Acs Tqip Best Practices Guidelines in Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Acs Tqip Best Practices Guidelines in Imaging ACS TQIP BEST PRACTICES GUIDELINES IN IMAGING AS ER 1988 THE AMERICAN SOCIETY OF Released October 2018 Table of Contents Introduction ............................................................................................... 3 1. Overview ................................................................................................ 4 Part 1: General Issues ........................................................................... 4 Part 2: Contrast Considerations .............................................................. 8 Part 3: Sedation .................................................................................10 2. Brain Imaging .........................................................................................15 3. Cervical Spine Imaging .............................................................................21 4. Imaging for Blunt Cerebrovascular Injury .....................................................32 5. Chest Imaging ........................................................................................36 6. Abdominal Imaging ................................................................................ 40 7. Genitourinary Imaging .............................................................................45 8. Thoracic and Lumbar Spine Imaging .......................................................... 48 9. Whole-Body CT Imaging ...........................................................................51 10. Imaging in Orthopaedic Trauma ...............................................................56 11. Imaging for Extremity Vascular Injury ........................................................ 60 12. Interventional Radiology for Traumatic Injuries ........................................... 64 13. Imaging in Penetrating Neck Injury ............................................................72 14. Imaging in Penetrating Transthoracic Trauma ..............................................76 15. Imaging in Penetrating Abdominal Trauma ................................................ 80 16. Imaging in the Trauma Patient Who Is Morbidly Obese ................................. 84 17. Imaging in the Trauma Patient Who Is Pregnant .......................................... 88 18. Imaging in Geriatric Patients with Low Energy Mechanism Injuries ..................92 19. Imaging for Intentional Injury in Children ................................................... 96 20. Imaging at Rural Trauma Centers ............................................................ 101 21. Dealing with Incidental Findings ............................................................. 105 22. Performance Improvement and Implementation ....................................... 109 Acronyms ................................................................................................111 Appendix ............................................................................................... 112 Expert Panel ............................................................................................ 113 2 and provides concise, evidence-based INTRODUCTION expert panel recommendations for practices to improve trauma patient Radiologic imaging remains a critical imaging. Additionally, appropriate tool of emergency and trauma providers performance indicators are identified for the initial assessment of patients to guide the evaluation of imaging presenting with injury. With the services in your trauma center. See the introduction of the Advanced Trauma Life appendix for definitions of terminology Support® (ATLS®) course by the American used in this Best Practices Guideline. College of Surgeons (ACS) Committee on Trauma (COT) in the early 1980s, chest Important Note and pelvic radiographs became a primary The intent of the ACS Trauma Quality adjunct to rapidly diagnose immediate Improvement Program (TQIP) Best life-threatening injuries. Computed Practices Guidelines is to provide health tomography (CT) and magnetic care professionals with evidence- resonance imaging (MRI) later became based recommendations regarding additional imaging modalities important care of the trauma patient. The Best for injury diagnosis and management. Practices Guidelines do not include By the early 90s, bedside abdominal all potential options for prevention, examination with Focused Assessment diagnosis, and treatment and are with Sonography in Trauma (FAST) not intended as a substitute for the largely replaced diagnostic peritoneal provider’s clinical judgment and lavage as the primary imaging modality experience. The responsible provider for rapid assessment of intra-abdominal must make all treatment decisions hemorrhage in unstable trauma patients. based upon his or her independent This guideline is intended to assist judgment and the patient’s individual trauma centers and their referring clinical presentation. The ACS and any facilities to determine best practices to entities endorsing the Guidelines shall capture optimal imaging to diagnose not be liable for any direct, indirect, injuries, while managing radiation special, incidental, or consequential exposure and avoiding potential damages related to the use of the adverse events associated with information contained herein. The ACS imaging. This document consolidates may modify the TQIP Best Practices recommendations from existing Guidelines at any time without notice. guidelines of national organizations 3 physician to expeditiously assess for, and 1. OVERVIEW immediately intervene in, life-threatening conditions such as cardiac tamponade, pneumothorax, or hemothorax. Perform a chest