Think Different the Ways in Which Brains Differ from One Another Shows up in the Way Their Owners Perceive the World by Christof Koch

Total Page:16

File Type:pdf, Size:1020Kb

Think Different the Ways in Which Brains Differ from One Another Shows up in the Way Their Owners Perceive the World by Christof Koch (consciousness redux) Think Different The ways in which brains differ from one another shows up in the way their owners perceive the world BY CHRISTOF KOCH PERCEPTUAL PSYCHOLOGY and the brain sciences emphasize the communal- ity in the way that people experience re- ality. Leaving aside cases of brain dam- age or mental disease, we all see the sun rise in the east, enjoy the scent of a rose and experience a jolt of fear when we are woken up in the middle of the night by the sound of breaking glass. This is a re- flection of the great similarities of our brains compared with the brains of our close cousins on the evolutionary tree, the great apes. Laboratory science rein- forces this bias by lumping together the performance of its subjects on any one experiment and reporting only the aver- age and the variation around this mean. This conflation is also true for the telltale hot spots that show up in functional magnetic resonance brain images that Consciousness Redux column, I dis- Ponzo perceives the upper bar as larger we are used to seeing in newspapers, in cussed color blindness—the fact that than the lower one, the magnitude of magazines such as this one, on television about 7 percent of men lack one of the this effect differs substantially across in- and in the movies. genes for the retinal photopigments dividuals. (The size of the illusion is es- Yet as we know from our own life, needed to see hue. But what about differ- tablished by asking how much larger the each one of us has his or her own prefer- ences in the brain proper? Do they influ- lower bar has to be to make it look the ences, likes and dislikes. Some people ence consciousness in measurable ways? same size as the upper one.) Surprising- are acutely sensitive to flashing lights, To answer this question, scientists must ly, these differences are reflected in the some have perfect pitch, some cannot plumb the minds of many individuals surface area of the primary visual cortex see in depth, some can introspect and and relate them to measures of their (V1) at the back of the head. For un- analyze their own failures and triumphs, brains. The widespread availability of known reasons, the area of V1 can differ whereas others—remarkably frequently, fMR I scanners makes such a project fea- by a factor of three among people (un- public figures such as politicians—lack sible today. folded, the size and width of a typical V1 this knack. Take me. I am hopelessly at- Cognitive neuroscientist Geraint compares with that of a credit card). tracted to brilliant colors. As a magpie is Rees, a professor at the Wellcome Trust Rees and his collaborators discovered drawn to anything glittering, I am Center for Neuroimaging at University that the smaller a person’s V1, the more drawn to school-bus yellow, tangerine College London—undoubtedly the powerfully he or she experiences the il- orange, burgundy red, rich magenta, world’s leading fMR I center—published lusion. Those individuals with a large ) electric violet, imperial purple and navy a trio of studies that relates differences V1 judged the size of the bars to be more rose ( blue. My love of the garish is reflected in in the way people experience things with similar than those with a smaller V1. IS B my flowery shirts and pants and, I’m differences in gross aspects of their cere- Curiously, the size of the two immedi- R O C sure, in an enhanced cortical representa- bral neocortex, the highly convoluted ately adjacent visual areas did not influ- ); tion of these hues. part of the forebrain that crowns the ence the amplitude of the illusion. och K It is obvious that if the apparatus that brains of all mammals. ( H senses the world differs between two in- In one study 30 subjects looked at the Clues from Illusions C KO F dividuals, then the conscious experience Ponzo [see illustration on opposite page] Bistable illusions are those delightful O of the brains wired to these sensors can- illusion while their brains were scanned. images that can be seen in one of two RIST H not be the same either. In a previous Whereas everybody who looks at the ways. Probably the best known is the C 16 SCIENTIFIC AMERICAN MIND January/February 2011 Can differences in this higher-order aspect of consciousness ( be tied to differences in brain structures? Yes. ) Necker cube, or the “old woman, young tied to differences in brain structures? girl illusion.” These two interpretations Yes, as a just published third study by flip back and forth. The time it takes for Rees and his colleagues