The Response of the Central Auditory System to Sound in Normal Hearing Adults with and Without HIV/AIDS: an Fmri Study

Total Page:16

File Type:pdf, Size:1020Kb

The Response of the Central Auditory System to Sound in Normal Hearing Adults with and Without HIV/AIDS: an Fmri Study The response of the central auditory system to sound in normal hearing adults with and without HIV/AIDS: An fMRI study CELESTÉ PRETORIUS U10457900 A thesis submitted in partial fulfillment of the requirements for the degree D. Phil. Communication Pathology in the Department of Speech-Language Pathology and Audiology at the UNIVERSITY OF PRETORIA FACULTY OF HUMANITIES PROMOTORS: Dr Maggi Soer Dr Lidia Pottas November 2017 No part of this work may be reproduced in any form or by any means, electronically, mechanically, by print or otherwise without prior written permission by the author. Celesté Pretorius Department of Speech-Language Pathology and Audiology University of Pretoria [email protected] i ACKNOWLEDGEMENTS My sincere appreciation and thanks to everyone mentioned below. • My supervisors, Dr Maggi Soer and Dr Lidia Pottas, thank you for the many hours of assistance, guidance, and advice, as well as for sharing your expertise with me. I really appreciated your continuous encouragement when I needed it most. You were such an inspiration. I will always remember the tactful manner in which you mentored me step by step through the whole thesis. Without your support, this thesis would never have become a reality. • Prof Francois Steffens, many thanks for your swift assistance with the statistical analyses and your patience. I appreciated your professional approach and expertise very much. • Elsie Naude, I truly appreciated your prompt help with the language editing as well as your expert advice. • Thank you to the members of the MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, who contributed to the progress that I made with my research studies. During the past few years Prof Meintjies and Keri Woods taught me several techniques and gave me very good advice. • Prof EM Meintjies, a special thank you for always being available to offer advice and comments on my research studies. I always benefited so much from the discussions with you. I really appreciated the arrangement that you made so that I could use the lab and BrainVoyager at UCT. • Keri Woods, my sincere thanks to you for all your advice and help with the BrainVoyager as well as all the examples of articles. • Thank you, Karen Fitzgerald, for all your advice regarding fMRI and for the use of your BrainVoyager in Pretoria. ii Last but not least, I want to thank those who are close to me. “Music imprints itself on the brain deeper than any other human experience. Music evokes emotion and emotion can bring with it memory. Music brings back the feeling of life when nothing else can” (Dr Oliver Sacks) • My parents Prof Mike van Heerden and Anne-Marie van Heerden “You raise me up, so I can stand on mountains. You raise me up, to walk on stormy seas. I am stronger when I am on your shoulders. You raise me up to be more than I can be” (Josh Groban) Dear Dad and Mom, thank you for always supporting me and believing in me. Thank you that you have always encouraged me to work harder and to complete my DPhil. I will always love you unconditionally and will follow the good examples that you have taught me, namely to work hard for the things that I aspire to achieve. Prof Mike van Heerden (Dad) thank you for always making time to help me with my studies when I needed it. I really appreciate it from the bottom of my heart. • Johan Pretorius, I truly thank my dear husband, for his continued and unfailing love, support and understanding during my career, internship and my preparation of my thesis. You have been a constant source of support and encouragement during the challenges of my internship, the writing of my thesis and our life with our son. Thank you for looking after him, while I was busy with my research studies. I am truly thankful for having you in my life. Thank you also for the little things you’ve done for me. Thank you for all your help with the editing and layout of my whole thesis, you have done a great job. • Ivan Pretorius, thank you my loving son for believing in mommy and constantly reminded me to work hard, and that you, someday, also want to study at the University. I appreciated all those nights you had to fall asleep with only your dad by your bedside, and for all those times you had to watch cartoons with your dad because I needed to do my research studies. You are the motivation for my heart to keep beating. I completed my research because you needed to see me do it, so that I can be your example. Lastly, no matter what happens, I will always love you. You are the best son I could ever have had, thank you for