A New Parametrization of Correlation Matrices∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MATRIX OPERATORS and the KLEIN FOUR GROUP Ginés R Pérez Teruel
Palestine Journal of Mathematics Vol. 9(1)(2020) , 402–410 © Palestine Polytechnic University-PPU 2020 MATRIX OPERATORS AND THE KLEIN FOUR GROUP Ginés R Pérez Teruel Communicated by José Luis López Bonilla MSC 2010 Classifications: Primary 15B99,15A24; Secondary 20K99. Keywords and phrases: Klein Four Group; Per-symmetric Matrices; Matrix Algebra. I am in debt to C. Caravello for useful comments and suggestions. Abstract. In this note we show that the set of operators, S = fI; T; P; T ◦ P g that consists of the identity I, the usual transpose T , the per-transpose P and their product T ◦ P , forms a Klein Four-Group with the composition. With the introduced framework, we study in detail the properties of bisymmetric, centrosymmetric matrices and other algebraic structures, and we provide new definitions and results concerning these structures. In particular, we show that the per-tansposition allows to define a degenerate inner product of vectors, a cross product and a dyadic product of vectors with some interesting properties. In the last part of the work, we provide another realization of the Klein Group involving the tensorial product of some 2 × 2 matrices. 1 Introduction and background n×m Definition 1.1. Let A 2 R . If A = [aij] for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, then P (A) is the per-transpose of A, and operation defined by P [aij] = [am−j+1;n−i+1] (1.1) Consequently, P (A) 2 Rm×n. Here, we list some properties: (i) P ◦ P (A) = A (ii) P (A ± B) = P (A) ± P (B) if A, B 2 Rn×m (iii) P (αA) = αP (A) if α 2 R (iv) P (AB) = P (B)P (A) if A 2 Rm×n, B 2 Rn×p (v) P ◦ T (A) = T ◦ P (A) where T (A) is the transpose of A (vi) det(P (A)) = det(A) (vii) P (A)−1 = P (A−1) if det(A) =6 0 The proofs of these properties follow directly from the definition. -
A Complete Bibliography of Publications in Linear Algebra and Its Applications: 2010–2019
A Complete Bibliography of Publications in Linear Algebra and its Applications: 2010{2019 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 12 March 2021 Version 1.74 Title word cross-reference KY14, Rim12, Rud12, YHH12, vdH14]. 24 [KAAK11]. 2n − 3[BCS10,ˇ Hil13]. 2 × 2 [CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14]. (−1; 1) [AAFG12].´ (0; 1) 2 × 2 × 2 [Ber13b]. 3 [BBS12b, NP10, Ghe14a]. (2; 2; 0) [BZWL13, Bre14, CILL12, CKAC14, Fri12, [CI13, PH12]. (A; B) [PP13b]. (α, β) GOvdD14, GX12a, Kal13b, KK14, YHH12]. [HW11, HZM10]. (C; λ; µ)[dMR12].(`; m) p 3n2 − 2 2n3=2 − 3n [MR13]. [DFG10]. (H; m)[BOZ10].(κ, τ) p 3n2 − 2 2n3=23n [MR14a]. 3 × 3 [CSZ10, CR10c]. (λ, 2) [BBS12b]. (m; s; 0) [Dru14, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b]. [GH13b]. (n − 3) [CGO10]. (n − 3; 2; 1) 3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11, [CCGR13]. (!) [CL12a]. (P; R)[KNS14]. BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4 (R; S )[Tre12].−1 [LZG14]. 0 [AKZ13, σ [CJR11]. 5 Ano12-30, CGGS13, DLMZ14, Wu10a]. 1 [BH13b, CHY12, KRH14, Kol13, MW14a]. [Ano12-30, AHL+14, CGGS13, GM14, 5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n Kal13b, LM12, Wu10a]. 1=n [CNPP12]. [CJR11]. 6 1 <t<2 [Seo14]. 2 [AIS14, AM14, AKA13, [DK13c, DK11, DK12a, DK13b, Kar11a]. -
Multivariate Statistical Functions in R
Multivariate statistical functions in R Michail T. Tsagris [email protected] College of engineering and technology, American university of the middle east, Egaila, Kuwait Version 6.1 Athens, Nottingham and Abu Halifa (Kuwait) 31 October 2014 Contents 1 Mean vectors 1 1.1 Hotelling’s one-sample T2 test ............................. 1 1.2 Hotelling’s two-sample T2 test ............................ 2 1.3 Two two-sample tests without assuming equality of the covariance matrices . 4 1.4 MANOVA without assuming equality of the covariance matrices . 6 2 Covariance matrices 9 2.1 One sample covariance test .............................. 9 2.2 Multi-sample covariance matrices .......................... 10 2.2.1 Log-likelihood ratio test ............................ 10 2.2.2 Box’s M test ................................... 11 3 Regression, correlation and discriminant analysis 13 3.1 Correlation ........................................ 13 3.1.1 Correlation coefficient confidence intervals and hypothesis testing us- ing Fisher’s transformation .......................... 13 3.1.2 Non-parametric bootstrap hypothesis testing for a zero correlation co- efficient ..................................... 14 3.1.3 Hypothesis testing for two correlation coefficients . 15 3.2 Regression ........................................ 15 3.2.1 Classical multivariate regression ....................... 15 3.2.2 k-NN regression ................................ 17 3.2.3 Kernel regression ................................ 20 3.2.4 Choosing the bandwidth in kernel regression in a very simple way . 23 3.2.5 Principal components regression ....................... 24 3.2.6 Choosing the number of components in principal component regression 26 3.2.7 The spatial median and spatial median regression . 27 3.2.8 Multivariate ridge regression ......................... 29 3.3 Discriminant analysis .................................. 31 3.3.1 Fisher’s linear discriminant function .................... -