concludes. the percept to flip differs consistently Thirty-two healthy volunteers car- across individuals. One person might ried out a difficult visual task in the scan- see the figure alternate every five sec- ner. They had to judge which one of a onds; another sees it flip every 10. number of faint patches was a tad more Rees and his group used a dynamic salient than the other ones; this judgment version of such bistable illusions: a cloud was purposefully made demanding. Fol- of moving dots perceived as a cylinder lowing each trial, subjects had to choose rotating either to the left or to the right. a number between one and six, indicat- Here the scientists correlated the width ing the confidence they had in their own The Ponzo illusion provides a visual cue of of the cortical sheet—the thickness of its judgment. A six indicated that they were converging railroad ties, so the upper blue bar gray matter—with how long each stable very confident of their judgment, where- is perceived to be farther away—and thus percept lasts before it switches. Scan- as a one implied a guess. That is, they much larger—than the lower blue bar. Yet they are exactly the same dimensions. The ning the brains of 52 subjects—in a field were asked to introspect: Are you sure smaller the size of your primary visual cortex, dominated by studies that come to grand you just saw the bright patch here? Psy- the more dramatic the illusion. conclusions by querying a handful of chologists know this as meta-cognition: brains—they found only a single region, thinking about thinking. creased. Patients with lesions in these re- the left and right superior parietal lobe Not surprisingly, subjects differed gions typically lose the ability to intro- (SPL), in which the thickness of the gray greatly in the accuracy of their judg- spect. And this part of the neocortex has matter (and its density) significantly and ments (independent of the level of their expanded more than any other region in consistently correlated negatively with performance). Think of the game show primates. Again, the neuronal mecha- the perceptual duration. In other words, Who Wants to Be a Millionaire, where nisms underlying this correlation remain the thicker the SPL cortex, the faster two contestants have to judge whether they unknown for now. interpretations switch back and forth. It want to use a lifeline before they know Rees’s studies establish that differenc- is known from other imaging and clini- the answer, depending on their confi- es in the morphology, or shape, of our cal studies that the SPL in the back of the dence. Some people are astute, using the brains are mirrored in differences in the brain controls selective visual attention, lifelines wisely; other people fritter them way we consciously experience and ap- but how the thickness and density of SPL away. The cognitive scientists extracted prehend the world, including our own gray matter should be important is any- a measure of variability of introspection brains and bodies. In this way, neurosci- body’s guess. and discovered that this measure corre- ence maps the physical structure of the Ask people what they believe to be lated with variability in gray matter vol- material brain onto the inner geometry of the defining feature of consciousness, ume in the right anterior prefrontal cor- phenomenal and ineffable experience. M and most will point to self-awareness. tex. The more neurons you have in this To be capable of being aware of your region in the front of the brain, the bet- CHRISTOF KOCH is Lois and Victor Troendle hopes, to worry about your spouse’s ill- ter your introspection. Not that your Professor of Cognitive and Behavioral Biology ness, to wonder why you feel despondent performance goes up, but the insight you at the California Institute of Technology. He or why he provoked you is taken to be have into your performance—whether serves on Scientific American Mind’s board the pinnacle of sentience. Self-awareness you thought you did well or not—in- of advisers. is, by and large, absent in nonprimates. Although my dog—as with many and, (Further Reading) perhaps, all animals—experiences the ◆ Human Parietal Cortex Structure Predicts Individual Differences in Perceptual Rivalry. sights, sounds and, in particular, the Ryota Kanai, Bahador Bahrami and Geraint Rees in Current Biology, Vol. 20, No. 18, smells of life, she doesn’t worry why her pages 1626–1630; August 19, 2010. tail isn’t wagging as it used to or wheth- ◆ Relating Introspective Accuracy to Individual Differences in Brain Structure. Stephen er tomorrow’s food will appear. Fleming, Rimona Weil, Zoltan Nagy, Raymond Dolan and Geraint Rees in Science, Vol. 329, pages 1541–1543; September 17, 2010. So can differences in this elusive ◆ The Surface Area of Human V1 Predicts the Subjective Experience of Object Size.