radiograph in all trauma patients Part 1: General Issues with potential for thoracic injury and for Key Points evaluation of any tubes and lines placed during resuscitation. In the experienced z Chest and pelvic radiographs provider’s hands, FAST may have continue to be a primary adjunct sensitivities higher than a conventional to diagnose immediate threats chest radiograph for pneumothorax and to life related to breathing and hemothorax.1 Extremity radiographs hemorrhage in the chest and/ remain an important secondary adjunct or extraperitoneal pelvis. for diagnosis of extremity orthopaedic injury. A best practice is interpretation z A best practice is concurrent trauma evaluation and radiograph of all radiographs concurrent with interpretation to facilitate timely the trauma evaluation to facilitate treatment interventions for timely treatment interventions. patients with severe injuries. Computed Tomography Imaging z Definitive imaging of complex Multi-detector computed tomographic vascular injuries ideally requires (MDCT) imaging is now well established at least a 64-channel scanner to as the imaging modality of choice perform high quality vascular in hemodynamically stable patients CT arteriography with three- following the secondary survey dimensional (3D) reconstruction. exam. Oral contrast is not necessary in abdominopelvic MDCT for blunt z Provide injury descriptors in radiologic reports to enable trauma; however, IV contrast is American Association for the Surgery required for visceral and vascular of Trauma (AAST) organ injury scale enhancement to identify visceral (OIS) grading and trauma injury injury and vascular hemorrhage. severity score determination. Oral contrast may be beneficial in penetrating thoracoabdominal Radiographic Imaging trauma to distend the esophagus and stomach if this is of clinical concern. Conventional torso radiographic imaging is a primary adjunct to rapidly facilitate Each center needs MDCT trauma the diagnosis of immediate threats to life protocols for each body region. Optimal related to breathing and hemorrhage diagnostic abdominopelvic MDCT for in the chest (chest radiograph) and/or trauma includes IV contrast. Delayed extraperitoneal pelvis (pelvis radiograph). scans are performed selectively These radiographs allow the treating when the initial scan is positive or inconclusive for the purpose of: 4 z Evaluating collecting system rupture z Make MDCT imaging available in the setting of renal trauma, or 24/7/365 with trauma patient priority access to the scanner before patients z Evaluating for active bleeding with non life-threatening conditions; and formation of hematomas. z Prioritize and expedite radiologic Delayed scans are focused on the area interpretation with immediate of interest and are performed with communication of life-threatening a lower dose than the initial scan. and emergent findings in a closed MDCT must be readily available loop fashion to facilitate immediate 24/7/365 in trauma centers. Technology treatment decision-making. advances have reduced acquisition The critical importance and ultimate times and improved image quality. impact of a real-time collaborative Consequently, MDCT has replaced availability of the interpreting conventional diagnostic angiography, radiologist in severely injured eliminating delays associated with patients cannot be overstated. mobilizing personnel for these Include injury descriptors needed to procedures.2,3 Utilization of whole-body appropriately determine AAST organ MDCT imaging of the head, neck, and injury scale (OIS) grading and trauma torso facilitates rapid and comprehensive injury severity score determination injury identification in the patient with for radiologic reporting.4 For rib multiple injuries, allowing optimal fractures, the radiologist needs to sequencing of treatment for patients with report the number of rib fractures, competing priorities. Providers must pay location of rib
Recommended publications
  • Measuring Injury Severity
    Measuring Injury Severity A brief introduction Thomas Songer, PhD University of Pittsburgh [email protected] Injury severity is an integral component in injury research and injury control. This lecture introduces the concept of injury severity and its use and importance in injury epidemiology. Upon completing the lecture, the reader should be able to: 1. Describe the importance of measuring injury severity for injury control 2. Describe the various measures of injury severity This lecture combines the work of several injury professionals. Much of the material arises from a seminar given by Ellen MacKenzie at the University of Pittsburgh, as well as reference works, such as that by O’Keefe. Further details are available at: “Measuring Injury Severity” by Ellen MacKenzie. Online at: http://www.circl.pitt.edu/home/Multimedia/Seminar2000/Mackenzie/Mackenzie.ht m O’Keefe G, Jurkovich GJ. Measurement of Injury Severity and Co-Morbidity. In Injury Control. Rivara FP, Cummings P, Koepsell TD, Grossman DC, Maier RV (eds). Cambridge University Press, 2001. 1 Degrees of Injury Severity Injury Deaths Hospitalization Emergency Dept. Physician Visit Households Material in the lectures before have spoken of the injury pyramid. It illustrates that injuries of differing levels of severity occur at different numerical frequencies. The most severe injuries occur less frequently. This point raises the issue of how do you compare injury circumstances in populations, particularly when levels of severity may differ between the populations. 2 Police EMS Self-Treat Emergency Dept. doctor Injury Hospital Morgue Trauma Center Rehab Center Robertson, 1992 For this issue, consider that injuries are often identified from several different sources.
