A Complete Bibliography of the Journal of Number Theory (2000–2009)
Total Page:16
File Type:pdf, Size:1020Kb
A Complete Bibliography of the Journal of Number Theory (2000{2009) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 16 July 2020 Version 1.00 Title word cross-reference (0; 1) [622]. (12 +1) (n2 + 1) [1431]. (3)2 [75]. (α, α2) [490]. (U(1); U(2)) ··· 2s [805, 806]. ( nα + γ 12) [39]. (OK =I)× [163]. 2 qr [140]. 0 [587]. 1 [220, 421, 574,f 676, 932,}− 1094, 1310, 1538, 1688]. 1=2− [1477]. 11 [592]. 12 [355]. 13 [592]. 2 [69, 88, 123, 146, 181, 203, 218, 276, 295, 365, 452, 522, 526, 645, 703, 708, 718, 729, 732, 734, 860, 980, 1111, 1150, 1203, 1220, 1296, 1321, 1326, 1361, 1469, 1494, 1517, 1540, 1581]. 24m [271]. 2t [297]. 2k [108]. 2n [1568]. 2s [1268]. 3 [75, 123, 692, 755, 1157, 1321, 1353]. 3x + 1 [948, 1111]. 4 [123, 208, 466, 536, 1369, 1666]. 40 [1528]. 4` [24]. 5 [56, 323, 1525]. 7 [1580]. 8 [585, 812, 1525]. 9 [1531]. ?(x) [694]. A [1115]. a(modp) [636, 637]. A(q) [179]. 3 3 3 3 a + b + c + d = 0 [339]. A4 [1056]. A6 [891]. An [1543]. abc [50]. α [425]. α3 + kα 1 = 0 [490]. ax(x 1)=2+by(y 1)=2 [1552]. axy + bx + cy + d − − − [512]. B [115, 844]. B2[g] [1089]. Bh[g] [406]. F¯ p(x) [1149]. β [1259]. mod [758]. mod` [213, 779, 1629]. modm [1441, 1646]. modp n [23, 104, 114, 145, 548, 652, 684, 891, 1210]. C [735]. C2 C2 C2 [1494]. Cp × × 1 2 [193]. d [786, 1445]. D(4) [1368]. ` [26, 168]. `j [1663]. f(x; y)=f(u; v) [206]. F2(X) [15]. Fl[[T ]] [390]. Fp [395, 409]. Fq [81]. Fq[T ] [112, 562]. Fr(T ) [735]. x3 1 yn 1 Fr[T ] [735]. x −1 = y −1 [813]. G [283, 926]. g(modp) [870, 962, 1031]. g 1 − − − [926]. G2 [70]. G4 [241]. G6 [241]. Γ [318, 744]. Γ0(13) [1098]. Γ0(4) [817]. 1 Γ0(N) [824, 991]. Γ0(N) H [399]. Γ1(m) [147]. Γ1(N) [824]. h [443]. H ^ n 1 1 1 [534]. A5 [236]. [855]. 1 1 1 Φ((ax + by + cz)R)Ψ(x; y; z) dx dy dz 1 − − − [1435]. J [132, 458, 1149, 1292, 1704]. J0(431) [783, 953]. K [69, 392, 729, 998, 1024, 1025,R 1044,R R 1055, 1240, 1595]. k 1;k+1 [1290]. k 2n [223]. k2n + 1 [223]. k2n 1 [1189]. K3 [98,f 756,− 1118, 1466].g k =4 − r n ± r n [242]. K[] [1390]. k 2 [461]. k 2 + 1 [461]. K2 [530]. K2(Q) [842, 1300]. n − K2(O) [208]. k 2 [1189]. L [23, 26, 36, 48, 70,± 72, 100, 103, 108, 129, 137, 152, 169, 171, 184, 197, 307, 430, 446, 452, 459, 510, 608, 621, 650, 677, 722, 769, 780, 791, 848, 888, 924, 1005, 1032, 1066, 1081, 1101, 1130, 1132, 1148, 1167, 1176, 1177, 1196, 1198, 1208, 1291, 1319, 1336, 1362, 1409, 1422, 1429, 1463, 1576, 1579, 1592, 1654, 1665, 1677, 1691, 1698]. L1 [1171]. Λ [500, 990, 1702]. αp + β [1651]. log ηg;h(z) [495]. m [185, 224, 1038]. b c 1 1 F1 [1593]. F13 [1343]. Fp [821]. Fq [926]. Fq[t] [1445]. Kp((X− )) [916]. P n [1600]. P [1277]. Q [816, 860, 891, 1292, 1365, 1521, 1558]. Q(p2) [749]. Q(ζp) n 2 3 k 2 [1090]. R [1661]. Z [1423, 1662]. Z [1559]. Z [941]. Zp [990]. Zp [1625]. d Zp [1083, 1454]. Cp [1574]. Fq[t] [1657]. Qp [1574]. Zm [1440]. Zp [836]. 