Trends in Field Theory Research
Complimentary Contributor Copy Complimentary Contributor Copy MATHEMATICS RESEARCH DEVELOPMENTS ADVANCES IN LINEAR ALGEBRA RESEARCH No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Complimentary Contributor Copy MATHEMATICS RESEARCH DEVELOPMENTS Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the e-book tab. Complimentary Contributor Copy MATHEMATICS RESEARCH DEVELOPMENTS ADVANCES IN LINEAR ALGEBRA RESEARCH IVAN KYRCHEI EDITOR New York Complimentary Contributor Copy Copyright © 2015 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: [email protected] NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. -
Probabilistic Inferences for the Sample Pearson Product Moment Correlation Jeffrey R
Journal of Modern Applied Statistical Methods Volume 10 | Issue 2 Article 8 11-1-2011 Probabilistic Inferences for the Sample Pearson Product Moment Correlation Jeffrey R. Harring University of Maryland, [email protected] John A. Wasko University of Maryland, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Harring, Jeffrey R. and Wasko, John A. (2011) "Probabilistic Inferences for the Sample Pearson Product Moment Correlation," Journal of Modern Applied Statistical Methods: Vol. 10 : Iss. 2 , Article 8. DOI: 10.22237/jmasm/1320120420 Available at: http://digitalcommons.wayne.edu/jmasm/vol10/iss2/8 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Journal of Modern Applied Statistical Methods Copyright © 2011 JMASM, Inc. November 2011, Vol. 10, No. 2, 476-493 1538 – 9472/11/$95.00 Probabilistic Inferences for the Sample Pearson Product Moment Correlation Jeffrey R. Harring John A. Wasko University of Maryland, College Park, MD Fisher’s correlation transformation is commonly used to draw inferences regarding the reliability of tests comprised of dichotomous or polytomous items. It is illustrated theoretically and empirically that omitting test length and difficulty results in inflated Type I error. An empirically unbiased correction is introduced within the transformation that is applicable under any test conditions. Key words: Correlation coefficients, measurement, test characteristics, reliability, parallel forms, test equivalency. -
The General Coupled Matrix Equations Over Generalized Bisymmetric Matrices ∗ Mehdi Dehghan , Masoud Hajarian
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 432 (2010) 1531–1552 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa The general coupled matrix equations over generalized bisymmetric matrices ∗ Mehdi Dehghan , Masoud Hajarian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15914, Iran ARTICLE INFO ABSTRACT Article history: Received 20 May 2009 In the present paper, by extending the idea of conjugate gradient Accepted 12 November 2009 (CG) method, we construct an iterative method to solve the general Available online 16 December 2009 coupled matrix equations Submitted by S.M. Rump p AijXjBij = Mi,i= 1, 2, ...,p, j=1 AMS classification: 15A24 (including the generalized (coupled) Lyapunov and Sylvester matrix 65F10 equations as special cases) over generalized bisymmetric matrix 65F30 group (X1,X2, ...,Xp). By using the iterative method, the solvability of the general coupled matrix equations over generalized bisym- Keywords: metric matrix group can be determined in the absence of roundoff Iterative method errors. When the general coupled matrix equations are consistent Least Frobenius norm solution group over generalized bisymmetric matrices, a generalized bisymmetric Optimal approximation generalized solution group can be obtained within finite iteration steps in the bisymmetric solution group Generalized bisymmetric matrix absence of roundoff errors. The least Frobenius norm generalized General coupled matrix equations bisymmetric solution group of the general coupled matrix equa- tions can be derived when an appropriate initial iterative matrix group is chosen. -
A. Appendix: Some Mathematical Concepts