    [Show full text]
  • Traumatic Brain Injury
    REPORT TO CONGRESS Traumatic Brain Injury In the United States: Epidemiology and Rehabilitation Submitted by the Centers for Disease Control and Prevention National Center for Injury Prevention and Control Division of Unintentional Injury Prevention The Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation is a publication of the Centers for Disease Control and Prevention (CDC), in collaboration with the National Institutes of Health (NIH). Centers for Disease Control and Prevention National Center for Injury Prevention and Control Thomas R. Frieden, MD, MPH Director, Centers for Disease Control and Prevention Debra Houry, MD, MPH Director, National Center for Injury Prevention and Control Grant Baldwin, PhD, MPH Director, Division of Unintentional Injury Prevention The inclusion of individuals, programs, or organizations in this report does not constitute endorsement by the Federal government of the United States or the Department of Health and Human Services (DHHS). Suggested Citation: Centers for Disease Control and Prevention. (2015). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA. Executive Summary . 1 Introduction. 2 Classification . 2 Public Health Impact . 2 TBI Health Effects . 3 Effectiveness of TBI Outcome Measures . 3 Contents Factors Influencing Outcomes . 4 Effectiveness of TBI Rehabilitation . 4 Cognitive Rehabilitation . 5 Physical Rehabilitation . 5 Recommendations . 6 Conclusion . 9 Background . 11 Introduction . 12 Purpose . 12 Method . 13 Section I: Epidemiology and Consequences of TBI in the United States . 15 Definition of TBI . 15 Characteristics of TBI . 16 Injury Severity Classification of TBI . 17 Health and Other Effects of TBI .
    [Show full text]
  • Thoracic and Abdominal Trauma
    INJURIESINJURIES TOTO THETHE TRUNKTRUNK THROACIC AND ABDOMINAL INJURIES INITIALINITIAL ASSESSMENTASSESSMENT 1. PRIMARY SURVEY (1. MIN) 2. VITAL FUNCTIONS TREAT LIFE THREATENING FIRST 3. SECONDARY SURVEY 4. DEFINITIVE CARE A.B.C.D.E. LIFELIFE THREATENINGTHREATENING INJURIESINJURIES A. INJURIES TO THE AIRWAYS B. TENSION PTX SUCKING CHEST WOUND MASSIVE HEMOTHORAX FLAIL CHEST C. CARDIAC TAMPONADE MASSIVE HEMOTHORAX LIFELIFE THREATENINGTHREATENING CHESTCHEST INJURIESINJURIES •PNEUMOTHORAX •HEMOTHORAX •PULMONARY CONTUSION •TRACHEBRONCHIAL TREE INJURY •BLUNT CARDIAC INJURY •TRAUMATIC AORTIC INJURY •TRAMATIC DIAPHRAGMATIG INJURY •MEDIASTINAL TRANSVERSING WOUNDS PNEUMOTHORAXPNEUMOTHORAX AIR BETWEEN THE PARIETAL AND VISCERAL PLEURA RIB FRACTURES INJURIES TO THE LUNG INJURIES TO THE AIRWAYS BULLAS IATROGENIG FROM THE RETROPERITONEUM PNEUMOTHORAXPNEUMOTHORAX 1. 2. TENSIONTENSION PNEUMOTHORAXPNEUMOTHORAX ONE WAY VALVE – AIR FROM THE LUNG OR THROUGH THE CHEST WALL INTO THE THORACIC CAVITY CONSEQUENCE: HYPOXIA, BLOCKING OF THE VENOUS INFLOW CHEST PAIN, AIR HUNGER, HYPOTENSION, NECK VEIN DISTENSION, TACHYCARDIA CARDIAC TAMPONADE – NO BREATH SOUNDS IMMEDIATE TREATMENT TENSIONTENSION PNEUMOTHORAXPNEUMOTHORAX TENSION PTX NEEDLE THORACOCENTESIS HEMOTHORAXHEMOTHORAX BLOOD IN THE THORACIC CAVITY LUNG LACERATION RIB FRACTURE INTERCOSTAL VESSEL INJURY ART. MAMMARY INJURY PENETRATING OR BLUNT INJURY HEMOTHORAXHEMOTHORAX 1. ? 2. ! HTXHTX HEMOTHORAXHEMOTHORAX TREATMENT : CHEST TUBE – THORACOTOMY IS RARELY INDICATED THORACOTOMY: 1500 ML / DRAINAGE OR 200 ML/ HOUR
    [Show full text]
  • Anesthesia for Trauma