reminding me that you will look after me with your favourite song iii “Kan ek jou superman, batman, ironman, spiderman wees, ek sal jou oppas in die donker vir jou ‘n HERO wees” (Eden) • My Heavenly Father Lord, thank you for my talents, opportunities and grace. Without You I would be nothing in nowhere. I would like to thank you for making me a curious being who loves to explore His creation and for giving me the opportunity and talents to have written this thesis. Without You, I can do nothing. “Trust in the Lord with all your heart, and lean not on your own understanding, in all your ways acknowledge Him, and He shall direct your paths.” (Proverbs 3:5-6) - John A Logan iv ABSTRACT Titel: The response of the central auditory system to sound in normal hearing adults with and without HIV/AIDS: An fMRI study Name: Celesté Pretorius Supervisors: Dr Maggi Soer Dr Lidia Pottas Department: Department of Speech-Language Pathology and Audiology Degree: D. Phil. (Communication Pathology) Research applying fMRI to evaluate any activation in the central auditory nervous system (CANS) is currently limited, but has shown some promising potential. fMRI is likely to become the tool of choice for addressing many research questions concerning the auditory system, especially regarding the localization of the function of certain auditory areas and brain connectivity. The main aim was to determine the response of the central auditory nervous system (CANS) to sound in normal hearing adults with and without HIV/AIDS, using fMRI. A between-group comparative design was used to determine and compare the response of the CANS to auditory stimuli of a sample of 15 normal hearing participants without (HIV/AIDS) and 12 normal hearing participants with (HIV/AIDS). Structural and fMRI images were acquired using a 1.5T Siemens Magnetom Espree. Two different listening stimuli tasks namely nonsense syllables and warble tones were presented binaurally using earphones. These stimuli were presented with a block design with two conditions, silence (baseline) of twenty seconds and the stimuli task tone of twenty seconds. It was interleaved with duration of 20 seconds per block, with each block repeated four times. The task paradigm was done with blood oxygen level-dependent (BOLD) technique. v Images were analysed by statistical parametric mapping software. A priori regions of interest (ROIs) for the CANS were defined and separate participant analyses were performed on the average signal in each ROI using the general linear model. The beta values generated from this analysis reflected the mean percentage signal change within the ROI of the CANS for the two tasks for each participant. A whole brain analysis was also done to determine and compare the multiple areas of activation and responses to the two tasks in the whole brain. Both groups of participants showed activation in all the ROIs of the CANS, but the mean percentage signal change in BA41 and BA42 differed significantly between the 2 groups with a p-value of 0.03 both BA41 and BA42. The control group showed a significantly greater increase in neuronal activity caused by cerebral blood flow to BA41 and BA42 than the HIV/AIDS group. The influence of possible confounding factors such as gender, age, and education on the mean percentage signal change in BA41 and BA42 in the two groups was also determined. Age (p = 0.95) and education (p = 0.68) had no statistically significant effect on the mean percentage signal change in BA41 and BA42 for any of the two groups in this study. However, gender had a significant effect for the mean percentage signal change for BA41 (p = 0.042) and BA42 (p = 0.037). The influence of the CD4 count and years on ART on the neural response of the ROIs CANS to the auditory stimulation (nonsense syllables) was also determined. The results showed a negative linear regression analysis, thus indicating an inverse correlation between the years on ART and the activated BOLD signals in BA41 and BA42 areas during the nonsense syllables task. The use of ART could have reduced the CD4 count in this study. Although this trend was observed, it would require a bigger sample to shed more light on these findings. Results of the response of the ROIs to warble tones indicated no significant differences between all the ROIs of the two groups, however a borderline significant difference (0.07) of activation occurred, namely the inferior colliculus in the right hemisphere of the HIV/AIDS group. vi The results of the whole brain analysis showed that the two participant groups differ in brain activation and confirmatory voxel-by-voxel comparison results were noted. These noted differences could be related to the neurocognitive impairments related to HIV/AIDS, but were not explored in depth and should therefore be investigated and documented further.
