Unconventional Endocannabinoid Signalling Governs Sperm Activation

Total Page:16

File Type:pdf, Size:1020Kb

Unconventional Endocannabinoid Signalling Governs Sperm Activation RESEARCH | RESEARCH ARTICLES surface-charge screening and inactivation of 18. B. Abbasi et al., J. Res. Med. Sci. 17,1161–1169 (2012). expert technical assistance and C. Cirelli, G. Tononi, W. Wang, the NALCN channel–dependent Na+-leak cur- 19. I. Slutsky et al., Neuron 65, 165–177 (2010). and C. Nicholson for comments on the manuscript. All authors – rent (20). High [Mg2+] in combination with 20. B. Lu et al., Neuron 68, 488 499 (2010). contributed to data collection, technical design, and writing. e 21. J. Schummers, H. Yu, M. Sur, Science 320, 1638–1643 (2008). hyperpolarization will reduce the likelihood of 22. H. Sontheimer, Glia 11, 156–172 (1994). SUPPLEMENTARY MATERIALS NMDA receptor activation during sleep, reducing 23. A. Torres et al., Sci. Signal. 5, ra8 (2012). the brain’s ability to undergo activity-dependent 24. A. S. Thrane et al., Proc. Natl. Acad. Sci. U.S.A. 109, www.sciencemag.org/content/352/6285/550/suppl/DC1 18974–18979 (2012). Materials and Methods changes in excitatory transmission (LTP). Ma- Figs. S1 to S5 + 2+ 2+ nipulation of [K ]e, [Ca ]e, and [Mg ]e in the ACKNOWLEDGMENTS Table S1 References (25–45) CSF bathing the brain drove behavioral shifts This study was supported by NIH (NS078167 and NS078304) between sleep and awake states (Fig. 5). Astro- and the Office of Naval Research/Department of the Navy. We 18 September 2015; accepted 24 March 2016 cytic Ca2+ signaling is also enhanced by lowering thank W. Song, R. Rasmussen, E. Nicholas, and W. Peng for 10.1126/science.aad4821 2+ 2+ of [Ca ]e and [Mg ]e (21–23) and is strongly inhibited by anesthesia (24).These observations suggest that regulation of extracellular ion ho- meostasis is sufficient to alter behavioral state REPRODUCTIVE BIOLOGY both locally and globally, providing a path for neuromodulators to exert consistent, stable shifts in neuronal and astrocytic activity across Unconventional endocannabinoid the brain. A myriad of electrophysiological slice studies have in the past taken advantage of minor mod- signaling governs sperm activation ifications in the ion composition of the bath solution to induce stable and highly reprodu- via the sex hormone progesterone cible changes in neural excitability. The observa- tions presented here suggest that the CNS itself Melissa R. Miller,1 Nadja Mannowetz,1 Anthony T. Iavarone,2 Rojin Safavi,1 uses the same trick to control state-dependent Elena O. Gracheva,3 James F. Smith,4 Rose Z. Hill,1 Diana M. Bautista,1 on June 15, 2016 changes in neuronal activity. One advantage of Yuriy Kirichok,5 Polina V. Lishko1* this “ionostatic control” of neural activity is to provide a backdrop for coordinating shifts in be- Steroids regulate cell proliferation, tissue development, and cell signaling via two havioral state through the widespread regulation pathways: a nuclear receptor mechanism and genome-independent signaling. of excitability without relying on complex recep- Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the tor activation in diverse subclasses of neurons. latter pathway, the key components of which remain unknown. Here, we present The characteristic state-dependent pattern of characterization of the human sperm progesterone receptor that is conveyed by the EEG activity can, at least in part, be explained orphan enzyme a/b hydrolase domain–containing protein 2 (ABHD2). We show by differences in extracellular ion composition that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as in sleep versus wakefulness. Our observations a progesterone-dependent lipid hydrolase by depleting the endocannabinoid add new and critical insight into understanding 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm what drives arousal, as well as the loss of con- calcium