    Anesthesia for Trauma Maribeth Massie, CRNA, MS Staff Nurse Anesthetist, The Johns Hopkins Hospital Assistant Professor/Assistant Program Director Columbia University School of Nursing Program in Nurse Anesthesia OVERVIEW • “It’s not the speed which kills, it’s the sudden stop” Epidemiology of Trauma • ~8% worldwide death rate • Leading cause of death in Americans from 1- 45 years of age • MVC’s leading cause of death • Blunt > penetrating • Often drug abusers, acutely intoxicated, HIV and Hepatitis carriers Epidemiology of Trauma • “Golden Hour” – First hour after injury – 50% of patients die within the first seconds to minutesÆ extent of injuries – 30% of patients die in next few hoursÆ major hemorrhage – Rest may die in weeks Æ sepsis, MOSF Pre-hospital Care • ABC’S – Initial assessment and BLS in trauma – GO TEAM: role of CRNA’s at Maryland Shock Trauma Center • Resuscitation • Reduction of fractures • Extrication of trapped victims • Amputation • Uncooperative patients Initial Management Plan • Airway maintenance with cervical spine protection • Breathing: ventilation and oxygenation • Circulation with hemorrhage control • Disability • Exposure Initial Assessment • Primary Survey: – AIRWAY • ALWAYS ASSUME A CERVICAL SPINE INJURY EXISTS UNTIL PROVEN OTHERWISE • Provide MANUAL IN-LINE NECK STABILIZATION • Jaw-thrust maneuver Initial Assessment • Airway cont’d: – Cervical spine evaluation • Cross table lateral and swimmer’s view Xray • Need to see all seven cervical vertebrae • Only negative CT scan R/O injury Initial Assessment • Cervical
    [Show full text]
  • Pre-Review Questionnaire Frequently Asked Questions
    Pre-Review Questionnaire (PRQ) Frequently Asked Questions 1. Can abbreviations be used on the Pre-Review Questionnaire? Do not use abbreviations on the Pre-Review Questionnaire because abbreviations may not be the same from trauma care facility to trauma care facility. Write out all words and examples. 2. For the type of visit (question # 1 on the Pre-Review Questionnaire and Application Checklist form, DPH 7484), do I mark first visit or renewal visit? Mark the first visit this time. This is the first site visit made by the State of Wisconsin to your trauma care facility. The site visit means the actual physical site visit to your hospital. Filling out the assessment criteria document does not count as a site visit. The renewal box will be marked on your second site visit which will not start until at least 2010. This document is made so that the state does not have to create another Pre- Review Questionnaire document for future site visits. The renewal box can be checked and new information added or updated. 3. What are injury prevention initiatives and/or programs? Injuries cause death and disability. Strategies that decrease or prevent injury can improve the health of the community. Injury prevention initiatives and/or strategies focus primarily on environmental design, product design, human behavior, education, and legislative and regulatory requirements that support environmental and behavioral change (Center for Disease Control). Examples can include, but are not limited to: car seat clinics, bike helmet clinics, burn safety camp, farm safety, teen alcohol prevention programs (ENCARE, PARTY, Every 15 Minutes, etc…), ATV safety, hunting safety, snowmobiling safety, boating safety, poison control prevention, seat belt safety, etc… There are so many great national, state, and/or local programs to utilize or you can develop your own.