3 O1 [1705]. CH (F; 5) [1146]. GL(n) [1036]. GL2 [1130]. GL2n [1213]. GLm [1081]. SL(4; Z) [1418]. SL2(F) [1641]. Cl2(k) (2; 2; 2) [583]. GL(2) [1374]. ' GL(m; D) [814]. GL(n; F ) [814]. GL(p) [476]. GL2 [71, 816]. GL2(Fq2 ) [176]. GL2(F`) [1558]. GL3(Z) [891]. GLm(AK ) [1344]. GLn [293, 572, 1457]. GSp(4) [1422]. GSp GL2 [1576]. Mm(D) [1224]. PSL(2;Z) [160]. 4 × PSL(2;Z) H [605]. PSL2(Z[1=N ]) [491]. SL(2) [119]. SL(2;Z)+ [371]. n SL(n; Z)+ [1661]. SL2(Z) [1399]. SL2(Z3) [1157]. SL4(Z) [336]. SLn [64]. 2 Sp(2n) [1522]. Sp(4) [1521]. Sp2 [822]. Sp2 (Sp1) [822]. µ [282, 314, 568]. n! [54, 523, 573, 1096, 1159, 1615]. N × [168, 679, 730, 786, 804, 915, 1190, 1506, 1552, 1636]. n = 3 [1680]. n = 7 [1555]. 2 m n [804]. n1n2 = n3n4 [1289]. N` [168]. n 6 [1554]. n (n 2) [1036]. P [2, 25, 58, 72, 80, 100, 119, 180, 187, 198, 235, 255,≤ 353, 446, 474,× 476,− 532, 604, 607, 618, 625, 654, 688, 697, 724, 792, 807, 850, 855, 934, 956, 968, 1012, 1017, 1036, 1090, 1135, 1325, 1333, 1353, 1390, 1403, 1404, 1411, 1422, 1543, 1625, 1640, 1656, 1665, 1683, 1686, 1701, 1704]. P (f)=Q(g) [654]. p = k2 + l2 + 1 [1349]. p>0 [109]. p>2 [863]. P 1 [540]. P 2 [540, 548, 1176]. p5 [1112]. pa [344]. pj [344]. pm [262]. pq [515]. px qy = c [646]. φ [1260]. φ(n)+σ(n) [1636]. π [96, 1707]. 1 [107, 451]. ax by− = c [992]. pq [463, 1573]. px2 + q2m = yp [1378, 1713]. Q± [71, 141, 228,± 236,± 273, 363, 505, 656, 713, 780, 1067, 1172, 1543, 1557, 1610]. k Q( 2) [703]. Q(ζpr ) [393]. Q + Qα [55]. q 1 [562]. R [46, 283, 284, 498]. − − rs(n) [1268]. S [121, 153, 608, 697, 1000, 1160, 1611, 1686]. s =0 [1278, 1382, 1579]. s = 1 [137, 1278]. s0 [1463]. S3(Γ(4; 8)) [1196]. Sn [1161]. Sn(n 5) [571]. +l +6m = nσ(l)σ(m) [1182]. σ(l)σ(m) [1182]. ≤ 2l+3m=n P P 3 9 1 l l j 2j = 1 [1255]. 1 d = (1 + d r + d s) [1272]. T i=1 xi l=0 j=1 [963, 1110, 1217, 1442, 1489, 1611, 1686]. τ [434, 524, 574, 769]. Θ [805, 806]. A~ P P Q 5 [236]. U(2; 1) [874, 1062]. '(n)=n [1022]. w [1003, 1405]. x2 + Dm = pn [796]. x2 + q2k+1 = yn [356]. x2 + y2 + z2 +7s2 +7t2 +7u2 [1580]. x2 Dy2 = 1; 2 [856]. x3 + y9 = z2 [798]. x4 + ax2 + bx [1012]. xn 1 − p − ±p 1 n − [1671]. X + aX − + a [1541]. X0(N) [1635]. X0(p)=wp [843]. X0(p ) [764]. X0∗(p) [506]. x0y0 + + xsys = 0 [1591]. X1(n) [569]. x1x2 = x3x4 + λ [1436]. Ξ [1030]. y2 = x(x ···2m)(x + q 2m) [1174]. y2 = x(x2 n2) [17, 1487, 1533]. 