channel (CatSper), and its removal leads to calcium influx via CatSper sciousness during sleep and anesthesia. Future and ensures sperm activation. This study reveals that progesterone-activated http://science.sciencemag.org/ studies should define whether changes in extra- endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone cellular ion concentrations are involved in dis- exerts its genome-independent action and primes sperm for fertilization. orders such as stupor and coma. REFERENCES AND NOTES ccording to the conventional model of ration (3) and human sperm cell activation (4, 5), 1. G. Tononi, C. Cirelli, Neuron 81,12–34 (2014). steroid signaling, steroid hormones act and P4 likely triggers anesthesia in rodents (6). 2. J. H. Benington, H. C. Heller, Prog. Neurobiol. 45, 347–360 through their corresponding genomic re- Many tissues have both nuclear and membrane Downloaded from (1995). ceptorstoregulategeneexpressioninde- progesterone receptors, which complicates iden- 3. V. Hinard et al., J. Neurosci. 32, 12506–12517 (2012). A 4. C. B. Saper, T. E. Scammell, J. Lu, Nature 437, 1257–1263 velopment, metabolism, and reproduction tification of the latter. Because sperm are tran- (2005). (1, 2). The time scale of these signaling events scriptionally silent cells and, therefore, lack the 5. J. O’Donnell, D. Zeppenfeld, E. McConnell, S. Pena, ranges from hours to days (2). However, there nuclear progesterone receptor effect, we used – M. Nedergaard, Neurochem. Res. 37, 2496 2512 is a much faster pathway that alters ion chan- human spermatozoa as a cellular model to iden- (2012). 6. M. Steriade, D. A. McCormick, T. J. Sejnowski, Science 262, nel activity through steroid activation of mem- tify the nongenomic progesterone receptor. 679–685 (1993). brane receptors. Nongenomic signaling of the Progesterone is a major component of follic- 7. G. G. Somjen, Ions in the Brain: Normal Function, Seizures, steroid hormone progesterone (P4) occurs on a ular fluid and is released by ovaries and cumu- and Stroke (Oxford Univ. Press, 2004). time scale of seconds and is required for dis- lus cells that surround the oocyte. Nanomolar 8. J. Seigneur, D. Kroeger, D. A. Nita, F. Amzica, Cereb. Cortex 16, 655–668 (2006). tinct physiological events, such as oocyte matu- concentrations of P4 act through the nongenomic 9. S. M. Rothman, Science 220, 536–537 (1983). P4 receptor pathway and cause robust elevation 2+ 10. L. Xie et al., Science 342, 373–377 (2013). of sperm cytoplasmic [Ca ](7–9) through the 11. M. Anděrová et al., Glia 35, 189–203 (2001). 1Department of Molecular and Cell Biology, University of activation of the cation channel, CatSper (10–14). 12. C. B. Saper, P. M. Fuller, N. P. Pedersen, J. Lu, T. E. Scammell, California, Berkeley, CA 94720, USA. 2QB3/Chemistry Mass This rise in intracellular [Ca2+]leadstochanges Neuron 68, 1023–1042 (2010). Spectrometry Facility, University of California, Berkeley, CA in sperm motility, known as hyperactivation, and 13. A. J. Hansen, Physiol. Rev. 65, 101–148 (1985). 3 94720, USA. Department of Cellular and Molecular 4 5 15 14. L. Sun et al., Magnes. Res. 22, 266–272 (2009). Physiology; Department of Neuroscience, Program in Cellular primes sperm for acrosomal exocytosis ( , , ). 15. A. M. Romani, Arch. Biochem. Biophys. 512,1–23 Neuroscience, Neurodegeneration, and Repair (CNNR), Yale Here, we show that the orphan enzyme a/b hy- (2011). School of Medicine, Yale University, New Haven, CT 06536, drolase domain–containing protein 2 (ABHD2) 4 16. W. W. Anderson, D. V. Lewis, H. S. Swartzwelder, W. A. Wilson, USA. Department of Urology, University of California, San serves as a sperm progesterone receptor. It func- Brain Res. 398, 215–219 (1986). Francisco, CA 94143, USA. 5Department of Physiology, 17. G. F. Gilestro, G. Tononi, C. Cirelli, Science 324, 109–112 University of California, San Francisco, CA 