Your Expert Guide to Hadoop Big Data Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Your Expert Guide to Hadoop Big Data Platforms E-guide Hadoop Big Data Platforms Buyer’s Guide – part 3 Your expert guide to Hadoop big data platforms E-guide In this e-guide A look at Amazon Elastic MapReduce A look at Amazon Elastic cloud-based Hadoop MapReduce cloud-based Hadoop Abie Reifer, DecisionWorx Learn more about the Cloudera The Amazon Elastic MapReduce Web service offers a managed Hadoop distribution Hadoop framework that enables users to distribute and process big data across dynamically scalable Amazon EC2 instances. Inside the Hortonworks open enterprise Hadoop distribution Amazon Elastic MapReduce provides users access to a cloud-based Hadoop implementation for analyzing and processing large amounts of data. Built on top Inside the IBM BigInsights of Amazon's cloud services, EMR leverages Amazon's Elastic Compute Cloud platform for big data and Simple Storage services, enabling users to provision a Hadoop cluster management quickly. Amazon's cloud elasticity and setup tools also give users a way to temporarily Inside the MapR Hadoop distribution for managing big scale up a cloud-based Hadoop cluster for short-term increased computing data capacity. Amazon EMR lets users focus on the design of their workflow without the distractions of configuring a Hadoop cluster. As with other Amazon cloud Inside the Microsoft Azure services, users pay for only what they use. HDInsight cloud infrastructure Page 1 of 28 E-guide In this e-guide Amazon Elastic MapReduce features A look at Amazon Elastic The current version of Amazon EMR, 4.3.0, bundles several open source MapReduce cloud-based applications, a set of components for users to monitor and manage cluster Hadoop resources, and components that enable application and cluster interoperability with other services. Learn more about the Cloudera Hadoop distribution The following open source applications come bundled as part of Amazon: Apache Hadoop 2.7.1 Inside the Hortonworks open enterprise Hadoop distribution Apache Hive 1.0.0 Inside the IBM BigInsights Apache Mahout 0.11.0 platform for big data management Apache Pig 0.14.0 Apache Spark Inside the MapR Hadoop distribution for managing big Hue data Ganglia 3.7.2 Inside the Microsoft Azure HDInsight cloud infrastructure AWS Elastic MapReduce also provides users with the option of using MapR's Hadoop distribution in place of Apache Hadoop. Page 2 of 28 E-guide The EMR Web service supports several file system storage options used for In this e-guide data processing. These include Hadoop Data File System for local and remote file systems and S3 buckets using EMR File System as well as other Amazon A look at Amazon Elastic data services. Amazon EMR also integrates with several data services, MapReduce cloud-based including Amazon Dynamo DB, a fast NoSQL database; Amazon Relational Hadoop Database Service; Amazon Glacier; Amazon Redshift, a petabyte data warehouse service; and AWS Data Pipeline, a service used to move data Learn more about the Cloudera between AWS services. Hadoop distribution Other AWS Elastic MapReduce features enable users to perform the following Inside the Hortonworks open tasks: enterprise Hadoop distribution Provision an EMR cluster. An EMR management console helps users quickly navigate through the process of spinning up and autoconfiguring an EMR Inside the IBM BigInsights platform for big data instance. Through the console, users select the applications from the EMR management bundle to install, the types of server instances to use for the cluster nodes, and the security access policies and controls for the cluster. Inside the MapR Hadoop Load data into the cluster. Users with typical size data needs can transfer distribution for managing big data to an Amazon S3 bucket to be available to the cluster for processing. data Users with petabyte-scale needs may opt to use AWS Snowball, a secure, high- speed appliance that's shipped to the user, or AWS Direct Connect, an Inside the Microsoft Azure established high-speed data connection between AWS and the user's data HDInsight cloud infrastructure center. Page 3 of 28 E-guide Monitor and manage. Amazon EMR collects metrics that are used to track In this e-guide progress and measure the health of a cluster. While these metrics can be accessed through the command line interface, software developer kits or APIs, A look at Amazon Elastic they can also be viewed through the EMR management console. Additionally, MapReduce cloud-based Amazon CloudWatch can also be used along with Apache Ganglia to monitor Hadoop the cluster and set alarms on events triggered by these metrics. Learn more about the Cloudera Hadoop distribution AWS Elastic MapReduce pricing Inside the Hortonworks open Amazon's EMR pricing model is based on the company's approach to pricing for enterprise Hadoop distribution its other Web services. Users pay per amount of time and the types of instance servers used. Spot instances can also be used for some or all of the nodes in a Inside the IBM BigInsights cluster, providing users with a level of elasticity that can be changed based on platform for big data their dynamic computing needs. management Amazon provides developers with a wide range of online technical documentation, guides, tutorials and sample code. Inside the MapR Hadoop distribution for managing big data Next article Inside the Microsoft Azure HDInsight cloud infrastructure Page 4 of 28 E-guide In this e-guide Learn more about the Cloudera Hadoop distribution A look at Amazon Elastic MapReduce cloud-based Abie Reifer, DecisionWorx Hadoop Cloudera distribution, including Apache Hadoop, provides an Learn more about the Cloudera analytics platform and the latest open source technologies to store, Hadoop distribution process, discover, model and serve large amounts of data. Inside the Hortonworks open CDH, the Cloudera Hadoop distribution, includes several related open source enterprise Hadoop distribution projects, such as Impala and Search. It also provides security and integration with several hardware and software products. Inside the IBM BigInsights The Impala framework in Cloudera distribution including Apache Hadoop allows platform for big data users to execute interactive SQL queries directly against data stored in Hadoop management Distributed File System (HDFS), Apache HBase or the Amazon Simple Storage Service. Impala uses several technologies and components from Hive, including Inside the MapR Hadoop SQL syntax (Hive SQL), Open Data Base Connectivity driver and Impala's distribution for managing big data Query UI (Hue is also used by Hive). As part of CDH, Cloudera Search incorporates Apache Solr, a data indexing Inside the Microsoft Azure and search platform based on Lucene. The integration of this technology as part HDInsight cloud infrastructure of CDH provides users with near real-time indexing of and access to data directly stored in Hadoop and HBase. Solr indexing and search technology Page 5 of 28 E-guide enables users to perform complex textual searches while requiring little or no In this e-guide SQL or programming skills. Solr also allows for queries to be performed directly against the Hadoop data store, removing the need to move large data sets to A look at Amazon Elastic perform complex queries. MapReduce cloud-based Hadoop Other related open source projects included in CDH from Apache are Flume, HBASE, Hive, Hue, Oozie, Spark, Sqoop and Sentry (incubating). Learn more about the Cloudera Hadoop distribution Editions of the Cloudera Hadoop distribution Inside the Hortonworks open enterprise Hadoop distribution Cloudera offers several implementation editions of CDH that provide differing levels of cluster and service management capabilities as well as different levels of support: Inside the IBM BigInsights platform for big data Cloudera Express is free to use and includes CDH, as well as core features of management Cloudera Manager. Inside the MapR Hadoop Cloudera Manager provides CDH administrators with an intuitive Web-based distribution for managing big management console to deploy, manage, monitor and diagnose issues with data CDH deployments. The tool also includes an API that can be used to programmatically configure the system and collect metric and health information Inside the Microsoft Azure about a CDH cluster. HDInsight cloud infrastructure Page 6 of 28 E-guide Cloudera Enterprise is a licensed edition that provides extended capabilities to In this e-guide CDH with the inclusion of additional advanced features from Cloudera Manager and Navigator. Technical support options are also available to customers that A look at Amazon Elastic have purchased an enterprise license. Cloudera Enterprise is available in three MapReduce cloud-based editions, each offering varying levels of service management capabilities: Hadoop The Basic edition provides management capabilities to support a cluster Learn more about the Cloudera running core CDH services that include HDFS, Hive, Hue, MapReduce, Hadoop distribution Oozie, Sqoop, Yet Another Resource Negotiator (YARN) and ZooKeeper. The Flex edition supports the management of a cluster running core CDH Inside the Hortonworks open enterprise Hadoop distribution services plus one of the following: Accumulo, HBase, Impala, Navigator, Solr or Spark. Inside the IBM BigInsights The Data Hub edition supports the management of a cluster running core platform for big data CDH services plus any of the following: Accumulo, HBase, Impala, management Navigator, Solr or Spark. Inside the MapR Hadoop Cloudera Manager Advanced Features add the following to the core
Recommended publications
  • Hadoop Tutorials  Cassandra  Hector API  Request Tutorial  About
    Home Big Data Hadoop Tutorials Cassandra Hector API Request Tutorial About LABELS: HADOOP-TUTORIAL, HDFS 3 OCTOBER 2013 Hadoop Tutorial: Part 1 - What is Hadoop ? (an Overview) Hadoop is an open source software framework that supports data intensive distributed applications which is licensed under Apache v2 license. At-least this is what you are going to find as the first line of definition on Hadoop in Wikipedia. So what is data intensive distributed applications? Well data intensive is nothing but BigData (data that has outgrown in size) anddistributed applications are the applications that works on network by communicating and coordinating with each other by passing messages. (say using a RPC interprocess communication or through Message-Queue) Hence Hadoop works on a distributed environment and is build to store, handle and process large amount of data set (in petabytes, exabyte and more). Now here since i am saying that hadoop stores petabytes of data, this doesn't mean that Hadoop is a database. Again remember its a framework that handles large amount of data for processing. You will get to know the difference between Hadoop and Databases (or NoSQL Databases, well that's what we call BigData's databases) as you go down the line in the coming tutorials. Hadoop was derived from the research paper published by Google on Google File System(GFS) and Google's MapReduce. So there are two integral parts of Hadoop: Hadoop Distributed File System(HDFS) and Hadoop MapReduce. Hadoop Distributed File System (HDFS) HDFS is a filesystem designed for storing very large files with streaming data accesspatterns, running on clusters of commodity hardware.
    [Show full text]
  • MÁSTER EN INGENIERÍA WEB Proyecto Fin De Máster
    UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior de Ingeniería de Sistemas Informáticos MÁSTER EN INGENIERÍA WEB Proyecto Fin de Máster …Estudio Conceptual de Big Data utilizando Spring… Autor Gabriel David Muñumel Mesa Tutor Jesús Bernal Bermúdez 1 de julio de 2018 Estudio Conceptual de Big Data utilizando Spring AGRADECIMIENTOS Gracias a mis padres Julian y Miriam por todo el apoyo y empeño en que siempre me mantenga estudiando. Gracias a mi tia Gloria por sus consejos e ideas. Gracias a mi hermano José Daniel y mi cuñada Yule por siempre recordarme que con trabajo y dedicación se pueden alcanzar las metas. [UPM] Máster en Ingeniería Web RESUMEN Big Data ha sido el término dado para aglomerar la gran cantidad de datos que no pueden ser procesados por los métodos tradicionales. Entre sus funciones principales se encuentran la captura de datos, almacenamiento, análisis, búsqueda, transferencia, visualización, monitoreo y modificación. Las empresas han visto en Big Data una poderosa herramienta para mejorar sus negocios en una economía mundial basada firmemente en el conocimiento. Los datos son el combustible para las compañías modernas y, por lo tanto, dar sentido a estos datos permite realmente comprender las conexiones invisibles dentro de su origen. En efecto, con mayor información se toman mejores decisiones, permitiendo la creación de estrategias integrales e innovadoras que garanticen resultados exitosos. Dada la creciente relevancia de Big Data en el entorno profesional moderno ha servido como motivación para la realización de este proyecto. Con la utilización de Java como software de desarrollo y Spring como framework web se desea analizar y comprobar qué herramientas ofrecen estas tecnologías para aplicar procesos enfocados en Big Data.
    [Show full text]
  • Security Log Analysis Using Hadoop Harikrishna Annangi Harikrishna Annangi, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St. Cloud State University St. Cloud State University theRepository at St. Cloud State Culminating Projects in Information Assurance Department of Information Systems 3-2017 Security Log Analysis Using Hadoop Harikrishna Annangi Harikrishna Annangi, [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds Recommended Citation Annangi, Harikrishna, "Security Log Analysis Using Hadoop" (2017). Culminating Projects in Information Assurance. 19. https://repository.stcloudstate.edu/msia_etds/19 This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Security Log Analysis Using Hadoop by Harikrishna Annangi A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Assurance April, 2016 Starred Paper Committee: Dr. Dennis Guster, Chairperson Dr. Susantha Herath Dr. Sneh Kalia 2 Abstract Hadoop is used as a general-purpose storage and analysis platform for big data by industries. Commercial Hadoop support is available from large enterprises, like EMC, IBM, Microsoft and Oracle and Hadoop companies like Cloudera, Hortonworks, and Map Reduce. Hadoop is a scheme written in Java that allows distributed processes of large data sets across clusters of computers using programming models. A Hadoop frame work application works in an environment that provides storage and computation across clusters of computers.
    [Show full text]
  • Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
    00 Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions MUTAZ BARIKA, University of Tasmania SAURABH GARG, University of Tasmania ALBERT Y. ZOMAYA, University of Sydney LIZHE WANG, China University of Geoscience (Wuhan) AAD VAN MOORSEL, Newcastle University RAJIV RANJAN, Chinese University of Geoscienes and Newcastle University Interest in processing big data has increased rapidly to gain insights that can transform businesses, government policies and research outcomes. This has led to advancement in communication, programming and processing technologies, including Cloud computing services and technologies such as Hadoop, Spark and Storm. This trend also affects the needs of analytical applications, which are no longer monolithic but composed of several individual analytical steps running in the form of a workflow. These Big Data Workflows are vastly different in nature from traditional workflows. Researchers arecurrently facing the challenge of how to orchestrate and manage the execution of such workflows. In this paper, we discuss in detail orchestration requirements of these workflows as well as the challenges in achieving these requirements. We alsosurvey current trends and research that supports orchestration of big data workflows and identify open research challenges to guide future developments in this area. CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; • Computer systems organization → Cloud computing; Additional Key Words and Phrases: Big Data, Cloud Computing, Workflow Orchestration, Requirements, Approaches ACM Reference format: Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad van Moorsel, and Rajiv Ranjan. 2018. Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions.
    [Show full text]
  • Apache Oozie the Workflow Scheduler for Hadoop
    Apache Oozie The Workflow Scheduler For Hadoop televises:Hookier and he sopraninopip his rationalists Jere decrescendo usuriously hisand footie fragilely. inundates Larry disburdenchummed educationally.untimely. Seismographical Evan Apache Zookepeer Tutorial Zookeeper in Hadoop Hadoop. Oozie offers replacement only be used files into hadoop ecosystem components are used, including but for any. The below and action, time if we saw how does flipkart first emi option. Here, how to reduce their costs and increase the time to market. Are whole a Author? Who uses Apache Oozie? What is the estimated delivery time? Oozie operates by running with a prior in a Hadoop cluster with clients submitting workflow definitions for sink or delayed processing. Specifies that cannot span file. Explanation Oozie is a workflow scheduler system where manage Hadoop jobs. Other events and schedule apache storm for all set of a free. Oozie server using REST. Supermart is available only in select cities. Action contains description of hangover or more workflows to be executed Oozie is lightweight as it uses existing Hadoop MapReduce framework for. For sellers on a great features: they implemented has been completed. For example, TORT OR hassle, and SSH. Apache Oozie provides you the power to easily handle these kinds of scenarios. Have doubts regarding this product? Oozie is a workflow scheduler system better manage apache hadoop jobs Oozie workflow jobs are directed acyclical graphs dags of actions By. Recipient as is required. Needed when any oozie client is anger on separated node. Sorry, French, Straus and Giroux. Data pipeline job scheduling in GoDaddy Developer's point of.
    [Show full text]
  • Persisting Big-Data the Nosql Landscape
    Information Systems 63 (2017) 1–23 Contents lists available at ScienceDirect Information Systems journal homepage: www.elsevier.com/locate/infosys Persisting big-data: The NoSQL landscape Alejandro Corbellini n, Cristian Mateos, Alejandro Zunino, Daniela Godoy, Silvia Schiaffino ISISTAN (CONICET-UNCPBA) Research Institute1, UNICEN University, Campus Universitario, Tandil B7001BBO, Argentina article info abstract Article history: The growing popularity of massively accessed Web applications that store and analyze Received 11 March 2014 large amounts of data, being Facebook, Twitter and Google Search some prominent Accepted 21 July 2016 examples of such applications, have posed new requirements that greatly challenge tra- Recommended by: G. Vossen ditional RDBMS. In response to this reality, a new way of creating and manipulating data Available online 30 July 2016 stores, known as NoSQL databases, has arisen. This paper reviews implementations of Keywords: NoSQL databases in order to provide an understanding of current tools and their uses. NoSQL databases First, NoSQL databases are compared with traditional RDBMS and important concepts are Relational databases explained. Only databases allowing to persist data and distribute them along different Distributed systems computing nodes are within the scope of this review. Moreover, NoSQL databases are Database persistence divided into different types: Key-Value, Wide-Column, Document-oriented and Graph- Database distribution Big data oriented. In each case, a comparison of available databases
    [Show full text]
  • Hitachi Solution for Databases in Enterprise Data Warehouse Offload Package for Oracle Database with Mapr Distribution of Apache
    Hitachi Solution for Databases in an Enterprise Data Warehouse Offload Package for Oracle Database with MapR Distribution of Apache Hadoop Reference Architecture Guide By Shashikant Gaikwad, Subhash Shinde December 2018 Feedback Hitachi Data Systems welcomes your feedback. Please share your thoughts by sending an email message to [email protected]. To assist the routing of this message, use the paper number in the subject and the title of this white paper in the text. Revision History Revision Changes Date MK-SL-131-00 Initial release December 27, 2018 Table of Contents Solution Overview 2 Business Benefits 2 High Level Infrastructure 3 Key Solution Components 4 Pentaho 6 Hitachi Advanced Server DS120 7 Hitachi Virtual Storage Platform Gx00 Models 7 Hitachi Virtual Storage Platform Fx00 Models 7 Brocade Switches 7 Cisco Nexus Data Center Switches 7 MapR Converged Data Platform 8 Red Hat Enterprise Linux 10 Solution Design 10 Server Architecture 11 Storage Architecture 13 Network Architecture 14 Data Analytics and Performance Monitoring Using Hitachi Storage Advisor 17 Oracle Enterprise Data Workflow Offload 17 Engineering Validation 29 Test Methodology 29 Test Results 30 1 Hitachi Solution for Databases in an Enterprise Data Warehouse Offload Package for Oracle Database with MapR Distribution of Apache Hadoop Reference Architecture Guide Use this reference architecture guide to implement Hitachi Solution for Databases in an enterprise data warehouse offload package for Oracle Database. This Oracle converged infrastructure provides a high performance, integrated, solution for advanced analytics using the following big data applications: . Hitachi Advanced Server DS120 with Intel Xeon Silver 4110 processors . Pentaho Data Integration . MapR distribution for Apache Hadoop This converged infrastructure establishes best practices for environments where you can copy data in an enterprise data warehouse to an Apache Hive database on top of Hadoop Distributed File System (HDFS).
    [Show full text]
  • Database Solutions on AWS
    Database Solutions on AWS Leveraging ISV AWS Marketplace Solutions November 2016 Database Solutions on AWS Nov 2016 Table of Contents Introduction......................................................................................................................................3 Operational Data Stores and Real Time Data Synchronization...........................................................5 Data Warehousing............................................................................................................................7 Data Lakes and Analytics Environments............................................................................................8 Application and Reporting Data Stores..............................................................................................9 Conclusion......................................................................................................................................10 Page 2 of 10 Database Solutions on AWS Nov 2016 Introduction Amazon Web Services has a number of database solutions for developers. An important choice that developers make is whether or not they are looking for a managed database or if they would prefer to operate their own database. In terms of managed databases, you can run managed relational databases like Amazon RDS which offers a choice of MySQL, Oracle, SQL Server, PostgreSQL, Amazon Aurora, or MariaDB database engines, scale compute and storage, Multi-AZ availability, and Read Replicas. You can also run managed NoSQL databases like Amazon DynamoDB
    [Show full text]
  • Analysis of Web Log Data Using Apache Pig in Hadoop
    [VOLUME 5 I ISSUE 2 I APRIL – JUNE 2018] e ISSN 2348 –1269, Print ISSN 2349-5138 http://ijrar.com/ Cosmos Impact Factor 4.236 ANALYSIS OF WEB LOG DATA USING APACHE PIG IN HADOOP A. C. Priya Ranjani* & Dr. M. Sridhar** *Research Scholar, Department of Computer Science, Acharya Nagarjuna University, Guntur, Andhra Pradesh, INDIA, **Associate Professor, Department of Computer Applications, R.V.R & J.C College of Engineering, Guntur, India Received: April 09, 2018 Accepted: May 22, 2018 ABSTRACT The wide spread use of internet and increased web applications accelerate the rampant growth of web content. Every organization produces huge amount of data in different forms like text, audio, video etc., from multiplesources. The log data stored in web servers is a great source of knowledge. The real challenge for any organization is to understand the behavior of their customers. Analyzing such web log data will help the organizations to understand navigational patterns and interests of their users. As the logs are growing in size day by day, the existing database technologies face a bottleneck to process such massive unstructured data. Hadoop provides a best solution to this problem. Hadoop framework comes up with Hadoop Distributed File System, a reliable distributed storage for data and MapReduce, a distributed parallel processing for executing large volumes of complex data. Hadoop ecosystem constitutes of several other tools like Pig, Hive, Flume, Sqoop etc., for effective analysis of web log data. To write scripts in Map Reduce, one should acquire a good programming knowledge in Java. However Pig, a simple dataflow language can be easily used to analyze such data.
    [Show full text]
  • Apache Pig's Optimizer
    Apache Pig’s Optimizer Alan F. Gates, Jianyong Dai, Thejas Nair Hortonworks Abstract Apache Pig allows users to describe dataflows to be executed in Apache Hadoop. The distributed nature of Hadoop, as well as its execution paradigms, provide many execution opportunities as well as impose constraints on the system. Given these opportunities and constraints Pig must make decisions about how to optimize the execution of user scripts. This paper covers some of those optimization choices, focussing one ones that are specific to the Hadoop ecosystem and Pig’s common use cases. It also discusses optimizations that the Pig community has considered adding in the future. 1 Introduction Apache Pig [10] provides an SQL-like dataflow language on top of Apache Hadoop [11] [7]. With Pig, users write dataflow scripts in a language called Pig Latin. Pig then executes these dataflow scripts in Hadoop using MapReduce. Providing users with a scripting language, rather than requiring them to write MapReduce pro- grams in Java, drastically decreases their development time and enables non-Java developers to use Hadoop. Pig also provides operators for most common data processing operations, such as join, sort, and aggregation. It would otherwise require huge amounts of effort for a handcrafted Java MapReduce program to implement these operators. Many different types of data processing are done on Hadoop. Pig does not seek to be a general purpose solution for all of them. Pig focusses on use cases where users have a DAG of transformations to be done on their data, involving some combination of standard relational operations (join, aggregation, etc.) and custom processing which can be included in Pig Latin via User Defined Functions, or UDFs, which can be written in Java or a scripting language.1 Pig also focusses on situations where data may not yet be cleansed and normal- ized.
    [Show full text]
  • HDP 3.1.4 Release Notes Date of Publish: 2019-08-26
    Release Notes 3 HDP 3.1.4 Release Notes Date of Publish: 2019-08-26 https://docs.hortonworks.com Release Notes | Contents | ii Contents HDP 3.1.4 Release Notes..........................................................................................4 Component Versions.................................................................................................4 Descriptions of New Features..................................................................................5 Deprecation Notices.................................................................................................. 6 Terminology.......................................................................................................................................................... 6 Removed Components and Product Capabilities.................................................................................................6 Testing Unsupported Features................................................................................ 6 Descriptions of the Latest Technical Preview Features.......................................................................................7 Upgrading to HDP 3.1.4...........................................................................................7 Behavioral Changes.................................................................................................. 7 Apache Patch Information.....................................................................................11 Accumulo...........................................................................................................................................................
    [Show full text]
  • Hot Technologies” Within the O*NET® System
    Identification of “Hot Technologies” within the O*NET® System Phil Lewis National Center for O*NET Development Jennifer Norton North Carolina State University Prepared for U.S. Department of Labor Employment and Training Administration Office of Workforce Investment Division of National Programs, Tools, & Technical Assistance Washington, DC April 4, 2016 www.onetcenter.org National Center for O*NET Development, Post Office Box 27625, Raleigh, NC 27611 Table of Contents Background ......................................................................................................................... 2 Hot Technologies Identification Procedure ...................................................................... 3 Mine data to collect the top technology related terms ................................................ 3 Convert the data-mined technology terms into O*NET technologies ......................... 3 Organize the hot technologies within the O*NET Tools & Technology Taxonomy ..... 4 Link the hot technologies to O*NET-SOC occupations .............................................. 4 Determine the display of occupations linked to a hot technology ............................... 4 Summary ............................................................................................................................. 5 Figure 1: O*NET Hot Technology Icon .............................................................................. 6 Appendix A: Hot Technologies Identified During the Initial Implementation ................ 7 National Center
    [Show full text]