Vaccines and Primary Immunodeficiencies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
For Schools and Parents: K-12 Immunization Requirements
FOR SCHOOLS AND PARENTS: K-12 IMMUNIZATION REQUIREMENTS NJ Department of Health (NJDOH) Vaccine Preventable Disease Program Summary of NJ School Immunization Requirements Listed in the chart below are the minimum required number of doses your child must have to attend a NJ school.* This is strictly a summary document. Exceptions to these requirements (i.e. provisional admission, grace periods, and exemptions) are specified in the Immunization of Pupils in School rules, New Jersey Administrative Code (N.J.A.C. 8:57-4). Please reference the administrative rules for more details https://www.nj.gov/health/cd/imm_requirements/acode/. Additional vaccines are recommended by Advisory Committee on Immunization Practices (ACIP) for optimal protection. For the complete ACIP Recommended Immunization Schedule, please visit http://www.cdc.gov/vaccines/schedules/index.html. Minimum Number of Doses for Each Vaccine Grade/level child DTaP Polio MMR Varicella Hepatitis Meningococcal Tdap enters school: Diphtheria, Tetanus, acellular Pertussis Inactivated (Measles, (Chickenpox) B (Tetanus, Polio Vaccine Mumps, diphtheria, (IPV) Rubella) acellular pertussis) § | Kindergarten – A total of 4 doses with one of these doses A total of 3 2 doses 1 dose 3 doses None None 1st grade on or after the 4th birthday doses with one OR any 5 doses† of these doses given on or after the 4th birthday ‡ OR any 4 doses nd th † 2 – 5 grade 3 doses 3 doses 2 doses 1 dose 3 doses None See footnote NOTE: Children 7 years of age and older, who have not been previously vaccinated with the primary DTaP series, should receive 3 doses of Td. -
Information and Communication Guide on Vaccines
Module 2 EUROPEAN NURSE Information and Communication Guide ON VACCINES The European Specialist Nurses Organisation (ESNO) is a non-profit organisation with the goal to facilitate and provide an effective framework for communication and co-operation between the European Specialist Nurses Organisations and its constituent members. ESNO represents the mutual interests and benefits of these organisations to the wider European community in the interest of the public health. Members of ESNO consist of individual European specialist nurses member organizations and associates, both institutional and individual. The organisation focusses on enhancing the capacity and capability of specialists nurses to deliver hight quality healthcare by raising and harmonise specialist nursing education standards and actively contribute to health themes and threats, providing the best possible expertise, both national and in European cross border context. A publication from the European Specialist Nurses Organisation April 2021 - www.esno.org Copyright: ©2021 European Specialist Nurses Organisation. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. CONTENTS Vaccination 1 Introduction 5 2 Principles of vaccination 6 2.1 Principle -
Vaccines 101 the Very Last Day That I Was a Pediatric Resident. Um, Many
Vaccines 101 The very last day that I was a pediatric resident. Um, many years ago, a toddler walked into the emergency room and uh, and progressively got sicker and sicker. That's Dr. Katherine Edwards, a world expert in pediatric infectious disease in vaccinology. She's also a professor of pediatrics at Vanderbilt university and she's been working on vaccines for 40 years. I did a spinal tap on her and realized that she had Haemophilus influenza, typ e B meningitis, Haemophilus influenza, type B or HIB is it bacteria normally found in our nose and throat that can lead to very serious life threatening infections and no matter what I did in that day and into the night in terms of prompt antibiotics and she'd just been sick a few hours and, and fluids and all the, you know, ventilators and all the best things that modern medicine, she died, the vaccine for hip was not available until the 1990s. And until it did become available, hip disease affected approximately 25,000 children each year with things like meningitis, pneumonia, and bloodstream infections. And at that time in the hospital that I was practicing at any one time, there were generally five or six patients that had Haemophilus meningitis or invasive disease or some complication of this particular infection. And we knew that from the basic science that if you had antibody to the capsule or to the coat of the organism, that you were protected from disease. But we really didn't know how to make little kids make antibody. -
Bcch 2019-20 Flu Vaccine – Oncology Clinic