94158, USA. tionsasalipidhydrolasebyremovingendogenous (2009). *Corresponding author. Email: [email protected] CatSper inhibitors upon association with P4. Thus, SCIENCE sciencemag.org 29 APRIL 2016 • VOL 352 ISSUE 6285 555 RESEARCH | RESEARCH ARTICLES Fig. 1. Inhibition of sperm mSHs removes P4- dependent CatSper activation. (A) (Left) Rep- resentative ICatSper recorded from control human spermatozoa in the absence (black) and presence (red) of P4. (Right) ICatSper recorded from human spermatozoa pretreated with MAFP, an irreversible serine hydrolase inhibitor, for 30 min in the absence or presence of P4. (B) Fold increase of ICatSper in response to P4, PGE1, and MAFP. (C) Human capacitated spermatozoa do not hyperactivate in response to P4 if pretreated with MAFP,as recorded with computer-aided sperm analyses (CASA). (D) Arachidonoylglycerols are inhibitors of ICatSper. ICatSper densities are obtained at +80 mV (positive scale) or –80 mV (negative scale). (E) Representa- tive ICatSper in the absence (black) or presence of the corresponding endocannabinoid. Data are repre- sented as means ± SEM; numbers in parentheses indicate the number of experiments; and ****P < 0.0001, ***P <0.001,**P <0.005. on June 15, 2016 Fig. 2. Photoreactive progesterone analog P4* acti- vates ICatSper and associates with P4 receptor. (A)P4* consists of an active group (progesterone), a diazirine– UV-sensitive moiety, and a biotin tag that allows for pull- down of bound proteins. CMO, (O-carboxymethyl)oxime; PEG, polyethylene glycol. (B) Western blot from P4* binding experiments resolves biotinylated (P4*-bound) proteins. Lanes are labeled –, mock-irradiated cells; +, UV- treated cells; P4, P4 (20 mM); E, estrogen (0.5 mM); and Ru, Ru486 (0.5 mM). Acetylated a-tubulin (middle) stain- ing was used as the loading control. (Bottom) The blot http://science.sciencemag.org/ was probed with AbA. One experiment out of six inde- pendent pull-downs is shown. (C) ABHD2 is present in the human sperm transcriptome. mRNA sequencing (mRNA- seq) reads from human blood monocytes and sperm cells. FPKM, fragments per kilobase of transcript per million mapped reads. Red line indicates expected num- ber of sequencing reads for genes with similar expression Downloaded from levels in the two samples. CatSperG and AKAP4 indicate sperm-specific transcripts; CD14 and CD33 indicate monocyte-specific transcripts.Transcripts for FAAH and abhd2 are also shown.
Recommended publications
  • Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins
    International Journal of Molecular Sciences Article Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins Agnieszka Mostek *, Anna Janta , Anna Majewska and Andrzej Ciereszko Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland; [email protected] (A.J.); [email protected] (A.M.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +48-89-5393134 Abstract: The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This study aimed to verify whether capacitation coincides with reversible oxidative post-translational modifications of proteins (oxPTMs). Flow cytometry, fluorescence microscopy and Western blot analyses were used to verify the sperm capacitation process. A fluorescent gel-based redox proteomic approach allowed us to observe changes in the level of reversible oxPTMs manifested by the reduction or oxidation of susceptible cysteines in sperm proteins. Sperm capacitation was accompanied with redox modifications of 48 protein spots corresponding to 22 proteins involved in the production of ROS (SOD, DLD), playing a role in downstream redox signal transfer (GAPDHS and GST) related to the cAMP/PKA pathway (ROPN1L, SPA17), acrosome exocytosis (ACRB, sperm acrosome associated protein 9, IZUMO4), actin polymerisation (CAPZB) and hyperactivation Citation: Mostek, A.; Janta, A.; (TUBB4B, TUB1A). The results demonstrated that sperm capacitation is accompanied by altered Majewska, A.; Ciereszko, A.
