Absorption and Metabolism of Lipid in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Absorption and Metabolism of Lipid in Humans Lipids in Modern Nutrition, edited by M. Horisberger and U. Bracco. Nestle Nutrition, Vevey/Raven Press, New York © 1987. Absorption and Metabolism of Lipid in Humans Patrick Tso and Stuart W. Weidman Departments of Physiology and Medicine, The University of Tennessee Center for the Health Sciences, Memphis, Tennessee 38163 DIETARY LIPIDS Dietary lipids can provide as much as 40% of the daily caloric intake in the Western diet. The daily dietary intake of lipid by humans in the Western world ranges between 60 and 100 g (1,2). Triglyceride (TG) is the major dietary fat in humans. Long-chain fatty acids such as the oleate (18:1) and palmitate (16:0) are the major fatty acids (FA) present. In most infant diets, fat becomes a major en- ergy source. In human milk and in human formulas, 40% to 50% of the total calo- ries are present as fat (3). The human small intestine is presented daily with other lipids such as phospholipid (PL) and cholesterol and other sterols. Both PL and cholesterol are major constituents of bile. In humans, the biliary PL is a major contributor of the luminal PL. It has been calculated that 11 to 12 g of biliary PL enters the small intestinal lumen daily, whereas the dietary contribution is 1 to 2 g (4). The predominant sterol in the Western diet is cholesterol. However, plant sterols account for 20% to 25% of total dietary sterol (5-7). It is beyond the scope of this review to discuss the absorption of lipid soluble vitamins, and the interested readers should refer to the excellent review by Barrowman (8). INTRALUMINAL DIGESTION OF LIPIDS Although the majority of the digestion of TG occurs in the small intestine, the digestion starts in the stomach. Lipase activity has been reported to be present in the human gastric juice (9). This lingual lipase is derived from a group of serous glands (Von Ebner) beneath the circumvallate papillae (3). The lingual lipase plays a particularly important role in the digestion of milk TG, and this compensates for the low pancreatic activity in the newborn. Readers interested in the subject of lingual lipase should refer to the review by Hamosh (3). Lipid emulsion enters the small intestinal lumen as fine lipid droplets less than 0.5 (i-m in diameter (10,11). The combined action of the bile and the pancreatic juice brings about a marked 2 UPID ABSORPTION AND METABOUSM IN HUMANS change in the chemical and physical form of the ingested lipid emulsion. The di- gestion of TG is brought about by the pancreatic lipase in the upper part of the intestinal lumen. The pancreatic lipase works at the interface between the oil and the aqueous phases. The velocity of lipolysis depends on factors modifying the physicochemical properties of the interface as well as the surface area (12-15). Pancreatic lipase acts predominantly at the 1- and 3-ester bonds of TG to release 2-monoglyceride (MG) and free FA (13,16-18). Through isomerization, the 2-MG can be converted to 1-MG. However, this reaction probably occurs slowly in the intestine (19). A pancreatic esterase has been demonstrated by Hofmann and Borg- strom (20) that catalyzes the hydrolysis of 1- or 2-MG to form glycerol and FA. The pancreatic esterase works more efficiently with the 1-isomer than with the 2- isomer. In vitro studies using purified pancreatic lipase have demonstrated a potent in- hibitory effect of bile salts on lipolysis of TG at concentration above critical micel- lar concentration (21,22). The inhibitory effect of bile salt is physiological as the concentration of bile salts in the duodenum is normally higher than the concentra- tion of bile salt needed to observe the inhibitory effect. The pancreas synthesizes another protein that antagonizes the inhibitory action of bile salts. This factor was first isolated by Morgan et al. (23) from rat pancreatic juice. The structure and action of colipase have predominantly been elucidated by the work of Desnuelle and his group in Marseille, and Borgstrom and co-workers in Lund (22,24,25). Colipase acts by attaching to the ester bond region of the TG molecule. In turn, the lipase binds strongly to the colipase by electrostatic interactions, thereby allow- ing the hydrolysis of the TG by the lipase molecule (26). Colipase is secreted as a procolipase and is converted to the active form through trypsin digestion (27). The majority of luminal PL is phosphatidylcholine (PC). Both biliary and di- etary PC are hydrolyzed in the presence of pancreatic phospholipase A2 to form lysophosphatidylcholine (LPC) and FA (28,29). Although it is generally accepted that bile PC or dietary PC is only absorbed after hydrolysis by pancreatic phospho- lipase A2 to form 1-lysophosphatidylcholine (28,30,31), it has been proposed that biliary PC is resistant