    [Show full text]
  • Occult Fracture of the Femoral Neck Associated with Extensive
    CASE REPORT – OPEN ACCESS International Journal of Surgery Case Reports 14 (2015) 136–140 Contents lists available at ScienceDirect International Journal of Surgery Case Reports j ournal homepage: www.casereports.com Occult fracture of the femoral neck associated with extensive osteonecrosis of the femoral head: A case report ∗ Kiyokazu Fukui , Ayumi Kaneuji, Tadami Matsumoto Department of Orthopaedic Surgery, Kanazawa Medical University, Kahoku-gun, Japan a r a t i b s c t l e i n f o r a c t Article history: INTRODUCTION: Although the subchondral portion of the femoral head is a common site for collapse in Received 4 April 2015 osteonecrosis of the femoral head (ONFH), femoral-neck fracture rarely occurs during the course of ONFH. Received in revised form 24 July 2015 We report a case of occult insufficiency fracture of the femoral neck without conditions predisposing to Accepted 26 July 2015 insufficiency fractures, occurring in association with ONFH. Available online 31 July 2015 PRESENTATION OF CASE: We report a case of occult fracture of the femoral neck due to extensive ONFH in a 60-year-old man. No abnormal findings suggestive of ONFH were identified on radiographs, and Keywords: the fracture occurred spontaneously without any trauma or unusual increase in activity. The patient’s Occult fracture medical history, age, and good bone quality suggested ONFH as a possible underlying cause. Contrast- Femoral neck enhanced magnetic resonance imaging was useful in determining whether the fracture was caused by Osteonecrosis of the femoral head ONFH or was instead a simple insufficiency fracture caused by steroid use.
    [Show full text]
  • Isolated Trapezoid Fractures a Case Report with Compilation of the Literature
    Bulletin of the NYU Hospital for Joint Diseases 2008;66(1):57-60 57 Isolated Trapezoid Fractures A Case Report with Compilation of the Literature Konrad I. Gruson, M.D., Kevin M. Kaplan, M.D., and Nader Paksima, D.O., M.P.H. Abstract as an axial load5,6 or bending stress7 transmitted indirectly Isolated fractures of the trapezoid bone have been rarely to the trapezoid through the second metacarpal. We present reported in the literature, the mechanism of injury being a case of an acute, isolated trapezoid fracture that resulted an axial or bending load transmitted through the second from direct trauma to the distal carpus and that was treated metacarpal. We report a case of an isolated, nondisplaced nonoperatively. Additionally, strategies for diagnosis and trapezoid fracture that was sustained by direct trauma treatment, as well as a synthesis of the published results and subsequently treated successfully in a short-arm cast. for both isolated and concomitant trapezoid fractures, are Diagnostic and treatment strategies for isolated fractures presented. of the trapezoid bone are reviewed as well as the results of operative and nonoperative treatment. Case Report A 25-year-old right-hand dominant male presented to the ractures of the carpus most commonly involve the emergency room (ER) complaining of isolated right-wrist scaphoid,1 with typical physical examination findings pain and swelling of 1 day’s duration. The patient stated Fof “snuffbox” tenderness. This presentation is fre- that a heavy metal door at work had closed onto the back quently the result of the patient falling onto an outstretched of his wrist causing an immediate onset of swelling and hand.
    [Show full text]
  • Characteristics and Management of Penetrating Abdominal Injuries in a German Level I Trauma Center
    European Journal of Trauma and Emergency Surgery (2019) 45:315–321 https://doi.org/10.1007/s00068-018-0911-1 ORIGINAL ARTICLE Characteristics and management of penetrating abdominal injuries in a German level I trauma center Patrizia Malkomes1 · Philipp Störmann2 · Hanan El Youzouri1 · Sebastian Wutzler2 · Ingo Marzi2 · Thomas Vogl3 · Wolf Otto Bechstein1 · Nils Habbe4 Received: 19 October 2017 / Accepted: 13 January 2018 / Published online: 22 January 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose Penetrating abdominal injuries caused by stabbing or firearms are rare in Germany, thus there is lack of descriptive studies. The management of hemodynamically stable patients is still under dispute. The aim of this study is to review and improve our management of penetrating abdominal injuries. Methods We retrospectively reviewed a 10-year period from the Trauma Registry of our level I trauma center. The data of all patients regarding demographics, clinical and outcome parameters were examined. Further, charts were reviewed for FAST and CT results and correlated with intraoperative findings. Results A total of 115 patients with penetrating abdominal trauma (87.8% men) were analyzed. In 69 patients, the injuries were caused by interpersonal violence and included 88 stab and 4 firearm wounds. 8 patients (6.9%) were in a state of shock at presentation. 52 patients (44.8%) suffered additional extraabdominal injuries. 38 patients were managed non-operatively, while almost two-thirds of all patients underwent surgical treatment. Hereof, 20 laparoscopies and 3 laparotomies were non- therapeutic. There were two missed injuries, but no patient experienced morbidity or mortality related to delay in treatment.