Recommended publications
  • Gilaie-Dotan, Sharon; Rees, Geraint; Butterworth, Brian and Cappelletti, Marinella
    Gilaie-Dotan, Sharon; Rees, Geraint; Butterworth, Brian and Cappelletti, Marinella. 2014. Im- paired Numerical Ability Affects Supra-Second Time Estimation. Timing & Time Perception, 2(2), pp. 169-187. ISSN 2213-445X [Article] http://research.gold.ac.uk/23637/ The version presented here may differ from the published, performed or presented work. Please go to the persistent GRO record above for more information. If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Goldsmiths, University of London via the following email address: [email protected]. The item will be removed from the repository while any claim is being investigated. For more information, please contact the GRO team: [email protected] Timing & Time Perception 2 (2014) 169–187 brill.com/time Impaired Numerical Ability Affects Supra-Second Time Estimation Sharon Gilaie-Dotan 1,∗, Geraint Rees 1,2, Brian Butterworth 1 and Marinella Cappelletti 1,3,∗ 1 UCL Institute of Cognitive Neuroscience, 17 Queen Square, London, WC1N 3AR, UK 2 Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK 3 Psychology Department, Goldsmiths College, University of London, UK Received 24 September 2013; accepted 11 March 2014 Abstract It has been suggested that the human ability to process number and time both rely on common magni- tude mechanisms, yet for time this commonality has mainly been investigated in the sub-second rather than longer time ranges. Here we examined whether number processing is associated with timing in time ranges greater than a second. Specifically, we tested long duration estimation abilities in adults with a devel- opmental impairment in numerical processing (dyscalculia), reasoning that any such timing impairment co-occurring with dyscalculia may be consistent with joint mechanisms for time estimation and num- ber processing.
    [Show full text]
  • Neural Correlates of Consciousness
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Cognitive Neuroscience Neural correlates of consciousness Geraint Rees UCL Institute of Cognitive Neuroscience and Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom Address for correspondence: Professor Geraint Rees, UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AR, UK. [email protected] Jon Driver’s scientific work was characterized by an innovative combination of new methods for studying mental processes in the human brain in an integrative manner. In our collaborative work, he applied this approach to the study of attention and awareness, and their relationship to neural activity in the human brain. Here I review Jon’s scientific work that relates to the neural basis of human consciousness, relating our collaborative work to a broader scientific context. I seek to show how his insights led to a deeper understanding of the causal connections between distant brain structures that are now believed to characterize the neural underpinnings of human consciousness. Keywords: fMRI; vision; consciousness; awareness; neglect; extinction for noninvasive measurement of human brain Introduction activity such as functional magnetic resonance Our awareness of the external world is central to imaging (fMRI), positron emission tomography, our everyday lives. People consistently and univer- electroencephalography (EEG), and magnetoen- sally use verbal and nonverbal reports to indicate cephalography (MEG) can reveal the neural sub- that they have subjective experiences that reflect the strates of sensory processing in the human brain, sensory properties of objects in the world around and together we used these approaches to explore them.
    [Show full text]
  • Phenomenal Consciousness As Scientific Phenomenon? a Critical Investigation of the New Science of Consciousness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt PHENOMENAL CONSCIOUSNESS AS SCIENTIFIC PHENOMENON? A CRITICAL INVESTIGATION OF THE NEW SCIENCE OF CONSCIOUSNESS by Justin M. Sytsma BS in Computer Science, University of Minnesota, 2003 BS in Neuroscience, University of Minnesota, 1999 MA in Philosophy, University of Pittsburgh, 2008 MA in History and Philosophy of Science, University of Pittsburgh, 2008 Submitted to the Graduate Faculty of School of Arts & Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2010 UNIVERSITY OF PITTSBURGH SCHOOL OF ARTS & SCIENCES This dissertation was presented by Justin M. Sytsma It was defended on August 5, 2010 and approved by Peter Machamer, PhD, Professor, History and Philosophy of Science Anil Gupta, PhD, Distinguished Professor, Philosophy Jesse Prinz, PhD, Distinguished Professor, City University of New York Graduate Center Dissertation Co-Director: Edouard Machery, PhD, Associate Professor, History and Philosophy of Science Dissertation Co-Director: Kenneth Schaffner, PhD, Distinguished University Professor, History and Philosophy of Science ii Copyright © by Justin Sytsma 2010 iii PHENOMENAL CONSCIOUSNESS AS SCIENTIFIC PHENOMENON? A CRITICAL INVESTIGATION OF THE NEW SCIENCE OF CONSCIOUSNESS Justin Sytsma, PhD University of Pittsburgh, 2010 Phenomenal consciousness poses something of a puzzle for philosophy of science. This puzzle arises from two facts: It is common for philosophers (and some scientists) to take its existence to be phenomenologically obvious and yet modern science arguably has little (if anything) to tell us about it. And, this is despite over 20 years of work targeting phenomenal consciousness in what I call the new science of consciousness.
