research and restoration efforts as well as literature reviews are presented to discuss the causes for and the potential impacts of this change in seagrass community on the coastal ecosystem and future restoration strategies.
    [Show full text]
  • Variation, Adaptation and Reproductive Biology In
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 1983 VARIATION, ADAPTATION AND REPRODUCTIVE BIOLOGY IN RUPPIA MARITIMA L POPULATIONS FROM NEW HAMPSHIRE COASTAL AND ESTUARINE TIDAL MARSHES FRANK AD VID RICHARDSON University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation RICHARDSON, FRANK DAVID, "VARIATION, ADAPTATION AND REPRODUCTIVE BIOLOGY IN RUPPIA MARITIMA L POPULATIONS FROM NEW HAMPSHIRE COASTAL AND ESTUARINE TIDAL MARSHES" (1983). Doctoral Dissertations. 1417. https://scholars.unh.edu/dissertation/1417 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • Modelling Growth of Ruppia Cirrhosa
    Aquatic Botany 68 (2000) 29–44 Modelling growth of Ruppia cirrhosa Gonçalo Calado a,∗, Pedro Duarte b a Unidade de Investigação em Eco-Etologia, Instituto Superior de Psicologia Aplicada, Rua Jardim do Tabaco, 34, 1149-041, Lisbon, Portugal b Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4200, Oporto, Portugal Received 30 November 1998; received in revised form 5 January 2000; accepted 13 April 2000 Abstract The main objectives of this work were to synthesise information on the autoecology of Ruppia cirrhosa Petagna (Grande) in a mathematical model and to use the model to simulate its growth, production and harvest. Model parameters were allowed to vary as a result of acclimation, following experimental data reported in the literature. Biomass data from Santo André lagoon (SW Portugal) were used to calibrate the model. Validation was carried out with independent data sets from Santo André lagoon and from Tancada lagoon (NE Spain). Model simulations show a reasonable agreement with observed data with a similar biomass temporal dynamics and peaks. Self-shading appears to be an important self-regulating mechanism of biomass growth and production. The results obtained predict an annual net primary production of 361 g DW m−2well within the estimates based on harvesting techniques (295–589 g DW m−2). Model results suggest that controlled harvesting of macrophyte biomass may be carried out without affecting macrophyte real net production, through the reduction of light limitation under the plant canopy. © 2000 Elsevier Science B.V. All rights reserved. Keywords: Macrophyte production; Coastal lagoon; Modelling; Ruppia cirrhosa 1. Introduction Aquatic macrophytes normally represent an important part of primary productivity in shallow waters, particularly in land-locked systems, such as some coastal lagoons (Wetzel, 1975).
    [Show full text]
  • Meristic and Organogenetic Variation in Ruppia Occidentalis and R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 1993 Meristic and Organogenetic Variation in Ruppia occidentalis and R. maritima Robert B. Kaul University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Biology Commons, and the Botany Commons Kaul, Robert B., "Meristic and Organogenetic Variation in Ruppia occidentalis and R. maritima" (1993). Faculty Publications in the Biological Sciences. 854. https://digitalcommons.unl.edu/bioscifacpub/854 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Int. J. Plant Sci. 154(3):416-424. 1993. ? 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5403-0007$02.00 MERISTIC AND ORGANOGENETIC VARIATION IN RUPPIA OCCIDENTALIS AND R. MARITIMA ROBERT B. KAUL1 School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118 Floral meristic and organogenetic variation was sampled in Ruppia occidentalis from an alkaline lake of the Nebraska Sandhills and in Ruppia maritima var. rostrata from a saline, non-Sandhills lake nearby. The androecium is meristically stable, always having two stamens, but the gynoecium is not. Seventy- two percent of the flowers of R. maritima had four carpels and the others had three, and in 80% of inflorescences the two flowers had the same number. In about one-third of inflorescences having dissimilar carpel numbers, the four-carpellate flower was uppermost.
    [Show full text]
  • CPR Ruppia Maritima
    Widgeongrass Ruppia maritima Propagation Guide Scientific Name Wetland Indicator Category Ruppia maritima L. OBL Common Name Growth Form Widgeongrass Submerged Group Habitat Monocotyledon Brackish, saline and fresh coastal waters Family Ruppiaceae Ruppia maritima SEED PROPAGATION METHOD 1 Seed Collection Flowers of Ruppia maritima are common in the spring and the fall in Mississippi and the northern Gulf of Mexico. Seeds are produced within about two to four weeks and are generally ripe for collection during May through October; however, the peak may vary from year to year depending on seasonal water temperature. The flowers are tiny and develop inside a sheath near the tip of the stem. Once the flowers are mature, they are pushed up to near the water surface by a 12" (30 cm), long coiled peduncle (stem). The pollen is released and floats to the surface, aided by gas bubbles. Self - fertilization is common, but enough pollen floats on the water to ensure some cross- pollination of other individuals (Moffler and Durako 1987). After fertilization, the female flower will produce multiple (typically eight) light green fruits on short stalks (pedicels) that ripen in a few weeks. Fruits are about 0.08" (2 mm) across and each contains one rounded, dark-colored seed ranging in size from 0.04-0.16" (1-4 mm) (Kantrud 1991). The seed drops into the sediment as the pedicel decomposes. Seeds of Ruppia maritima have a hard durable seed coat and form a persistent seed bank in the sediments under surrounding parent plants. Seeds can remain viable in the sediment for up to three years (Kantrud 1991).
    [Show full text]