    [Show full text]
  • Abbreviated Injury Scale 1985 Revision
    ABBREVIATED INJURY SCALE 1985 REVISION DICTIONARY EXTERNAL ABBREVIATED INJURY SCALE HEAD&FACE 1985 REVISION COMMITTEE ON INJURY SCALING NECK Thomas A.Gennarelli. Philadelphia PA (Chairman) Susan P. Baker. Baltimore MD THORAX Robert W. Bryant. Bloomfield Hills MI H.A. Fenner. Hobbs NM Robert N. Green. London ONT CONTENTS A.C. Hering. Chicago IL ABDOMEN & PELVIC Donald F. Huelke. Ann Arbor MI Ellen J. Mackenzie. Baltimore MD Elaine Petrucelli. Arlington Heights IL John E. Pless. Indianapolis IN John D. States. Rochester NY SPINE Donald D. Trunkey. San Francisco CA EXTREMITIES & BONY ACKNOWLEDGEMENT Members of the American College of Surgeons’ Committee on Trauma were consulted to assist in reviewing the sections on the thorax and abdomen and in developing the new injury descriptions for the vascular system. The American Association for Automotive Medicine is grateful to present and former members of the COT’s ad hoc committee on injury scaling for their contributions to this edition of the AIS, especially to the following physicians: William F. Blaisdell. M.D.: Charles F. Frey M.D.: Frank R. Lewis. Jr. M.D. and Donald F. Trunkey. M.D. Copyright 1985 American Association for Automotive Medicine Arlington Heights II 60005, USA TABLE OF CONTENTS Page INTRODUCTION The Abbreviated Injury Scale: A Historical Note 1 Assessment of Multiple Injuries 1 Fundamental Improvements to AIS 85 3 Future Directions 4 References 5 INJURY SCALING DICTIONARY Format 7 Changes in AIS Code Numbers 8 Terminology 8 Other Clarifications 8 Condensed AIS 85 9 Dictionary Index 10 AIS Severity Code 17 INJURY DESCRIPTIONS External 18 Skin 18 Burns 19 Head 21 Cranium and Brain 24 Face including ear and eye 28 (Continued on reverse) TABLE OF CONTENTS Page Neck 31 Thorax 35 Abdomen and Pelvic Contents 44 Spine Cervical spine 55 Thoracic Spine 57 Lumbar spine 59 Extremities and Bony Pelvis Upper Extremity 61 Lower Extremity 66 TABLE OF CONTENTS THE ABBREVIATED INJURY SCALE A HISTORICAL NOTE Classification of road transport injuries by types and severity is fundamental to the study of their etiology.
    [Show full text]
  • Occult Fractures of the Proximal Femur
    Deleanu et al. World Journal of Emergency Surgery (2015) 10:55 DOI 10.1186/s13017-015-0049-y WORLD JOURNAL OF EMERGENCY SURGERY RESEARCH ARTICLE Open Access Occult fractures of the proximal femur: imaging diagnosis and management of 82 cases in a regional trauma center Bogdan Deleanu1,2, Radu Prejbeanu1,2, Eleftherios Tsiridis6, Dinu Vermesan1,2, Dan Crisan1* , Horia Haragus1, Vlad Predescu4,5 and Florin Birsasteanu2,3 Abstract Background: Occult hip fractures are often difficult to identify in busy trauma units. We aimed to present our institutions experience in the diagnosis and treatment of occult fractures around the hip and to help define a clinical and radiological management algorithm. Method: We conducted a seven-year retrospective hospital medical record analysis. The electronic database was searched for ICD-10 CM codes S72.0 and S72.1 used for proximal femoral fractures upon patient discharge. We identified 34 (4.83 %) femoral neck fractures and 48 (4.42 %) trochanteric fractures labeled as occult. Results: The majority of the cases were diagnosed by primary MRI scan (57.4 %) and 12 were diagnosed by emergency CT scan (14.6 %). For the remaining cases the final diagnosis was confirmed by 72 h CT scan in 9 patients (representing 39 % of the false negative cases) or by MRI in the rest of 14 patients. MRI was best at detecting incomplete pertrochanteric fracture patterns (13.45 % of total) and incomplete fractures of the greater trochanter (3.65 % of total) respectively. It also detected the majority of Garden I femoral neck fractures (20.7 % of total). CT scanning accurately detected 100 % of Garden 2 fractures (2.44 %) and 25 % (3.65 %) of the complete pertrochanteric fractures (false negative 25 %).
