Johan Andersson Summation formulae and zeta functions Department of Mathematics Stockholm University 2006 Johan Andersson Summation formulae and zeta functions 4 Doctoral Dissertation 2006 Department of mathematics Stockholm University SE-106 91 Stockholm Typeset by LATEX2e c 2006 by Johan Andersson e-mail:
[email protected] ISBN 91-7155-284-7 Printed by US-AB, Stockholm, 2006. ABSTRACT In this thesis we develop the summation formula Z ∞ X a b X 1 σ2ir(|m|)σ2ir(|n|)F (r; m, n)dr f = “main terms”+ c d π ir 2 ad−bc=1 m,n6=0 −∞ |nm| |ζ(1 + 2ir)| c>0 ∞ θ(k) ∞ X X X 1 X X + ρj,k(m)ρj,k(n)F 2 − k i; m, n + ρj(m)ρj(n)F (κj; m, n), k=1 j=1 m,n6=0 j=1 m,n6=0 where F (r; m, n) is a certain integral transform of f, ρj(n) denote the Fourier coefficients for the Maass wave forms, and ρj,k(n) denote Fourier coefficients of holomorphic cusp forms of weight k. We then give some generalisations and ap- plications. We see how the Selberg trace formula and the Eichler-Selberg trace formula can be deduced. We prove some results on moments of the Hurwitz and Lerch zeta-function, such as Z 1 ∗ 1 2 −5/6 ζ 2 + it, x dx = log t + γ − log 2π + O t , 0 and Z 1 Z 1 ∗ 1 4 2 5/3 φ x, y, 2 + it dxdy = 2 log t + O (log t) , 0 0 where ζ∗(s, x) and φ∗(x, y, s) are modified versions of the Hurwitz and Lerch zeta functions that make the integrals convergent.