BCCH 2019-20 FLU VACCINE – ONCOLOGY CLINIC We are providing influenza vaccines for patients who are on therapy and have platelets > 50,000 and ANC over 0.5 (and expected to stay above 0.5 for the next 48 hours, in order to minimize risk of admission in case of fever). Please do not schedule appointments for flu shots only. Please advise the family that immunization of all family members is recommended. The Oncology Outpatient Clinic is not providing immunizations for family members or for those patients who are OFF therapy. Flu shots can be given by family doctors to patients and their families, or they can get a flu shot at the BCCH drop-in Family Immunization clinic in the Ambulatory Care Building, across from the Ambulatory Care Pharmacy on week days in the fall months. Pediatric oncology patients can also get a flu shot at almost any community pharmacy at no cost as they are considered “at risk.” Age Dose** Doses required 6 months – 9 years 0.5 mL IM 1 or 2* > 9 years 0.5 mL IM 1 Less than 6 months Not recommended *Two doses administered at least 4 weeks apart are recommended for children under 9 years of age who are receiving influenza vaccine for the first time. **The recommended site of vaccination is the deltoid muscle for adults and older children. The preferred site for infants and young children is the anterolateral aspect of the thigh. Contraindications: • Febrile illness • Thimerosal sensitivity Special considerations: • Egg allergic individuals (including those who have experienced anaphylaxis following egg ingestion) can be immunized with inactivated influenza vaccine (such as Flulaval tetra) • Thimerosal allergic patients should be vaccinated using Agriflu which can be obtained from local public health units, (but not in the oncology clinic). -
Polio Vaccine May Be Given at the Same Time As Other Paralysis (Can’T Move Arm Or Leg)
POLIO VVPOLIO AAACCINECCINECCINE (_________ W H A T Y O U N E E D T O K N O W ) (_I111 ________What is polio? ) (_I ________Who should get polio ) 333 vaccine and when? Polio is a disease caused by a virus. It enters a child’s (or adult’s) body through the mouth. Sometimes it does IPV is a shot, given in the leg or arm, depending on age. not cause serious illness. But sometimes it causes Polio vaccine may be given at the same time as other paralysis (can’t move arm or leg). It can kill people who vaccines. get it, usually by paralyzing the muscles that help them Children breathe. Most people should get polio vaccine when they are Polio used to be very common in the United States. It children. Children get 4 doses of IPV, at these ages: paralyzed and killed thousands of people a year before we 333 A dose at 2 months 333 A dose at 6-18 months had a vaccine for it. 333 A dose at 4 months 333 A booster dose at 4-6 years 222 Why get vaccinated? ) Adults c I Most adults do not need polio vaccine because they were Inactivated Polio Vaccine (IPV) can prevent polio. already vaccinated as children. But three groups of adults are at higher risk and should consider polio vaccination: History: A 1916 polio epidemic in the United States killed (1) people traveling to areas of the world where polio is 6,000 people and paralyzed 27,000 more. In the early common, 1950’s there were more than 20,000 cases of polio each (2) laboratory workers who might handle polio virus, and year. -
HIV Vaccine Development Dr. Patricia Fast 1
HIV Vaccine Development Dr. Patricia Fast HIV Vaccine Development Dr. Patricia Fast (MD, PhD) Senior Technical Advisor, International AIDS Vaccine Initiative Adjunct Clinical Associate Professor, Infectious Disease, Pediatrics Stanford University School of Medicine How It Began 1984 • Human Immunodeficiency Virus (HIV-1) discovered as the cause of AIDS • Prediction: a vaccine will soon be developed! Non-Human Primate Models Focusing on this dominant model • Simian Immunodeficiency Virus (SIV) lead to a bias – SIV Mac 239 causes AIDS-like disease in Macaques almost impossible to neutralize • SHIV hybrid (with HIV Envelope) allows research into neutralizing antibodies in macaques • Chimpanzees can be infected by HIV, but seldom get AIDS False starts • Traditional vaccine approaches fail in NHP model . Killed SIV does not really protect against SIV o Initial positive result was an artifact . Live attenuated SIV protects, but is not safe o Attenuated vaccine was shown to regain virulence The screen versions of these slides have full details of copyright and acknowledgements 1 HIV Vaccine Development Dr. Patricia Fast How would an AIDS vaccine work? A note about virus biology • HIV has many mechanisms to escape immune recognition e.g. : . Rapid formation of variation . Structural aspects How would an AIDS vaccine work? Immune Mechanisms • T cells . Kill virus-infected cells . Slow down or stop replication of viruses within cells . Can directly kill virus infected cells . Secrete substances that block viral replication Can neutralize virus when they prevent entry; by binding viral envelope protein or the cellular receptors HIV is extremely variable Europe and North America East Africa Southern Africa, India and China Part of an HIV phylogenetic tree The screen versions of these slides have full details of copyright and acknowledgements 2 HIV Vaccine Development Dr. -
