Herpetological Conservation and Biology 15(3):597–610. Submitted: 9 March 2020; Accepted: 5 November 2020; Published: 16 December 2020. CONSERVATION GENETICS OF THE IMPERILED STRIPED WHIPSNAKE IN WASHINGTON, USA DAVID S. PILLIOD1,4, LISA A. HALLOCK2, MARK P. MILLER3, THOMAS D. MULLINS3, AND SUSAN M. HAIG3 1U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho 83706, USA 2Wildlife Program, Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98504, USA 3U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 Southwest Jefferson Way, Corvallis, Oregon 97331, USA 4Corresponding author, email:
[email protected] Abstract.—Conservation of wide-ranging species is aided by population genetic information that provides insights into adaptive potential, population size, interpopulation connectivity, and even extinction risk in portions of a species range. The Striped Whipsnake (Masticophis taeniatus) occurs across 11 western U.S. states and into Mexico but has experienced population declines in parts of its range, particularly in the state of Washington. We analyzed nuclear and mitochondrial DNA extracted from 192 shed skins, 63 muscle tissue samples, and one mouth swab to assess local genetic diversity and differentiation within and between the last known whipsnake populations in Washington. We then placed that information in a regional context to better understand levels of differentiation and diversity among whipsnake populations in the northwestern portion of the range of the species. Microsatellite data analyses indicated that there was comparable genetic diversity between the two extant Washington populations, but gene flow may be somewhat limited. We found moderate to high levels of genetic differentiation among states across all markers, including five microsatellites, two nuclear genes, and two mitochondrial genes.