    [Show full text]
  • Atypical Intrinsic Neural Timescale in Autism Takamitsu Watanabe1,2*, Geraint Rees1,3, Naoki Masuda4*
    RESEARCH ARTICLE Atypical intrinsic neural timescale in autism Takamitsu Watanabe1,2*, Geraint Rees1,3, Naoki Masuda4* 1Institute of Cognitive Neuroscience, University College London, London, United Kingdom; 2RIKEN Centre for Brain Science, Wako, Japan; 3Wellcome Trust Centre for Human Neuroimaging, University College London, London, United Kingdom; 4Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom Abstract How long neural information is stored in a local brain area reflects functions of that region and is often estimated by the magnitude of the autocorrelation of intrinsic neural signals in the area. Here, we investigated such intrinsic neural timescales in high-functioning adults with autism and examined whether local brain dynamics reflected their atypical behaviours. By analysing resting-state fMRI data, we identified shorter neural timescales in the sensory/visual cortices and a longer timescale in the right caudate in autism. The shorter intrinsic timescales in the sensory/visual areas were correlated with the severity of autism, whereas the longer timescale in the caudate was associated with cognitive rigidity. These observations were confirmed from neurodevelopmental perspectives and replicated in two independent cross-sectional datasets. Moreover, the intrinsic timescale was correlated with local grey matter volume. This study shows that functional and structural atypicality in local brain areas is linked to higher-order cognitive symptoms in autism. DOI: https://doi.org/10.7554/eLife.42256.001
    [Show full text]
  • A Randomized Controlled Feasibility Study Evaluating Neurofeedback
    Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington’s disease Downloaded from https://academic.oup.com/braincomms/advance-article-abstract/doi/10.1093/braincomms/fcaa049/5824291 by guest on 09 May 2020 Marina Papoutsi PhD* (1), Joerg Magerkurth PhD (2), Oliver Josephs PhD (3), Sophia E Pépés PhD (4), Temi Ibitoye (1), Ralf Reilmann MD, PhD (5, 6), Nigel Hunt FDS, PhD (7), Edwin Payne (7), Nikolaus Weiskopf PhD (3, 8), Douglas Langbehn MD, PhD (9), Geraint Rees MD, PhD† (3, 10), Sarah J Tabrizi MD, PhD † (1, 11) (1) UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, UK, (2) Birkbeck-UCL Centre for Neuroimaging, University College London, London, UK, (3) Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, UK, (4) University of Oxford, UK, (5) George Huntington Institute and Dept. of Radiology University of Muenster, Germany, (6) Section for Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany, (7) Eastman Dental Institute, University College London, UK, (8) Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, (9) Carver College of Medicine, University of Iowa, USA, (10) Institute of Cognitive Neuroscience, University College London, UK, (11) UK Dementia Research Institute at University College London, UK † Equal senior authors * Corresponding author: Dr Marina Papoutsi Email: [email protected] Address: UCL Huntington’s disease centre, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK Running title: Neurofeedback training in Huntington’s disease © The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.
    [Show full text]
  • The Human Superior Colliculus: Neither Necessary
    Commentary/Merker: Consciousness without a cerebral cortex malformations that may vary with respect to time of onset, patho- genesis, and organization of any cortical remnants that may be present (Halsey 1987); and survival beyond six months is rare (McAbee et al. 2000). In the presently reported cases, the extent of cortical damage is unclear, so the extent to which any behaviors reflect mesodiencephalic structures alone in these individuals is not known. Moreover, responsiveness to the environment is a capacity exhibited by nearly any organism with a central nervous system, and cannot be unambiguously taken as a marker of consciousness. Verbal or manual reports are generally considered the primary criterion that can establish The human superior colliculus: Neither whether a percept is conscious (Weiskrantz 1997). Such beha- necessary, nor sufficient for consciousness? viors, demonstrating intentionality, are not clearly evident in the present observations and many of the reported behaviors could be generated unconsciously or reflexively. This emphasizes DOI: 10.1017/S0140525X0700115X both the difficulty in determining whether an individual unable Susanne Watkins and Geraint Rees or unwilling to give verbal or manual reports is conscious (Owen et al. 2006), and the consequent need to explore the possi- Wellcome Trust Centre for Neuroimaging and Institute for Cognitive Neuroscience, University College London, London WC1 N 3AR, United bility that non-invasive biomarkers of consciousness might be Kingdom. developed to permit such inference. s.watkins@fil.ion.ucl.ac.uk g.rees@fil.ion.ucl.ac.uk Three indirect lines of evidence also suggest that SC activation http://www.fil.ion.ucl.ac.uk/grees in humans may not be necessary, either, for changes in the con- tents of consciousness to occur.