Swine Flu and Polio Vaccines: Some Parallels and Some Differences
Swine Fluand Polio Vaccines: Some Parallelsand Some Differences Howard B. Baumel College of Staten Island of the City Universityof New York Staten Island 10301 The swine flu vaccinationprogram vaccine could be successfullydevel- facturedby a single pharmaceutical generated debate in scientific and oped. company.The cause of this outbreak medical circlesthat extended to the Salkrelied heavily on his previous was never clearly established. Be- Downloaded from http://online.ucpress.edu/abt/article-pdf/39/9/550/36038/4446085.pdf by guest on 29 September 2021 general public.The controversythat experience as he attemptedto pro- cause bottles of tissue culture fluid centered on the vaccine's effective- duce a killedvirus polio vaccine.He containingthe virushad been stored ness and safety was reminiscentof used formalinto kill the virus and priorto being treated with formalin, the problemsthat accompaniedthe isolated one strain for each of the it was possiblethat bits of tissue had development of the polio vaccine three knowntypes of polio virus.To settled to the bottom covering the years ago. A review of that earlier determineif any live virusremained viruses and protecting them from scientific achievement can provide after the exposure to formalin,the the formalin.To prevent this, the insightsinto the swineflu dilemma. treated virus was injected into the tissue culture fluid was filtered to By the mid-1930's,only threeviral brain of a monkey. If the monkey remove the debris before exposure diseases,smallpox, rabies, and yellow contracted polio, it was concluded to formalin. fever, had yielded to vaccines. In that live viruswas present.To deter- HeraldCox and HilaryKoprowski each of these cases, the vaccine mine if the treated virus was effec- (1955, 1956) had developed an consisted of a live virus. -
Polio Fact Sheet
Polio Fact Sheet 1. What is Polio? - Polio is a disease caused by a virus that lives in the human throat and intestinal tract. It is spread by exposure to infected human stool: e.g. from poor sanitation practices. The 1952 Polio epidemic was the worst outbreak in the nation's history. Of nearly 58,000 cases reported that year, 3,145 people died and 21,269 were left with mild to disabling paralysis, with most of the victims being children. The "public reaction was to a plague", said historian William O'Neill. "Citizens of urban areas were to be terrified every summer when this frightful visitor returned.” A Polio vaccine first became available in 1955. 2. What are the symptoms of Polio? - Up to 95 % of people infected with Polio virus are not aware they are infected, but can still transmit it to others. While some develop just a fever, sore throat, upset stomach, and/or flu-like symptoms and have no paralysis or other serious symptoms, others get a stiffness of the back or legs, and experience increased sensitivity. However, a few develop life-threatening paralysis of muscles. The risk of developing serious symptoms increases with the age of the ill person. 3. Is Polio still a disease seen in the United States? - The last naturally occurring cases of Polio in the United States were in 1979, when an outbreak occurred among the Amish in several states including Pennsylvania. 4. What kinds of Polio vaccines are used in the United States? - There is now only one kind of Polio vaccine used in the United States: the Inactivated Polio vaccine (IPV) is given as an injection (shot). -
2021-22 School Year New York State Immunization Requirements for School Entrance/Attendance1
2021-22 School Year New York State Immunization Requirements for School Entrance/Attendance1 NOTES: Children in a prekindergarten setting should be age-appropriately immunized. The number of doses depends on the schedule recommended by the Advisory Committee on Immunization Practices (ACIP). Intervals between doses of vaccine should be in accordance with the ACIP-recommended immunization schedule for persons 0 through 18 years of age. Doses received before the minimum age or intervals are not valid and do not count toward the number of doses listed below. See footnotes for specific information foreach vaccine. Children who are enrolling in grade-less classes should meet the immunization requirements of the grades for which they are age equivalent. Dose requirements MUST be read with the footnotes of this schedule Prekindergarten Kindergarten and Grades Grades Grade Vaccines (Day Care, 1, 2, 3, 4 and 5 6, 7, 8, 9, 10 12 Head Start, and 11 Nursery or Pre-k) Diphtheria and Tetanus 5 doses toxoid-containing vaccine or 4 doses and Pertussis vaccine 4 doses if the 4th dose was received 3 doses (DTaP/DTP/Tdap/Td)2 at 4 years or older or 3 doses if 7 years or older and the series was started at 1 year or older Tetanus and Diphtheria toxoid-containing vaccine Not applicable 1 dose and Pertussis vaccine adolescent booster (Tdap)3 Polio vaccine (IPV/OPV)4 4 doses 3 doses or 3 doses if the 3rd dose was received at 4 years or older Measles, Mumps and 1 dose 2 doses Rubella vaccine (MMR)5 Hepatitis B vaccine6 3 doses 3 doses or 2 doses of adult hepatitis B vaccine (Recombivax) for children who received the doses at least 4 months apart between the ages of 11 through 15 years Varicella (Chickenpox) 1 dose 2 doses vaccine7 Meningococcal conjugate Grades 2 doses vaccine (MenACWY)8 7, 8, 9, 10 or 1 dose Not applicable and 11: if the dose 1 dose was received at 16 years or older Haemophilus influenzae type b conjugate vaccine 1 to 4 doses Not applicable (Hib)9 Pneumococcal Conjugate 1 to 4 doses Not applicable vaccine (PCV)10 Department of Health 1. -