Recommended publications
  • Bilateral Damage to Auditory Cortex
    IS SPEECH A SPECIAL SOUND FOR THE BRAIN? Evidence from disorders How sound gets to the brain Outer ear Middle ear Inner ear Collects sound waves. The Transforms the energy of a Transform the energy of a configuration of the outer sound wave into the internal compressional wave within ear serves to amplify vibrations of the bone the inner ear fluid into structure of the middle ear sound, particularly at and transforms these nerve impulses which can 2000-5000 Hz, a vibrations into a be transmitted to the frequency range that is compressional wave in the brain. important for speech. inner ear. Auditory pathway • Auditory input reaches primary auditory cortex about 10–15 msec after stimulus onset (Liegeois-Chauvel, Musolino, & Chauvel 1991; Celesia, 1976). http://www.sis.pitt.edu/~is1042/html/audtrans.gif Auditory cortex in the superior temporal lobe Primary auditory cortex (A1): Brodmann areas 41 and 42 http://ist-socrates.berkeley.edu/ ~jmp/LO2/6.html Auditory cortex in the superior temporal lobe Primary auditory cortex (A1): Auditory-association cortex (A2): Brodmann areas 41 and 42 Brodmann area 22 http://ist-socrates.berkeley.edu/ ~jmp/LO2/6.html Disorders of auditory processing are rare • Signal from each ear is processed in both hemispheres (contra visual system). • Bilateral damage often necessary. • Generally requires two separate neurological events. DISORDER BEHAVIOR CHARACTERISTIC DAMAGE SITE Cortical Inability to hear sounds without Extensive bilateral damage to auditory deafness apparent damage to the hearing cortex (BAs 41 & 42). apparatus or brain stem abnormality. Auditory Inability to recognize auditorily Damage in auditory association cortex agnosia presented sounds (e.g., coughing, crying) (BAs 22 & 37).
    [Show full text]
  • Normal Aging Associated Functional Alternations in Auditory
    NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO (Under the Direction of Brett A. Clementz) ABSTRACT The purpose of the present study was to determine normal aging associated changes in brain functions during auditory sensory and auditory working memory processing by magneto- encephalography (MEG) measurement. Old and young participants were recruited from data recording. It is found that though there are no significant age associated differences in behavioral performance; normal aging associated brain activations differ between age groups. For brain activations in auditory sensory processing, though both age groups activate the same cortical regions and show a habituation pattern on stimulus rate effects, old participants have larger response magnitude and faster response speed than young participants. For brain activations in auditory working memory, old participants’ brain responses are slower than young participants’ and different cortical areas of two age groups are activated in the same experiment task. The possible underlying mechanisms of these normal aging associated brain responses differences are discussed further. INDEX WORDS: Normal aging, Auditory, Sensory, Working memory, MEG NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO B. S., Beijing Normal University, Beijing, China, 2003 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2006 © 2006 YUAN GAO All Rights Reserved NORMAL AGING ASSOCIATED FUNCTIONAL ALTERNATIONS IN AUDITORY SENSORY AND WORKING MEMORY PROCESSING by YUAN GAO Major Professor: Brett A. Clementz Committee: Jennifer E. McDowell Leonard W.
    [Show full text]
  • Disrupted Functional Connectivity of the Pain Network in Fibromyalgia
    Published Ahead of Print on December 30, 2011 as 10.1097/PSY.0b013e3182408f04 Disrupted Functional Connectivity of the Pain Network in Fibromyalgia IGNACIO CIFRE,PHD, CAROLINA SITGES,PHD, DANIEL FRAIMAN,PHD, MIGUEL A´ NGEL MUN˜ OZ,PHD, PABLO BALENZUELA,PHD, ANA GONZA´ LEZ-ROLDA´ N, MS, MERCEDES MARTI´NEZ-JAUAND, MS, NIELS BIRBAUMER,PHD, DANTE R. CHIALVO,MD, AND PEDRO MONTOYA,PHD Objective: To investigate the impact of chronic pain on brain dynamics at rest. Methods: Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen levelYdependent fluctuations extracted from 15 brain regions. Results: Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia ( p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values G .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values G .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values G .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values G .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • Sparse Recovery Methods for Cell Detection and Layer Estimation Theodore J
    bioRxiv preprint doi: https://doi.org/10.1101/445742; this version posted December 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Sparse Recovery Methods for Cell Detection and Layer Estimation Theodore J. LaGrow 1;∗, Michael G. Moore 1 Judy A. Prasad2, Alexis Webber3, Mark A. Davenport1, and Eva L. Dyer 1;3;∗ 1Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, USA 2University of Chicago, Department of Neurobiology, Chicago, IL, USA 3Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA Correspondence*: Theodore J. LaGrow, Eva L. Dyer [email protected], [email protected] ABSTRACT Robust methods for characterizing the cellular architecture (cytoarchitecture) of the brain are needed to differentiate brain areas, identify neurological diseases, and model architectural differences across species. Current methods for mapping the cytoarchitecture and, in particular, identifying laminar (layer) divisions in tissue samples require the expertise of trained neuroanatomists to manually annotate the various regions-of-interest and cells within an image. However, as neuroanatomical datasets grow in volume, manual annotations become inefficient, impractical, and risk the potential of biasing results. In this paper, we propose an automated framework for cellular detection and density estimation that enables the detection of laminar divisions within retinal and neocortical histology datasets. Our approach for layer detection uses total variation minimization to find a small number of change points in the density that signify the beginning and end of each layer.