    [Show full text]
  • TRPV4 Is the Temperature-Sensitive Ion Channel of Human Sperm Nadine Mundt1,2, Marc Spehr2, Polina V Lishko1*
    RESEARCH ARTICLE TRPV4 is the temperature-sensitive ion channel of human sperm Nadine Mundt1,2, Marc Spehr2, Polina V Lishko1* 1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 2Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany Abstract Ion channels control the ability of human sperm to fertilize the egg by triggering hyperactivated motility, which is regulated by membrane potential, intracellular pH, and cytosolic calcium. Previous studies unraveled three essential ion channels that regulate these parameters: (1) the Ca2+ channel CatSper, (2) the K+ channel KSper, and (3) the H+ channel Hv1. However, the molecular identity of the sperm Na+ conductance that mediates initial membrane depolarization and, thus, triggers downstream signaling events is yet to be defined. Here, we functionally characterize DSper, the Depolarizing Channel of Sperm, as the temperature-activated channel TRPV4. It is functionally expressed at both mRNA and protein levels, while other temperature- sensitive TRPV channels are not functional in human sperm. DSper currents are activated by warm temperatures and mediate cation conductance, that shares a pharmacological profile reminiscent of TRPV4. Together, these results suggest that TRPV4 activation triggers initial membrane depolarization, facilitating both CatSper and Hv1 gating and, consequently, sperm hyperactivation. DOI: https://doi.org/10.7554/eLife.35853.001 Introduction The ability of human spermatozoa to navigate the female reproductive tract and eventually locate and fertilize the egg is essential for reproduction (Okabe, 2013). To accomplish these goals, a sper- *For correspondence: [email protected] matozoon must sense the environment and adapt its motility, which is controlled in part by ATP pro- duction and flagellar ion homeostasis (Lishko et al., 2012).
    [Show full text]
  • Mechanisms of the Sperm Guidance, an Essential Aid for Meeting the Oocyte
    430 Editorial Mechanisms of the sperm guidance, an essential aid for meeting the oocyte Raquel Lottero-Leconte*, Carlos Agustín Isidro Alonso*, Luciana Castellano, Silvina Perez Martinez Laboratory of Biology of Reproduction in Mammals, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET), School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina *These authors contributed equally to this work. Correspondence to: Silvina Perez Martinez, Senior Investigator. Center for Pharmacological and Botanical Studies, University of Buenos Aires (UBA), School of Medicine, National Scientific and Technical Research Council-Argentina (CONICET), Paraguay 2155, 15th Floor, C1121ABG, Ciudad de Buenos Aires, Argentina. Email: [email protected]. Provenance: This is an invited Editorial commissioned by Section Editor Weijun Jiang (Nanjing Normal University, Department of Reproductive and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China). Comment on: De Toni L, Garolla A, Menegazzo M, et al. Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa. PLoS One 2016;11:e0167622. Submitted Mar 07, 2017. Accepted for publication Mar 14, 2017. doi: 10.21037/tcr.2017.03.68 View this article at: http://dx.doi.org/10.21037/tcr.2017.03.68 In mammals, ejaculated spermatozoa must migrate into the to a temperature gradient (towards the warmer temperature) female reproductive tract in order to reach and fertilize the (Figure 1). Spermatozoa can sense both the absolute ambient oocyte (Figure 1). The number of spermatozoa that reach temperature and the temperature gradient. Previous studies the oviductal isthmus (where they attach to oviductal cells showed that, at peri-ovulation stage, there is a temperature and form the sperm reservoir) is small (1,2) and only ~10% difference between the sperm reservoir site (cooler) and the of these spermatozoa in humans become capacitated (3) fertilization site (warmer).