Humanized Mice for Live-Attenuated Vaccine Research: from Unmet Potential to New Promises
Review Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises Aoife K. O’Connell and Florian Douam * Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA; [email protected] * Correspondence: [email protected] Received: 21 December 2019; Accepted: 13 January 2020; Published: 21 January 2020 Abstract: Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor. -
Influenza Whoinsert Generic Name As on 080710
capacity. Healthcare providers need to assess the benefit and potential risks of administering the vaccine to pregnant women. It is not known whether Influenza Vaccine(Human,Live Attenuated) is excreted in human milk. Therefore, as some viruses are Influenza Vaccine excreted in human milk and additionally, because of the possibility of shedding of vaccine virus and the close proximity of a nursing infant and mother, caution should be exercised if Influenza Vaccine(Human,Live Attenuated) is administered to nursing Sii mothers. (Human, Live Attenuated) Effects on ability to drive and use machines The vaccine is unlikely to produce an effect on the ability to drive and use machines. Pandemic (H1N1) (Freeze-Dried) ADVERSE REACTIONS In clinical trials a few local and systemic reaction were observed. They were mild to moderate in severity and resolved without DESCRIPTION any sequelae. Influenza Vaccine(Human,Live Attenuated) Pandemic (H1N1), freeze dried is a live monovalent vaccine for administration by Local : Nasal discomfort, stuffy nose, sneezing, runny nose, loss of smell red eyes, lacrimation, facial swelling. intranasal spray. The influenza vaccine contains Influenza virus cultivated on embryonated eggs. Systemic : Headache, fatigue, myalgia, arthralgia, irritability, loss of appetite, sore throat, cough, diarrhoea. The incidence was similar in both the study groups. COMPOSITION There were a few unsolicited event reported in both the groups and none of them were causally related to study vaccines. [Propagated in Embryonated hen eggs (SPF)] Each single dose of 0.5 ml contains: 7 OVERDOSE A/17/California/2009/38 > 10 EID50 No case of overdose has been reported. Gelatin (Partially hydrolyzed) 2.5%, Sorbitol 5%, L-Alanine 0.1% L-Histidine 0.21%, Tricine 0.3%, L-Arginine hydrochloride 1.6% Lactalbumin hydrolysate 0.35%, Phosphate buffer saline Base PHARMACOLOGICAL PROPERTIES Reconstitute with Sterile Water for Inhalation USP. -
An Oral Live Attenuated Vaccine Strategy Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2/2019-Ncov)
Research Ideas and Outcomes 6: e53767 doi: 10.3897/rio.6.e53767 Research Idea An oral live attenuated vaccine strategy against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV) Madhusudana Girija Sanal‡, Ravi Chandra Dubey§ ‡ Institute of Liver and Biliary Sciences, New Delhi, India § South Asian University, New Delhi, India Corresponding author: Madhusudana Girija Sanal ([email protected]) Reviewed v1 Received: 29 Apr 2020 | Published: 13 May 2020 Citation: Sanal MG, Dubey RC (2020) An oral live attenuated vaccine strategy against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). Research Ideas and Outcomes 6: e53767. https://doi.org/10.3897/rio.6.e53767 Abstract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV) infection has become a pandemic called COVID-19. The virus binds to angiotensin converting enzyme 2 (ACE2) and TMPRSS2 which are abundantly expressed on various human cells including lung epithelial cells and intestinal cells and the virus can infect these cells. Currently no specific treatments or vaccines are available for this disease. A per oral live attenuated vaccine can be a good strategy in SARS-CoV-2 infection because the attenuated virus initially infects the gut, stimulates the mucosa associated immune system sparing the respiratory system during the initial immune response. The live virus can also spread in the community boosting herd immunity. Keywords Oral Live Attenuated Vaccine, Severe Acute Respiratory Syndrome Coronavirus 2/SARS- CoV-2/2019-nCoV, Angiotensin Converting Enzyme-2 (ACE2), Gut Infection, Proximal and Distal Enterocytes, Herd Immunity © Sanal M, Dubey R. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.