    [Show full text]
  • Role of the Right and Left Hemispheres in Recovery of Function During Treatment of Intention in Aphasia
    Role of the Right and Left Hemispheres in Recovery of Function during Treatment of Intention in Aphasia Bruce Crosson1,2,3, Anna Bacon Moore1,2,3, Kaundinya Gopinath4, Keith D. White2, Christina E. Wierenga1,2, Megan E. Gaiefsky2, Katherine S. Fabrizio2, Kyung K. Peck2, David Soltysik2, Christina Milsted2, Richard W. Briggs4, Tim W. Conway1, Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/17/3/392/1757101/0898929053279487.pdf by guest on 18 May 2021 and Leslie J. Gonzalez Rothi1,2,3 Abstract & Two patients with residual nonfluent aphasia after showed lateralization of intention and language production ischemic stroke received an intention treatment that was mechanisms to the right hemisphere that continued into designed to shift intention and language production mech- post-intention treatment imaging. From pre- to post-treat- anisms from the frontal lobe of the damaged left hemisphere ment fMRI of language production, both patients demon- to the right frontal lobe. Consistent with experimental hy- strated increased activity in the posterior perisylvian cortex, potheses, the first patient showed improvement on the in- although this activity was lateralized to left-hemisphere tention treatment but not on a similar attention treatment. language areas in the second but not the first patient. The In addition, in keeping with experimental hypotheses, the fact that the first patient’s lesion encompassed almost all of patient showed a shift of activity to right presupplementary the dominant basal ganglia and thalamus whereas the second motor area and the right lateral frontal lobe from pre- to patient’s lesion spared these structures suggests that the post-intention treatment functional magnetic resonance im- dominant basal ganglia could play a role in spontaneous aging (fMRI) of language production.
    [Show full text]
  • Establishing a Visual Guideline for the Locus of Auditory Cortex in Humans
    Establishing a Visual Guideline for the Locus of Auditory Cortex in Humans Item Type text; Electronic Dissertation Authors Whiteley, Aaron Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 09:32:42 Link to Item http://hdl.handle.net/10150/641405 1 ESTABLISHING A VISUAL GUIDELINE FOR THE LOCUS OF AUDITORY CORTEX IN HUMANS by Aaron Whiteley _________________________________ Copyright © Aaron Whiteley 2020 Audiology Doctoral Project Submitted to the Faculty of the DEPARTMENT OF SPEECH, LANGUAGE, AND HEARING SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF AUDIOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2020 ESTABLISHING A VISUAL GUIDELINE FOR THE LOCUS OF AUDITORY CORTEX IN HUMANS 2 ESTABLISHING A VISUAL GUIDELINE FOR THE LOCUS OF AUDITORY CORTEX IN HUMANS 3 Table of Contents List of Figures ................................................................................................................................. 4 List of Tables .................................................................................................................................. 5 Abstract ..........................................................................................................................................
    [Show full text]
  • Generators and Connectivity of the Early Auditory Evoked Gamma Band Response
    bioRxiv preprint doi: https://doi.org/10.1101/014514; this version posted January 28, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Generators and connectivity of the early auditory evoked gamma band response. Nenad Polomac1, Gregor Leicht1, Guido Nolte2, Christina Andreou1, Till R. Schneider2, Saskia Steinmann1, Andreas K. Engel2, Christoph Mulert1* 1 Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 2 Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany *Corresponding author: Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. Tel. +49 40 7410 59520; Fax. +49 40 7410 59805; Email: [email protected] Word count: Abstract 249; Text Body 6231 Figures: 7 Tables: 2 Supplemental information: 0 1 bioRxiv preprint doi: https://doi.org/10.1101/014514; this version posted January 28, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Background: High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention.