to the action of phospholipase A2, there being an enterohe- patic circulation of bile PC (32-34). This hypothesis needs to be further investi- gated. Cholesterol ester entering the small intestinal lumen is hydrolyzed in the presence of the pancreatic cholesterol esterase to form free sterol prior to its ab- sorption (35,36). UPTAKE OF DIGESTED FAT BY THE ENTEROCYTE The lipolytic products distribute themselves between the aqueous and the oil phases. In the aqueous phase, the lipolytic products exist mainly as part of the mixed bile salt micelle, although some exist in very low concentrations as mono- molecular species in classical solution. This complex problem has been ably re- viewed by Hofmann (37). As digestion progresses, the oil phase gets smaller in volume because of the lipolytic products passing into the mixed micelles and into LIP1D ABSORPTION AND METABOLISM IN HUMANS 3 the absorptive cells. This concept has recently been challenged by the findings of Carey and associates (38-40). They demonstrated the presence of two dispersed phases within the aqueous phase, a phase of micelles saturated with lipids and cho- lesterol (hydrodynamic radii, 200 A) and a phase of unilamellar vesicles (lipo- somes) with radii of 400 to 600 A saturated with bile salts (11). The unilamellar vesicles of mixed lipids saturated with bile salts may play an important role in the uptake of lipid in bile-salt deficient patients (11,41). Further experiments are needed to elucidate the physiological importance of Carey and co-workers' obser- vation. There is a consensus that the uptake of lipid digestion products is passive (42,43). Micellar solubilization increases uptake of the lipid digestion products by increasing their aqueous concentration gradient across the unstirred water layer (42,44-46). How the unstirred water layer affects lipid uptake is complex. The subject has been thoroughly reviewed by Thomson and Dietschy (43). The lipid digestion products enter the enterocytes as monomers (44,47). There are still a few interesting observations for which we do not have an explanation. First, why is p- sitosterol so poorly absorbed relative to cholesterol? The uptake of cholesterol by the enterocytes is different from that of the other lipid digestion products. The ab- sorption of cholesterol seems to involve the collision of the micelle with the brush border membrane, and the disruption of the micelle as a result of monoglyceride and FA absorption might enhance the entry of cholesterol into the lipid membrane (48). In in vivo experiments, the cholesterol was absorbed much more efficiently than the p-sitosterol. However, this selectivity was lost in in vitro experiments. Thus, this membrane selectivity may be energy dependent. Sylven (49), by oc- cluding the blood supply to the jejunum, markedly reduced sterol uptake in the otherwise intact animal, thus supporting the theory that this membrane discrimina- tion of sterol absorption is energy dependent. Secondly, is the unstirred water layer physiologically very important? If so, how are patients with bile salt defi- ciency able to absorb lipid so well? METABOLISM OF ABSORBED LIPID DIGESTION PRODUCTS Once the lipid digestion products enter the cell, the major site of their metabo- lism is at the endoplasmic reticulum (50,51). The mode of transport of these diges- tion products is presumably by simple diffusion. A fatty acid binding protein (FABP) has been described and characterized (52,53). Ockner and Manning (53) suggested a possible role of FABP in regulating TG biosynthesis by adjusting the amount of FA made available for activation and incorporation into TG. The absorbed 2-MG and FA are reconstituted into TG through the monoglycer- ide pathway. The enzymes involved exist as an enzyme complex called the "tri- glyceride synthetase" (54). The other pathway for the synthesis of TG from the absorbed FA is the a-glycerophosphate pathway. The a-glycerophosphate path- way is particularly important under conditions where the supply of FA is far more 4 UPID ABSORPTION AND METABOLISM IN HUMANS abundant than the MG. When MG and FA are absorbed together, the MG pathway plays a more important role than the a-glycerophosphate pathway. This is sup- ported by data both in animals (17,55) and also in humans (56). The reasons why the MG pathway is the preferred pathway are three-fold. First, the MG pathway has a Km of approximately one-hundredth that of the a-glycerophosphate pathway (57), and, thus, the rate is much faster with the former. Second, it has been sug- gested that the MG pathway may be preferentially activated by bile salts (58). Third, the presence of MG inhibits the a-glycerophosphate pathway and thus fa- vors the MG pathway (59). While TG is the major product of the two pathways, the diglyceride (DG) and the TG originated from these pathways seem to enter different metabolic pools.
Recommended publications
  • A Tissue-Engineered Model of the Intestinal Lacteal for Evaluating Lipid Transport by Lymphatics
    ARTICLE A Tissue-Engineered Model of the Intestinal Lacteal for Evaluating Lipid Transport by Lymphatics J. Brandon Dixon,1,2 Sandeep Raghunathan,1 Melody A. Swartz1,2,3 1Institute of Bioengineering, School of Life Sciences, E´ cole Polytechnique Fe´de´rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; telephone: þ41 21 693 9686; fax: þ41 21 693 9670; e-mail: melody.swartz@epfl.ch 2Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 3Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, Lausanne, Switzerland Received 4 September 2008; revision received 21 February 2009; accepted 20 March 2009 Published online 1 April 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/bit.22337 trafficking, but in addition, lymphatics are central to the transport of dietary lipid from the gut. In the small intestine, ABSTRACT: Lacteals are the entry point of all dietary lipids into the circulation, yet little is known about the active enterocytes reesterify the majority of free fatty acids (FFAs) regulation of lipid uptake by these lymphatic vessels, and absorbed from the lumen of the gut into triacylglycerols there lacks in vitro models to study the lacteal—enterocyte which are then incorporated into chylomicrons (Tso and interface. We describe an in vitro model of the human Balint, 1986) and secreted basally to be picked up solely by intestinal microenvironment containing differentiated lacteals, which are blind-ended lymphatic vessels in the Caco-2 cells and lymphatic endothelial cells (LECs). We characterize the model for fatty acid, lipoprotein, albumin, center of each villus (Azzali, 1982; Schmid-Scho¨nbein, and dextran transport, and compare to qualitative uptake of 1990).
    [Show full text]
  • Rat CLPS / Colipase Protein (His Tag)
    Rat CLPS / Colipase Protein (His Tag) Catalog Number: 80729-R08H General Information SDS-PAGE: Gene Name Synonym: CLPS Protein Construction: A DNA sequence encoding the rat Clps (NP_037271.1) (Met1-Gln112) was expressed with a polyhistidine tag at the C-terminus. Source: Rat Expression Host: HEK293 Cells QC Testing Purity: > 95 % as determined by SDS-PAGE. Endotoxin: Protein Description < 1.0 EU per μg protein as determined by the LAL method. Colipase belongs to the colipase family. Structural studies of the complex Stability: and of colipase alone have revealed the functionality of its architecture. It is a small protein with five conserved disulphide bonds. Structural analogies Samples are stable for up to twelve months from date of receipt at -70 ℃ have been recognised between a developmental protein, the pancreatic lipase C-terminal domain, the N-terminal domains of lipoxygenases and the Predicted N terminal: Ala 18 C-terminal domain of alpha-toxin. Colipase can only be detected in Molecular Mass: pancreatic acinar cells, suggesting regulation of expression by tissue- specific elements. Colipase allows lipase to anchor noncovalently to the The recombinant rat Clps consists 106 amino acids and predicts a surface of lipid micelles, counteracting the destabilizing influence of molecular mass of 11.9 kDa. intestinal bile salts. Without colipase the enzyme is washed off by bile salts, which have an inhibitory effect on the lipase. Colipase is a cofactor needed Formulation: by pancreatic lipase for efficient dietary lipid hydrolysis. It binds to the C- terminal, non-catalytic domain of lipase, thereby stabilising as active Lyophilized from sterile PBS, pH 7.4.