    [Show full text]
  • Dynamic Repression by BCL6 Controls the Genome-Wide Liver Response To
    RESEARCH ARTICLE Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis Meredith A Sommars1, Krithika Ramachandran1, Madhavi D Senagolage1, Christopher R Futtner1, Derrik M Germain1, Amanda L Allred1, Yasuhiro Omura1, Ilya R Bederman2, Grant D Barish1,3,4* 1Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States; 2Department of Pediatrics, Case Western Reserve University, Cleveland, United States; 3Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, United States; 4Jesse Brown VA Medical Center, Chicago, United States Abstract Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARa to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high- fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARa-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to
    [Show full text]
  • Progesterone Activates the Principal Ca2+ Channel of Human Sperm
    LETTER doi:10.1038/nature09767 Progesterone activates the principal Ca21 channel of human sperm Polina V. Lishko1, Inna L. Botchkina1 & Yuriy Kirichok1 Steroid hormone progesterone released by cumulus cells surround- Under normal physiological conditions, mouse and human CatSper ing the egg is a potent stimulator of human spermatozoa. It attracts channels are Ca21 selective, but pass monovalent ions (Cs1 or Na1) spermatozoa towards the egg and helps them penetrate the egg’s pro- under divalent-free conditions12,13. Because monovalent CatSper tective vestments1.ProgesteroneinducesCa21 influx into spermato- currents are significantly larger, we studied CatSper currents under zoa1–3 and triggers multiple Ca21-dependent physiological responses divalent-free conditions. The monovalent human CatSper current essential for successful fertilization, such as sperm hyperactivation, (ICatSper) was overall smaller (Fig. 1a, blue) than mouse ICatSper acrosome reaction and chemotaxis towards the egg4–8.Asanovarian (Fig. 1c, blue), especially at negative membrane potentials (inward cur- hormone, progesterone acts by regulating gene expression through a rent). The virtual absence of human ICatSper at the negative potentials well-characterized progesterone nuclear receptor9. However, the effect normally found across the sperm plasma membrane was puzzling. of progesterone upon transcriptionally silent spermatozoa remains Interestingly, addition of 500 nM progesterone to the bath solution unexplained and is believed to be mediated by a specialized, non- dramatically increased the amplitude of human monovalent ICatSper 5,10 genomic membrane progesterone receptor . The identity of this (Fig. 1a, red). Mouse monovalent ICatSper did not increase after addition non-genomic progesterone receptor and the mechanism by which it of 500 nM progesterone (Fig. 1c, red) or 10 mM progesterone (Sup- causes Ca21 entry remain fundamental unresolved questions in plementary Fig.
    [Show full text]
  • Structure and Expression Analyses of SVA Elements in Relation to Functional Genes
    pISSN 1598-866X eISSN 2234-0742 Genomics Inform 2013;11(3):142-148 G&I Genomics & Informatics http://dx.doi.org/10.5808/GI.2013.11.3.142 ORIGINAL ARTICLE Structure and Expression Analyses of SVA Elements in Relation to Functional Genes Yun-Jeong Kwon, Yuri Choi, Jungwoo Eo, Yu-Na Noh, Jeong-An Gim, Yi-Deun Jung, Ja-Rang Lee, Heui-Soo Kim* Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous.
    [Show full text]
  • Bull Sperm Binding to Oviductal Epithelium. (A) PDC-109 Addition to the Sperm Plasma Membrane from Seminal Vesicles
    The Role of Progesterone-Induced Hyperactivation in the Detachment of Bull Sperm from the Oviduct Reservoir. Sinéad Cronin B.Sc (Ed.) Supervisor: Dr. Seán Fair B.AgSc, PhD. Submitted in accordance with academic requirements for the degree of Master of Science to the Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Ireland. September 2017 Declaration I, the undersigned, hereby declare that I am the sole author of this work and it has not been submitted to any other University or higher education institution, or for any other academic award in this University. To identify the work of others, all sources have been fully acknowledged and referenced in both text and bibliography, in accordance with University of Limerick requirements. Signature: __________________________ Date: __________________ Sinéad Cronin ii Acknowledgements I would like to express my gratitude to everyone who supported me throughout this thesis. To Dr Seán Fair, I thank you sincerely for the advice and mentorship in my bad days and my good. Your feedback and support have been invaluable in the coordination of this learning experience. Thank you for the opportunity to work with your team. To my remarkable parents, I thank you so much for the encouragement and love ye have given me throughout this masters. For the helping hand and the listening ear, the positivity and the reassurance and mostly for giving me the opportunity to make this thesis possible. I cannot thank you enough. To my amazing boyfriend, you have been my rock throughout this masters. Thank you for being there for me through everything.