A. APPENDIX: SOME MATHEMATICAL CONCEPTS Overview This appendix on mathematical concepts is simply intended to aid readers who would benefit from a refresher on material they learned in the past or possibly never learned at all. Included here are basic definitions and examples pertaining to aspects of set theory, numerical linear algebra, met- ric properties of sets in real n-space, and analytical properties of functions. Among the latter are such matters as continuity, differentiability, and con- vexity. A.1 Basic terminology and notation from set theory This section recalls some general definitions and notation from set theory. In Section A.4 we move on to consider particular kinds of sets; in the process, we necessarily draw certain functions into the discussion. A set is a collection of objects belonging to some universe of discourse. The objects belonging to the collection (i.e., set) are said to be its members or elements.Thesymbol∈ is used to express the membership of an object in a set. If x is an object and A is a set, the statement that x is an element of A (or x belongs to A) is written x ∈ A. To negate the membership of x in the set A we write x/∈ A. The set of all objects, in the universe of discourse, not belonging to A is called the complement of A. There are many different notations used for the complement of a set A. One of the most popular is Ac. The cardinality of a set is the number of its elements. A set A can have cardinality zero in which case it is said to be empty. -
Point‐Biserial Correlation: Interval Estimation, Hypothesis Testing, Meta
UC Santa Cruz UC Santa Cruz Previously Published Works Title Point-biserial correlation: Interval estimation, hypothesis testing, meta- analysis, and sample size determination. Permalink https://escholarship.org/uc/item/3h82b18b Journal The British journal of mathematical and statistical psychology, 73 Suppl 1(S1) ISSN 0007-1102 Author Bonett, Douglas G Publication Date 2020-11-01 DOI 10.1111/bmsp.12189 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1 British Journal of Mathematical and Statistical Psychology (2019) © 2019 The British Psychological Society www.wileyonlinelibrary.com Point-biserial correlation: Interval estimation, hypothesis testing, meta-analysis, and sample size determination Douglas G. Bonett* Department of Psychology, University of California, Santa Cruz, California, USA The point-biserial correlation is a commonly used measure of effect size in two-group designs. New estimators of point-biserial correlation are derived from different forms of a standardized mean difference. Point-biserial correlations are defined for designs with either fixed or random group sample sizes and can accommodate unequal variances. Confidence intervals and standard errors for the point-biserial correlation estimators are derived from the sampling distributions for pooled-variance and separate-variance versions of a standardized mean difference. The proposed point-biserial confidence intervals can be used to conduct directional two-sided tests, equivalence tests, directional non-equivalence tests, and non-inferiority tests. A confidence interval for an average point-biserial correlation in meta-analysis applications performs substantially better than the currently used methods. Sample size formulas for estimating a point-biserial correlation with desired precision and testing a point-biserial correlation with desired power are proposed. -
Robust Maximum Association Estimators
Robust Maximum Association Estimators Andreas Alfons, Christophe Croux, and Peter Filzmoser ∗ ∗Andreas Alfons is Assistant Professor, Erasmus School of Economics, Erasmus Universiteit Rotterdam, PO Box 1738, 3000DR Rotterdam, The Netherlands (E-mail: [email protected]). Parts of this research were done while he was a Postdoctoral Research Fellow, Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium. Christophe Croux is Professor, Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium (E-mail: [email protected]). Peter Filzmoser is Professor, Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstraße 8{10, 1040 Vienna, Austria (E-mail: [email protected]). Abstract: The maximum association between two multivariate variables X and Y is de- fined as the maximal value that a bivariate association measure between one-dimensional projections αtX and βtY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation coefficient. We propose to use more robust association measures, such as Spearman's or Kendall's rank correlation, or association measures derived from bivariate scatter matrices. We study the robustness of the proposed maximum associ- ation measures and the corresponding estimators of the coefficients yielding the maximum association. In the important special case of Y being univariate, maximum rank correlation estimators yield regression estimators that are invariant against monotonic transformations of the response. We obtain asymptotic variances for this special case. It turns out that maximum rank correlation estimators combine good efficiency and robustness properties. Simulations and a real data example illustrate the robustness and the power for handling nonlinear relationships of these estimators. -
Atom-Light Interactions in Quasi-One-Dimensional Nanostructures: a Green’S-Function Perspective