    [Show full text]
  • Combining EEG Source Dynamics Results Across Subjects, Studies and Cognitive
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Combining EEG Source Dynamics Results across Subjects, Studies and Cognitive Events A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering (Intelligent Systems, Robotics, and Control) by Nima Bigdely-Shamlo Committee in charge: Professor Kenneth Kreutz-Delgado, Chair Professor Virginia De Sa Professor Gert Lanckriet Professor Scott Makeig Professor Nuno Vasconcelos 2014 Copyright Nima Bigdely-Shamlo, 2014 All rights reserved. The Dissertation of Nima Bigdely-Shamlo is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________ ______________________________________________ ______________________________________________ Chair UNIVERSITY OF CALIFORNIA, SAN DIEGO 2014 iii DEDICATION To Audrey Buss, as without her encouragement and kind support this journey would not be possible. iv TABLE OF CONTENTS Signature Page……………………………………………………………………...…iii Dedication……………………………………………………………………………..iv Table of Contents……………………………………………………………………....v List of Figures…………………………………………………………………...…...xiv List of Tables………………………………………………………………………...xix Acknowledgements………………………………………………………......……….xx Vita…………………………………………………………………………………xxiii Abstract……………………………………………………………………………...xxv Chapter 1 Introduction ....................................................................................... 1 Chapter 2 EEGLAB Workflow.........................................................................
    [Show full text]
  • Neuroanatomical Domain of the Foundational Model of Anatomy
    Nichols et al. Journal of Biomedical Semantics 2014, 5:1 http://www.jbiomedsem.com/content/5/1/1 JOURNAL OF BIOMEDICAL SEMANTICS DATABASE Open Access Neuroanatomical domain of the foundational model of anatomy ontology B Nolan Nichols1*, Jose LV Mejino1, Landon T Detwiler1, Trond T Nilsen1, Maryann E Martone2, Jessica A Turner3, Daniel L Rubin4 and James F Brinkley1 Abstract Background: The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. Description: The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. Conclusions: A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain.
    [Show full text]
  • Elsevier First Proof
    NRVS 00022 a0005 4.21 The Evolution of Neuron Types and Cortical Histology in Apes and Humans C C Sherwood, Kent State University, Kent, OH, USA P R Hof, Mount Sinai School of Medicine, New York, NY, USA ª 2007 Elsevier Inc. All rights reserved. 4.21.1 Introduction 2 4.21.1.1 Evolutionary History of the Hominoids 2 4.21.1.2 History of Studies Concerning Hominoid Cortical Histology 3 4.21.2 Comparative Anatomy of the Cerebral Cortex 4 4.21.2.1 Topology of Cortical Maps 4 4.21.2.2 Architecture of the Cortex 4 4.21.2.3 Primary Visual Cortex 5 4.21.2.4 Auditory Cortex 8 4.21.2.5 Primary Motor Cortex 10 4.21.2.6 Inferior Frontal Cortex PROOF 12 4.21.2.7 Prefrontal Cortex 13 4.21.2.8 Anterior Cingulate Cortex 14 4.21.3 Patterns of Cortical Organization in Hominoids 15 4.21.3.1 The Emergence of Cell Types and their Distribution 15 4.21.3.2 The Evolution of Cortical Asymmetries 15 4.21.3.3 How much Variation in Cortical Architecture can be Attributed to Scaling versus Specialization? 17 4.21.3.4 Genomic Data Provide Insights into Cortical Specializations 18 4.21.3.5 On the Horizon 19 FIRST Glossary the structure in question becomes proportionally smaller or less g0005 Allometry Many biological traits scale with numerous with increases in the overall size in a nonlinear fashion. size of the reference variable. Such allometric scaling relation- Chemoarchitecture The microanatomical organization g0010 ships can be expressed by the of the cerebral cortex revealed by power function:ERY¼bXa.
    [Show full text]