    [Show full text]
  • Decoding the Neural Correlates of Consciousness Rimona S
    Decoding the neural correlates of consciousness Rimona S. Weila,b and Geraint Reesa,b aWellcome Trust Centre for Neuroimaging at UCL, Purpose of review Institute of Neurology, University College London and bUCL Institute of Cognitive Neuroscience, University Multivariate pattern analysis (MVPA) is an emerging technique for analysing functional College London, London, UK imaging data that is capable of a much closer approximation of neuronal activity than Correspondence to Dr Rimona Weil, Wellcome Trust conventional methods. This review will outline the advantages, applications and Centre for Neuroimaging at UCL, 12 Queen Square, limitations of MVPA in understanding the neural correlates of consciousness. London WC1N 3BG, UK Tel: +44 20 7833 7472; fax: +44 20 7813 1420; Recent findings e-mail: r.weil@fil.ion.ucl.ac.uk MVPA has provided important insights into the processing of perceptual information by Current Opinion in Neurology 2010, 23:649–655 revealing content-specific information at early stages of perceptual processing. It has also shed light on the processing of memories and decisions. In combination with techniques to reconstruct viewed images, MVPA can also be used to reveal the contents of consciousness. Summary The development of multivariate pattern analysis techniques allows content-specific and detailed information to be extracted from functional MRI data. This may lead to new therapeutic applications but also raises important ethical considerations. Keywords consciousness, decoding, fMRI, multivariate pattern analysis Curr Opin Neurol 23:649–655 ß 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins 1350-7540 way is not always possible when communication or Introduction insight is limited. Therefore techniques allowing direct Consciousness is the rich, constantly changing internal determination of mental content through measuring experience which makes us who we are.
    [Show full text]
  • Introduction the Cognitive Neuroscience of Consciousness
    This article was downloaded by: [Consorci de Biblioteques Universitaries de Catalunya] On: 3 September 2010 Access details: Access Details: [subscription number 907788032] Publisher Psychology Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Cognitive Neuroscience Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t909559412 The cognitive neuroscience of consciousness Geraint Reesa; Anil K. Sethb a University College London, London, UK b University of Sussex, Brighton, UK Online publication date: 25 August 2010 To cite this Article Rees, Geraint and Seth, Anil K.(2010) 'The cognitive neuroscience of consciousness', Cognitive Neuroscience, 1: 3, 153 — 154 To link to this Article: DOI: 10.1080/17588928.2010.503602 URL: http://dx.doi.org/10.1080/17588928.2010.503602 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • CURRICULUM VITAE MARIEKE SCHÖLVINCK PHD Nov 2019
    CURRICULUM VITAE MARIEKE SCHÖLVINCK PHD Nov 2019 Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society Deutschordenstraße 46 60528 Frankfurt am Main Germany tel. +49 69 967 69 516 email: [email protected] Research Statement Neural activity is not only driven by external factors such as sensory stimuli, but to a large extent generated spontaneously. This spontaneous brain activity displays a coherent spatio-temporal structure and interacts with stimulus-driven activity in complex ways. I study spontaneous brain activity and its effect on cognition and behaviour using a variety of techniques, ranging from fMRI in humans and primates, and in vivo electrophysiology in rodents, cats, and primates, to computational modelling. Academic Positions and Education 2019 – present Max Planck Research Group Leader Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany 2014 - 2019 Postdoctoral research associate with Pascal Fries Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany 2011 - 2014 HFSP postdoctoral fellow with Pascal Fries Project: The role of spontaneous brain activity in stimulus processing and behaviour Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany 2009 - 2011 Postdoctoral research associate with Matteo Carandini Project: Trial-to-trial variability in mouse visual cortex University College London, London, United Kingdom 2005 - 2009 Wellcome Trust 4 Year PhD programme in Neuroscience Supervisors: Geraint Rees and Karl Friston Thesis title: Spontaneous fMRI activity in human visual cortex University College London, London, United Kingdom 2008 Research rotation with David Leopold, as part of Ph.D. National Institute of Mental Health, Bethesda, United States 2004 - 2005 Research assistant with Peter Hagoort Donders Centre for Cognitive Neuroimaging, Nijmegen, Netherlands 2002 - 2004 M.Sc.
    [Show full text]
  • Watanbe, T., Rees, G., & Masuda, N. (2019). Atypical Intrinsic Neural
    Watanbe, T., Rees, G., & Masuda, N. (2019). Atypical intrinsic neural timescale in autism. eLife, 8, [e42256]. https://doi.org/10.7554/eLife.42256 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.7554/eLife.42256 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via eLife Sciences at https://elifesciences.org/articles/42256 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ RESEARCH ARTICLE Atypical intrinsic neural timescale in autism Takamitsu Watanabe1,2*, Geraint Rees1,3, Naoki Masuda4* 1Institute of Cognitive Neuroscience, University College London, London, United Kingdom; 2RIKEN Centre for Brain Science, Wako, Japan; 3Wellcome Trust Centre for Human Neuroimaging, University College London, London, United Kingdom; 4Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom Abstract How long neural information is stored in a local brain area reflects functions of that region and is often estimated by the magnitude of the autocorrelation of intrinsic neural signals in the area. Here, we investigated such intrinsic neural timescales in high-functioning adults with autism and examined whether local brain dynamics reflected their atypical behaviours. By analysing resting-state fMRI data, we identified shorter neural timescales in the sensory/visual cortices and a longer timescale in the right caudate in autism.
    [Show full text]
  • The Francis Crick Institute Limited
    THE FRANCIS CRICK INSTITUTE LIMITED A COMPANY LIMITED BY SHARES ANNUAL REPORT AND FINANCIAL STATEMENTS 31 March 2020 Charity registration number: 1140062 Company registration number: 6885462 1 The Francis Crick Institute Limited annual report and financial statements 2020 Contents Chairman’s letter 3 Director’s introduction 4 Trustees’ report (incorporating the strategic report and 5 directors’ report) Consolidated statement of financial activities (incorporating 48 the income and expenditure account) Consolidated and Parent entity balance sheets 49 Consolidated cash flow statement 50 Notes to the financial statements 51 2 The Francis Crick Institute Limited annual report and financial statements 2020 Chairman’s letter My most significant memory of the last twelve months is the enormous impact on human lives and livelihoods of the Coronavirus pandemic. The COVID-19 outbreak presented unprecedented challenges across society. As Chairman, I am delighted with the way in which the Crick rose to those challenges. The pivoting of research to address the questions posed by the pandemic, alongside the rapid repurposing of the Institute to set up a COVID testing facility, demonstrated the strengths and merits of the Crick’s collaborative and agile model. It enabled us to build and strengthen clinical links which will stand us in good stead over the long term. Most importantly it reinforced the Crick’s role as a national biomedical research resource. Recent successes give me great confidence that the Crick is making good progress on delivering on its charitable mission to understand the fundamental biology that underlies health and disease. Over 450 papers were published by Crick researchers in the last year, placing us fifth on the 2020 Nature Index for institution outputs in the life sciences by research institutes.
    [Show full text]
  • BNA2015-Abstract-Book.Pdf
    BNA2015: Festival of Neuroscience Poster Abstracts 12‐14 April 2015 EICC, Edinburgh, UK Citations The recommended citation for an abstract in this volume is as follows: British Neurosci. Assoc. Abstr., Vol. 23: Pxx, 2015 ISSN 1345‐8301 2015 Contents Sunday 12 April 2015 - Poster Session 1 Page Floor plan 4 Theme A: Development 5 B: Molecular, Cellular and Synaptic Mechanisms 24 C: Sensory and Motor Systems 68 D: Learning, Memory and Cognition 104 F: Nervous System Disorders 173 G: Methods and Techniques 234 H: Autonomic Nervous System 251 Monday 13 April – Poster Session 2 Page Floor plan 261 Theme A: Development 262 B: Molecular, Cellular and Synaptic Mechanisms 286 C: Sensory and Motor Systems 332 D: Learning, Memory and Cognition 368 E: Sleep, Circadian and Neuroendocrine Mechanisms 434 F: Nervous System Disorders 453 G: Methods and Techniques 518 Tuesday 14 April – Poster Session 3 Page Floor plan 537 Theme A: Development 538 B: Molecular, Cellular and Synaptic Mechanisms 560 C: Sensory and Motor Systems 605 D: Learning, Memory and Cognition 637 E: Sleep, Circadian and Neuroendocrine Mechanisms 704 F: Nervous System Disorders 723 G: Methods and Techniques 782 Conflict of interest declarations 798 Poster Reference Explanation P2-F-012 Poster board number Day Theme 1=Sunday A: Development 2=Monday B: Molecular, Cellular and Synaptic Mechanisms 3=Tuesday C: Sensory and Motor Systems D: Learning, Memory and Cognition E: Sleep, Circadian and Neuroendocrine Mechanisms F: Nervous System Disorders G: Methods and Techniques H: Autonomic Nervous
    [Show full text]