PHYSICAL REVIEW A 95, 033818 (2017) Atom-light interactions in quasi-one-dimensional nanostructures: A Green’s-function perspective A. Asenjo-Garcia,1,2,* J. D. Hood,1,2 D. E. Chang,3 and H. J. Kimble1,2 1Norman Bridge Laboratory of Physics MC12-33, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 3ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain (Received 2 November 2016; published 17 March 2017) Based on a formalism that describes atom-light interactions in terms of the classical electromagnetic Green’s function, we study the optical response of atoms and other quantum emitters coupled to one-dimensional photonic structures, such as cavities, waveguides, and photonic crystals. We demonstrate a clear mapping between the transmission spectra and the local Green’s function, identifying signatures of dispersive and dissipative interactions between atoms. We also demonstrate the applicability of our analysis to problems involving three-level atoms, such as electromagnetically induced transparency. Finally we examine recent experiments, and anticipate future observations of atom-atom interactions in photonic band gaps. DOI: 10.1103/PhysRevA.95.033818 I. INTRODUCTION have been interfaced with photonic crystal waveguides. Most of these experiments have been performed in conditions where As already noticed by Purcell in the first half of the past the resonance frequency of the emitter lies outside the band century, the decay rate of an atom can be either diminished gap. However, very recently, the first experiments of atoms [38] or enhanced by tailoring its dielectric environment [1–3]. -
On the Exponentials of Some Structured Matrices
On the Exponentials of Some Structured Matrices Viswanath Ramakrishna & F. Costa Department of Mathematical Sciences and Center for Signals, Systems and Communications University of Texas at Dallas P. O. Box 830688 Richardson, TX 75083 USA email: [email protected] arXiv:math-ph/0407042v1 21 Jul 2004 1 Abstract This note provides explicit techniques to compute the exponentials of a variety of structured 4 4 matrices. The procedures are fully algorithmic and can be used to find the desired × exponentials in closed form. With one exception, they require no spectral information about the matrix being exponentiated. They rely on a mixture of Lie theory and one particular Clifford Algebra isomorphism. These can be extended, in some cases, to higher dimensions when combined with techniques such as Given rotations. PACS Numbers: 03.65.Fd, 02.10.Yn, 02.10.Hh 1 Introduction Finding matrix exponentials is arguably one of the most important goals of mathematical physics. In full generality, this is a thankless task, [1]. However, for matrices with structure, finding exponentials ought to be more tractable. In this note, confirmation of this phenomenon is given for a large class of 4 4 matrices with structure. These include skew-Hamiltonian, × perskewsymmetric, bisymmetric (i.e., simultaneously symmetric and persymmetric -e.g., sym- metric, Toeplitz), symmetric and Hamiltonian etc., Some of the techniques presented extend almost verbatim to some families of complex matrices (see Remark (3.4), for instance). Since such matrices arise in a variety of physical applications in both classical and quantum physics, it is interesting that their exponentials can be calculated algorithmically (these lead to closed form formulae), for the most part, without any auxiliary information about their spectrum. -
Connectivity.Pdf
FMRI Connectivity Analysis in AFNI Gang Chen SSCC/NIMH/NIH Nov. 12, 2009 Structure of this lecture !! Overview !! Correlation analysis "! Simple correlation "! Context-dependent correlation (PPI) !! Structural equation modeling (SEM) "! Model validation "! Model search !! Granger causality (GC) "! Bivariate: exploratory - ROI search "! Multivariate: validating – path strength among pre-selected ROIs Overview: FMRI connectivity analysis !! All about FMRI "! Not for DTI "! Some methodologies may work for MEG, EEG-ERP !! Information we have "! Anatomical structures o! Exploratory: A seed region in a network, or o! Validating: A network with all relevant regions known "! Brain output (BOLD signal): regional time series !! What can we say about inter-regional communications? "! Inverse problem: make inference about intra-cerebral neural processes from extra-cerebral/vascular signal "! Based on response similarity (and sequence) Approach I: seed-based; ROI search !! Regions involved in a network are unknown "! Bi-regional/seed vs. whole brain (3d*): brain volume as input "! Mainly for ROI search "! Popular name: functional connectivity "! Basic, coarse, exploratory with weak assumptions "! Methodologies: simple correlation, PPI, bivariate GC "! Weak in interpretation: may or may not indicate directionality/ causality Approach II: ROI-based !! Regions in a network are known "! Multi-regional (1d*): ROI data as input "! Model validation, connectivity strength testing "! Popular name: effective or structural connectivity "! Strong assumptions: