Database Solutions on AWS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Building Your Hybrid Cloud Strategy with AWS Ebook
Building Your Hybrid Cloud Strategy with AWS eBook A Guide to Extending and Optimizing Your Hybrid Cloud Environment Contents Introduction 3 Hybrid Cloud Benefits 4 Common AWS Hybrid Cloud Workloads 6 Key AWS Hybrid Cloud Technologies and Services 6 VMware Cloud on AWS 18 AWS Outposts: A Truly Consistent Hybrid Experience 21 Becoming Migration Ready 23 Hybrid Cloud Enablement Partners 24 Conclusion 26 Further Reading and Key Resources 27 © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Introduction Optimizing IT Across Cloud and On-Premises Environments Public sector organizations continue to do more with less, find ways to innovate and bring new ideas to their organizations while dealing with security and maintaining mission-critical legacy systems. Evolving cloud capabilities are transforming the IT landscape for many public sector organizations, some use cases a hybrid cloud approach can help ease and accelerate a path to modernization and cloud adoption. For some use cases a hybrid cloud approach became a more feasible path to IT modernization and cloud adoption. For example, some customers have applications that require the lowest network latency possible, or they already achieve consistent and predicable performance in an on- premises environment, but want to use new cloud tools to enhance the application (e.g. Enterprise Resource Planning systems, real-time sensor data processing, industrial automation and transaction processing). Some customers may encounter unique challenges such as federal regulations associated with data residency, or limitations on their use of the cloud. A hybrid cloud (the use of both on-premises and cloud resources), allows IT organizations to optimize the performance and costs of every application, project and system in either the cloud, on-premises datacenters, or a combination of both. -
Beyond Relational Databases
EXPERT ANALYSIS BY MARCOS ALBE, SUPPORT ENGINEER, PERCONA Beyond Relational Databases: A Focus on Redis, MongoDB, and ClickHouse Many of us use and love relational databases… until we try and use them for purposes which aren’t their strong point. Queues, caches, catalogs, unstructured data, counters, and many other use cases, can be solved with relational databases, but are better served by alternative options. In this expert analysis, we examine the goals, pros and cons, and the good and bad use cases of the most popular alternatives on the market, and look into some modern open source implementations. Beyond Relational Databases Developers frequently choose the backend store for the applications they produce. Amidst dozens of options, buzzwords, industry preferences, and vendor offers, it’s not always easy to make the right choice… Even with a map! !# O# d# "# a# `# @R*7-# @94FA6)6 =F(*I-76#A4+)74/*2(:# ( JA$:+49>)# &-)6+16F-# (M#@E61>-#W6e6# &6EH#;)7-6<+# &6EH# J(7)(:X(78+# !"#$%&'( S-76I6)6#'4+)-:-7# A((E-N# ##@E61>-#;E678# ;)762(# .01.%2%+'.('.$%,3( @E61>-#;(F7# D((9F-#=F(*I## =(:c*-:)U@E61>-#W6e6# @F2+16F-# G*/(F-# @Q;# $%&## @R*7-## A6)6S(77-:)U@E61>-#@E-N# K4E-F4:-A%# A6)6E7(1# %49$:+49>)+# @E61>-#'*1-:-# @E61>-#;6<R6# L&H# A6)6#'68-# $%&#@:6F521+#M(7#@E61>-#;E678# .761F-#;)7-6<#LNEF(7-7# S-76I6)6#=F(*I# A6)6/7418+# @ !"#$%&'( ;H=JO# ;(\X67-#@D# M(7#J6I((E# .761F-#%49#A6)6#=F(*I# @ )*&+',"-.%/( S$%=.#;)7-6<%6+-# =F(*I-76# LF6+21+-671># ;G';)7-6<# LF6+21#[(*:I# @E61>-#;"# @E61>-#;)(7<# H618+E61-# *&'+,"#$%&'$#( .761F-#%49#A6)6#@EEF46:1-# -
Magic Quadrant for Enterprise High-Productivity Application Platform As a Service
This research note is restricted to the personal use of [email protected]. Magic Quadrant for Enterprise High- Productivity Application Platform as a Service Published: 26 April 2018 ID: G00331975 Analyst(s): Paul Vincent, Van Baker, Yefim Natis, Kimihiko Iijima, Mark Driver, Rob Dunie, Jason Wong, Aashish Gupta High-productivity application platform as a service continues to increase its footprint across enterprise IT as businesses juggle the demand for applications, digital business requirements and skill set challenges. We examine these market forces and the leading enterprise vendors for such platforms. Market Definition/Description Platform as a service (PaaS) is application infrastructure functionality enriched with cloud characteristics and offered as a service. Application platform as a service (aPaaS) is a PaaS offering that supports application development, deployment and execution in the cloud. It encapsulates resources such as infrastructure. High- productivity aPaaS (hpaPaaS) provides rapid application development (RAD) features for development, deployment and execution — in the cloud. High-productivity application platform as a service (hpaPaaS) solutions provide services for declarative, model-driven application design and development, and simplified one-button deployments. They typically create metadata and interpret that metadata at runtime; many allow optional procedural programming extensions. The underlying infrastructure of these solutions is opaque to the user as they do not deal with servers or containers directly. The rapid application development (RAD) features are often referred to as "low-code" and "no-code" support. These hpaPaaS solutions contrast with those for "high-control" aPaaS, which need professional programming — "pro-code" support, through third-generation languages (3GLs) — and provide transparent access to the underlying infrastructure. -
An Introduction to Cloud Databases a Guide for Administrators
Compliments of An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram & Sam Alapati REPORT Break free from old guard databases AWS provides the broadest selection of purpose-built databases allowing you to save, grow, and innovate faster Enterprise scale at 3-5x the performance 14+ database engines 1/10th the cost of vs popular alternatives - more than any other commercial databases provider Learn more: aws.amazon.com/databases An Introduction to Cloud Databases A Guide for Administrators Wendy Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Beijing Boston Farnham Sebastopol Tokyo An Introduction to Cloud Databases by Wendy A. Neu, Vlad Vlasceanu, Andy Oram, and Sam Alapati Copyright © 2019 O’Reilly Media Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more infor‐ mation, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Development Editor: Jeff Bleiel Interior Designer: David Futato Acquisitions Editor: Jonathan Hassell Cover Designer: Karen Montgomery Production Editor: Katherine Tozer Illustrator: Rebecca Demarest Copyeditor: Octal Publishing, LLC September 2019: First Edition Revision History for the First Edition 2019-08-19: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. An Introduction to Cloud Databases, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views. -
Hitachi Solution for Databases in Enterprise Data Warehouse Offload Package for Oracle Database with Mapr Distribution of Apache
Hitachi Solution for Databases in an Enterprise Data Warehouse Offload Package for Oracle Database with MapR Distribution of Apache Hadoop Reference Architecture Guide By Shashikant Gaikwad, Subhash Shinde December 2018 Feedback Hitachi Data Systems welcomes your feedback. Please share your thoughts by sending an email message to [email protected]. To assist the routing of this message, use the paper number in the subject and the title of this white paper in the text. Revision History Revision Changes Date MK-SL-131-00 Initial release December 27, 2018 Table of Contents Solution Overview 2 Business Benefits 2 High Level Infrastructure 3 Key Solution Components 4 Pentaho 6 Hitachi Advanced Server DS120 7 Hitachi Virtual Storage Platform Gx00 Models 7 Hitachi Virtual Storage Platform Fx00 Models 7 Brocade Switches 7 Cisco Nexus Data Center Switches 7 MapR Converged Data Platform 8 Red Hat Enterprise Linux 10 Solution Design 10 Server Architecture 11 Storage Architecture 13 Network Architecture 14 Data Analytics and Performance Monitoring Using Hitachi Storage Advisor 17 Oracle Enterprise Data Workflow Offload 17 Engineering Validation 29 Test Methodology 29 Test Results 30 1 Hitachi Solution for Databases in an Enterprise Data Warehouse Offload Package for Oracle Database with MapR Distribution of Apache Hadoop Reference Architecture Guide Use this reference architecture guide to implement Hitachi Solution for Databases in an enterprise data warehouse offload package for Oracle Database. This Oracle converged infrastructure provides a high performance, integrated, solution for advanced analytics using the following big data applications: . Hitachi Advanced Server DS120 with Intel Xeon Silver 4110 processors . Pentaho Data Integration . MapR distribution for Apache Hadoop This converged infrastructure establishes best practices for environments where you can copy data in an enterprise data warehouse to an Apache Hive database on top of Hadoop Distributed File System (HDFS). -
Price-Performance in Modern Cloud Database Management Systems
Price-Performance in Modern Cloud Database Management Systems McKnight Consulting Group December 2019 www.m c k n i g h t c g . c o m Executive Summary The pace of relational analytical databases deploying in the cloud are at an all-time high. And industry trends indicate that they are poised to expand dramatically in the next few years. The cloud is a disruptive technology, offering elastic scalability vis-à-vis on-premises deployments, enabling faster server deployment and application development, and allowing less costly storage. The cloud enables enterprises to differentiate and innovate with these database systems at a much more rapid pace than was ever possible before. For these reasons and others, many companies have leveraged the cloud to maintain or gain momentum as a company. The cost profile options for these cloud databases are straightforward if you accept the defaults for simple workload or POC environments. However, it can be enormously expensive and confusing if you seek the best price-performance for more robust, enterprise workloads and configurations. Initial entry costs and inadequately scoped POC environments can artificially lower the true costs of jumping into a cloud data warehouse environment. Cost predictability and certainty only happens when the entire picture of a production data warehouse environment is considered; all workloads, a true concurrency profile, an accurate assessment of users and a consideration of the durations of process execution. Architects and data warehouse owners must do their homework to make the right decision. With data warehouses, it is a matter of understanding the ways they scale, handle performance issues and concurrency. -
The Impact of the Google Cloud to Increase the Performance for a Use Case in E-Commerce Platform
International Journal of Computer Applications (0975 – 8887) Volume 177 – No. 35, February 2020 The Impact of the Google Cloud to Increase the Performance for a Use Case in E-Commerce Platform Silvana Greca Anxhela Kosta Department of Informatics Department of Informatics Faculty of Natural Sciences Faculty of Natural Sciences University of Tirana University of Tirana Tirana, Albania Tirana, Albania ABSTRACT Storing the unstructured and complex data in traditional SQL A massive amount of complex and huge digital data storing is database is very difficult[13]. For this reason, it was necessary caused due to the development of intelligent environments to create many types of database. NoSQL databases are useful and cloud computing. Today the organizations are using for applications that deal with very large semi-structured and Google Cloud platform to store and retrieve of all amount of unstructured data. NoSQL databases do not require a default their data at any time. Google offers database storage schema associated with the data. The purpose of the NoSQL like:Cloud Datastore for NoSQL non-relational database and databases is to increase the performance and scalability of a Cloud SQL for MySQL fully relational database. During specific application and service. years, enterprise organizations have accumulated growing Nowadays, e-commerce platform is very popular and is going stores of data, running analytics on that data to gain value through a transformation driven by customers who expect a from large information sets, and developing applications to seamless experience between online and in store. As a result, manage data exclusively. Traditional SQL databases are used many retailers are turning to cloud technologies in order to for storing and managing content of structured data, but with meet these needs. -
Oracle Nosql Database EE Data Sheet
Oracle NoSQL Database 21.1 Enterprise Edition (EE) Oracle NoSQL Database is a multi-model, multi-region, multi-cloud, active-active KEY BUSINESS BENEFITS database, designed to provide a highly-available, scalable, performant, flexible, High throughput and reliable data management solution to meet today’s most demanding Bounded latency workloads. It can be deployed in on-premise data centers and cloud. It is well- Linear scalability suited for high volume and velocity workloads, like Internet of Things, 360- High availability degree customer view, online contextual advertising, fraud detection, mobile Fast and easy deployment application, user personalization, and online gaming. Developers can use a single Smart topology management application interface to quickly build applications that run in on-premise and Online elastic configuration cloud environments. Multi-region data replication Enterprise grade software Applications send network requests against an Oracle NoSQL data store to and support perform database operations. With multi-region tables, data can be globally distributed and automatically replicated in real-time across different regions. Data can be modeled as fixed-schema tables, documents, key-value pairs, and large objects. Different data models interoperate with each other through a single programming interface. Oracle NoSQL Database is a sharded, shared-nothing system which distributes data uniformly across multiple shards in a NoSQL database cluster, based on the hashed value of the primary keys. An Oracle NoSQL Database data store is a collection of storage nodes, each of which hosts one or more replication nodes. Data is automatically populated across these replication nodes by internal replication mechanisms to ensure high availability and rapid failover in the event of a storage node failure. -
Object Databases As Data Stores for High Energy Physics
OBJECT DATABASES AS DATA STORES FOR HIGH ENERGY PHYSICS Dirk Düllmann CERN IT/ASD & RD45, Geneva, Switzerland Abstract Starting from 2005, the LHC experiments will generate an unprecedented amount of data. Some 100 Peta-Bytes of event, calibration and analysis data will be stored and have to be analysed in a world-wide distributed environment. At CERN the RD45 project has been set-up in 1995 to investigate different approaches to solve the data storage problems at LHC. The focus of RD45 soon moved to the use of Object Database Management Systems (ODBMS) as a central component. This paper gives an overview of the main advantages of ODBMS systems for HEP data stores. Several prototype and production applications will be discussed and a summary of the current use of ODBMS based systems in HEP will be presented. The second part will concentrate on physics data analysis based on an ODBMS. 1 INTRODUCTION 1.1 Data Management at LHC The new experiments at the Large Hadron Collider (LHC) at CERN will gather an unprecedented amount of data. Starting from 2005 each of the four LHC experiments ALICE, ATLAS, CMS and LHCb will measure of the order of 1 Peta Byte (1015 Bytes) per year. All together the experiments will store and repeatedly analyse some 100 PB of data during their lifetimes. Such an enormous task can only be accomplished by large international collaborations. Thousands of physicists from hundreds of institutes world-wide will participate. This also implies that nearly any available hardware platform will be used resulting in a truly heterogeneous and distributed system. -
Database Software Market: Billy Fitzsimmons +1 312 364 5112
Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions -
Performance Evaluation of Nosql Databases As a Service with YCSB: Couchbase Cloud, Mongodb Atlas, and AWS Dynamodb
Performance Evaluation of NoSQL Databases as a Service with YCSB: Couchbase Cloud, MongoDB Atlas, and AWS DynamoDB This 24-page report evaluates and compares the throughput and latency of Couchbase Cloud, MongoDB Atlas, and Amazon DynamoDB across four varying workloads in three different cluster configurations. By Artsiom Yudovin, Data Engineer Uladzislau Kaminski, Senior Software Engineer Ivan Shryma, Data Engineer Sergey Bushik, Lead Software Engineer Q4 2020 Table of Contents 1. Executive Summary 3 2. Testing Environment 3 2.1 YCSB instance configuration 3 2.2 MongoDB Atlas cluster configuration 4 2.3 Couchbase Cloud cluster configuration 5 2.4 Amazon DynamoDB cluster configuration 6 2.5 Prices 6 2.5.1 Couchbase costs 7 2.5.2 MongoDB Atlas costs 7 2.5.3 Amazon DynamoDB costs 8 3. Workloads and Tools 8 3.1 Workloads 8 3.2 Tools 8 4. YCSB Benchmark Results 10 4.1 Workload A: The update-heavy mode 10 4.1.1 Workload definition and model details 10 4.1.2 Query 10 4.1.3 Evaluation results 11 4.1.4 Summary 12 4.2 Workload E: Scanning short ranges 12 4.2.1 Workload definition and model details 12 4.2.3 Evaluation results 14 4.2.4 Summary 15 4.3 Pagination Workload: Filter with OFFSET and LIMIT 15 4.3.1 Workload definition and model details 15 4.3.2 Query 17 4.3.3 Evaluation results 17 4.3.4 Summary 18 4.4 JOIN Workload: JOIN operations with grouping and aggregation 18 4.4.1 Workload definition and model details 18 4.4.2 Query 19 4.4.3 Evaluation results 20 4.4.4 Summary 20 5. -
Run Critical Databases in the Cloud
Cloud Essentials Run Critical Databases in the Cloud Oracle has the most complete data management portfolio for any enterprise workload. Cloud computing is transforming business practices and simplifying data center operations. However, when it comes to moving critical database assets to the cloud, many IT leaders are cautious—and rightly so. They have seen the limitations of popular commodity cloud solutions, which mostly consist of fragmented hardware and software offerings that must be manually configured. IT pros must build their own platforms on top of the service provider’s commodity infrastructure, migrate their data, and then figure out how to keep everything in sync with the apps and data still maintained on premise. Oracle Autonomous Database provides enterprise-level scalability, security, performance, and automation—at a level that often exceeds what you can achieve in your own data center. You can subscribe to complete database platforms with a few clicks, eliminating the need to provision, build, and manage in-house databases and storage systems. With pay-as-you-grow configurations—all managed by Oracle experts— your organization will obtain operational flexibility with zero up-front capital expenses. It’s a great way to lower operational costs because you pay only for what you use. Read on to discover what a powerful cloud database can do for your business. Migrating to a Cloud Computing Model Modern businesses depend on their data more than cloud services work together automatically— ever before. That data is coming at an alarming rate, and in many cases, autonomously. placing crushing demands on data marts, enterprise data warehouses, and analytics systems.