2 3 2 − 2 ` − − y = x n x [739]. y = x + A [322]. Z [78]. Z2 [645]. Z` [311, 453]. Zp − [153, 382, 500]. ζ(2k + 1) [989]. ζ(s) [946]. ζq(1) [1230]. ζq(2) [1230]. -additive [115]. -Adic [2, 25, 58, 69, 80, 96, 100, 119, 168, 180, 187, 235, 255, 353, 446, 452, 476, 510, 604, 607, 625, 654, 688, 697, 724, 734, 792, 807, 850, 968, 1017, 1036, 1090, 1135, 1361, 1403, 1411, 1422, 1469, 1640, 1656, 1702, 1704]. -adics [708]. -adiques [850]. -Analogue [780]. -analytic [390]. -arithmetic [1000]. -ary [185]. -binomial [1067]. -body [26]. -Catalan [515]. -class [522, 980, 1203, 1494, 1666, 1686]. -coatings [283]. -continued [425, 1557]. -core [297, 1442, 1543, 1611]. -cores [1580]. -correspondences [805, 806]. -curves [1292]. -cycles [1111]. -cyclotomic [1325]. -derivations [96]. -dimensional [323, 679, 786]. -equivalence [283, 284, 498]. -espaces [409]. -expansions [1259]. -extension [645]. -extensions [26, 153, 382, 500, 645, 836, 860, 891, 990, 1056, 1083, 1150, 1157, 1296, 1454, 1568, 1625]. -forms [458]. -free [844, 1055]. -function [1030, 1167, 1422]. -Functions [23, 36, 70, 72, 100, 103, 108, 137, 152, 169, 171, 184, 197, 307, 430, 446, 452, 621, 722, 735, 791, 848, 888, 924, 1005, 1032, 1066, 1081, 1101, 1132, 1148, 1177, 1196, 1198, 1208, 1291, 1319, 1336, 1362, 1409, 1429, 1463, 1576, 1579, 1592, 1665, 1677, 1691, 1698]. -group [121, 729]. -Groupe [121, 729]. -groups [505, 1404]. -Hypermonogenic [1240]. -ideals [153]. -i`emes [1353]. -invariant [1149]. -invariants [132, 314, 568, 990, 1292, 1704]. -lattices [78, 1657]. -lin´eaires [1574]. -linear [81, 1574]. -Mahler [1172]. -modules [574, 1115]. -monomials [318]. -motifs [421, 1489]. -motives [963, 1365]. -multinomial [228]. -orbits [1661]. -orderings [474]. -power [203, 526]. -powers [1506]. -primary [276]. -ramified [1625, 1686]. -rank [208, 311, 453, 466, 1321, 1701]. -ranks [75]. -rational [26, 395, 730, 1517]. -rationnels [26]. -reducing [198]. -r´eduisants [198]. -regular [344]. -rev^etements [283]. -Selmer [1581]. -sequences [622]. -series [48, 129, 459, 608, 677, 713, 769, 780, 1176]. -sextuple [1368]. -sheaves [434, 524, 769]. -space [822]. -split [1686]. -submodules [500]. -sums [1024]. -Sylow [181]. -th [108, 392, 934, 1044, 1445, 1595]. -theorems [50]. -th´eorie [729]. -theory [69, 729, 998]. -torsion [56, 755, 1190, 1390]. -tower [1683]. -transform [744]. -tuples [224, 1025, 1038]. -twisted [780]. -type [71, 816]. -unit [1160]. -unit´es [121]. -universality [1110, 1217]. -values [650, 1130, 1654]. -variable [915]. -vector [409]. -zeros [1704]. -zeta [1610]. 4 1 [920]. 102 [589, 629]. 104 [1017]. 107 [1712, 1715]. 109 [126, 1714]. 10th [533]. 110 [953]. 114 [1062]. 120 [263]. 124 [1296]. 125 [1709]. 127 [1391]. 128 [1688, 1713]. 129 [1533, 1710, 1711, 1716]. 12th [701]. 144 [25]. 216 [84]. 450 [83]. 73 [83]. 89 [263]. 92 [453]. 95 [760].