    [Show full text]
  • Underestimated Traumatic Brain Injury in Multiple Injured Patients; Is the Glasgow Coma Scale a Reliable Tool?
    Research Artice iMedPub Journals Trauma & Acute Care 2017 http://www.imedpub.com/ Vol.2 No.2:42 Underestimated Traumatic Brain Injury in Multiple Injured Patients; Is the Glasgow Coma Scale a Reliable Tool? Ladislav Mica1*, Kai Oliver Jensen1, Catharina Keller2, Stefan H. Wirth3, Hanspeter Simmen1 and Kai Sprengel1 1Division of Trauma Surgery, University Hospital of Zürich, 8091 Zürich, Switzerland 2LVR-Klinik, 51109 Köln, Germany 3Orthopädische Universitätsklink Balgrist, 8008 Zürich, Switzerland *Corresponding author: Ladislav Mica, Division of Trauma Surgery, University Hospital of Zürich, 8091 Zürich, Switzerland, Tel: +41 44 255 41 98; E- mail: [email protected] Received date: March 16, 2017; Accepted date: April 12, 2017; Published date: April 20, 2017 Citation: Mica L, Jensen KO, Keller C, Wirth SH, Simmen H, et al. (2017) Underestimated Traumatic Brain Injury in Multiple Injured Patients, is the Glasgow Coma Scale a Reliable Tool? Trauma Acute Care 2: 42. Copyright: © 2017 Mica L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: Abstract AIS: Abbreviated Injury Severity Score; ANOVA: Analysis of Variance; APACHE II: Acute Physiology and Chronic Health Background: Traumatic brain injuries are common in Evaluation; ATLS: Advanced Trauma Life Support; AUC: Area multiple injured patients. Here, the impact of traumatic under the Curve; CT: Computed Tomography; GCS: Glasgow brain injuries according age and mortality and predictive Coma Scale; IBM: International Business Machines Corporation; value was investigated. ISS: Injury Severity Score; NISS: New Injury Severity Score; ROC: Methods: Totally 2952 patients were included into this Receiver Operating Curve; SAPS: Simplified Acute Physiology sample.
    [Show full text]
  • Deaths from Abdominal Trauma: Analysis of 1888 Forensic Autopsies
    DOI: 10.1590/0100-69912017006006 Original Article Deaths from abdominal trauma: analysis of 1888 forensic autopsies Óbitos por trauma abdominal: análise de 1888 autopsias médico-legais POLYANNA HELENA COELHO BORDONI1; DANIELA MAGALHÃES MOREIRA DOS SANTOS2; JAÍSA SANTANA TEIXEIRA2; LEONARDO SANTOS BORDONI2-4. ABSTRACT Objective: to evaluate the epidemiological profile of deaths due to abdominal trauma at the Forensic Medicine Institute of Belo Horizonte, MG - Brazil. Methods: we conducted a retrospective study of the reports of deaths due to abdominal trauma autopsied from 2006 to 2011. Results: we analyzed 1.888 necropsy reports related to abdominal trauma. Penetrating trauma was more common than blunt one and gun- shot wounds were more prevalent than stab wounds. Most of the individuals were male, brown-skinned, single and occupationally active. The median age was 34 years. The abdominal organs most injured in the penetrating trauma were the liver and the intestines, and in blunt trauma, the liver and the spleen. Homicide was the most prevalent circumstance of death, followed by traffic accidents, and almost half of the cases were referred to the Forensic Medicine Institute by a health unit. The blood alcohol test was positive in a third of the necropsies where it was performed. Cocaine and marijuana were the most commonly found substances in toxicology studies. Conclusion: in this sam- ple. there was a predominance of penetrating abdominal trauma in young, brown and single men, the liver being the most injured organ. Keywords: Autopsy. Forensic Medicine. Homicide. Abdominal Injuries. INTRODUCTION In addition, the accuracy of abdominal phy- sical examination is low and the level of consciousness eaths from external causes represent the second produced by hemorrhages or by the association of ab- Dleading cause of mortality in Brazil and the main dominal trauma (AT) with traumatic brain injury and/or cause when considering individuals under the age of effects of central nervous system of previously consu- 351.
    [Show full text]