    [Show full text]
  • Discovery and Systematic Characterization of Risk Variants and Genes For
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.24.21257377; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . 1 Discovery and systematic characterization of risk variants and genes for 2 coronary artery disease in over a million participants 3 4 Krishna G Aragam1,2,3,4*, Tao Jiang5*, Anuj Goel6,7*, Stavroula Kanoni8*, Brooke N Wolford9*, 5 Elle M Weeks4, Minxian Wang3,4, George Hindy10, Wei Zhou4,11,12,9, Christopher Grace6,7, 6 Carolina Roselli3, Nicholas A Marston13, Frederick K Kamanu13, Ida Surakka14, Loreto Muñoz 7 Venegas15,16, Paul Sherliker17, Satoshi Koyama18, Kazuyoshi Ishigaki19, Bjørn O Åsvold20,21,22, 8 Michael R Brown23, Ben Brumpton20,21, Paul S de Vries23, Olga Giannakopoulou8, Panagiota 9 Giardoglou24, Daniel F Gudbjartsson25,26, Ulrich Güldener27, Syed M. Ijlal Haider15, Anna 10 Helgadottir25, Maysson Ibrahim28, Adnan Kastrati27,29, Thorsten Kessler27,29, Ling Li27, Lijiang 11 Ma30,31, Thomas Meitinger32,33,29, Sören Mucha15, Matthias Munz15, Federico Murgia28, Jonas B 12 Nielsen34,20, Markus M Nöthen35, Shichao Pang27, Tobias Reinberger15, Gudmar Thorleifsson25, 13 Moritz von Scheidt27,29, Jacob K Ulirsch4,11,36, EPIC-CVD Consortium, Biobank Japan, David O 14 Arnar25,37,38, Deepak S Atri39,3, Noël P Burtt4, Maria C Costanzo4, Jason Flannick40, Rajat M 15 Gupta39,3,4, Kaoru Ito18, Dong-Keun Jang4,
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels
    bioRxiv preprint doi: https://doi.org/10.1101/120758; this version posted April 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Parallel evolution of sperm hyper-activation Ca2+ channels Jacob C. Cooper1* and Nitin Phadnis1 1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA. *Corresponding Author: email: [email protected] Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper- activation is performed through the co-option of the polycystic kidney disease 2 (Dpkd2) Ca2+ channel. The parallels between CatSpers in primates and Dpkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, non- homologous calcium channels separated by more than 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper- activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper- activation.
    [Show full text]
  • Open Full Page
    Research Article Discovery of Aberrant Expression of R-RAS by Cancer-Linked DNA Hypomethylation in Gastric Cancer Using Microarrays Michiko Nishigaki,1 Kazuhiko Aoyagi,1 Inaho Danjoh,2 Masahide Fukaya,1 Kazuyoshi Yanagihara,3 Hiromi Sakamoto,1 Teruhiko Yoshida,1 and Hiroki Sasaki1 1Genetics Division, 2Center of Medical Genomics, and 3Central Animal Laboratory, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan Abstract causal role in tumor formation, possibly by promoting chromosomal instability. For gene activation by cancer-linked hypomethylation, in Although hypomethylation was the originally identified epigenetic change in cancer, it was overlooked for many 1983 Feinberg and Vogelstein (8) first reported that human growth a h years in preference to hypermethylation. Recently, gene hormone, -globin,and -globin are methylated in normal tissues activation by cancer-linked hypomethylation has been redis- and become hypomethylated in cancers. It has been rediscovered covered. However, in gastric cancer, genome-wide screening recently that the cancer-linked hypomethylation leads to activation of the activated genes has not been found. By using of genes that are important in cancer (4). A correlation between microarrays, we identified 1,383 gene candidates reactivated hypomethylation and overexpression has been shown for MN/CA9 in at least one cell line of eight gastric cancer cell lines after encoding a tumor antigen in renal cell carcinomas (9), MDR1 in treatment with 5-aza-2Vdeoxycytidine and trichostatin A. Of myeloid leukemias (10), BCL-2 in chronic lymphocytic leukemias the 1,383 genes, 159 genes, including oncogenes ELK1, (11), MAGE-1 in melanomas (12), and SNCG/BCSG1 in breast carcinomas and ovarian carcinomas (13).
    [Show full text]
  • Gene Interaction Analysis for Next-Generation Sequencing
    European Journal of Human Genetics (2016) 24, 421–428 & 2016 Macmillan Publishers Limited All rights reserved 1018-4813/16 www.nature.com/ejhg ARTICLE Genome-wide gene–gene interaction analysis for next-generation sequencing Jinying Zhao1, Yun Zhu1 and Momiao Xiong*,2 The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI’s Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study.
    [Show full text]