    [Show full text]
  • Biochemical Properties of Pancreatic Colipase from the Common Stingray
    Ben Bacha et al. Lipids in Health and Disease 2011, 10:69 http://www.lipidworld.com/content/10/1/69 RESEARCH Open Access Biochemical properties of pancreatic colipase from the common stingray Dasyatis pastinaca Abir Ben Bacha†, Aida Karray†, Lobna Daoud, Emna Bouchaala, Madiha Bou Ali, Youssef Gargouri and Yassine Ben Ali* Background: Pancreatic colipase is a required co-factor for pancreatic lipase, being necessary for its activity during hydrolysis of dietary triglycerides in the presence of bile salts. In the intestine, colipase is cleaved from a precursor molecule, procolipase, through the action of trypsin. This cleavage yields a peptide called enterostatin knoswn, being produced in equimolar proportions to colipase. Results: In this study, colipase from the common stingray Dasyatis pastinaca (CoSPL) was purified to homogeneity. The purified colipase is not glycosylated and has an apparent molecular mass of around 10 kDa. The NH2-terminal sequencing of purified CoSPL exhibits more than 55% identity with those of mammalian, bird or marine colipases. CoSPL was found to be less effective activator of bird and mammal pancreatic lipases than for the lipase from the same specie. The apparent dissociation constant (Kd) of the colipase/lipase complex and the apparent Vmax of the colipase-activated lipase values were deduced from the linear curves of the Scatchard plots. We concluded that Stingray Pancreatic Lipase (SPL) has higher ability to interact with colipase from the same species than with the mammal or bird ones. Conclusion: The fact that colipase is a universal lipase cofactor might thus be explained by a conservation of the colipase-lipase interaction site.
    [Show full text]
  • Digestive Enzymes: the Key to Optimum Health
    Education Article Digestive Enzymes: The Key to Optimum Health Digestion is essential for good health. Unlocking nutrients from foods is a complex process. In order to break down food we rely on optimal levels and function of a special set of proteins called digestive enzymes. These proteins are found in the saliva and also in the small intestines. Without the combined actions of our digestive enzymes we would simply be unable to absorb many nutrients that we need to maintain good health. This is why reduced levels of digestive enzymes can be linked to a wide-range of symptoms within the gut and beyond. Digestive enzymes, along with stomach acid, play a crucial role in the initial stages of digestion, i.e. the breaking down of the food that we eat. The main classes of human digestive enzymes include proteases, lipases and carbohydrases, which respectively break down the macronutrients protein, fats and carbohydrates. If we do not efficiently digest these foods then vital nutrients such as essential fats, vitamins, minerals and phytonutrients cannot be absorbed. What is more, undigested or partially digested food passes through into the large intestines and is fermented by the resident colonic bacteria, causing unpleasant symptoms such as bloating and flatulence and contributing to a toxic bowel. Naturopaths believe toxicity within the bowel is the root of all disease. We do not make digestive enzymes for every type of food that we eat, such as gluten and phytic acid found in some grains and cereals and lactose, a sugar found in milk. This means our bodies may find it difficult to digest these types of foods.
    [Show full text]
  • Polymorphisms in PNLIP, Encoding Pancreatic Lipase, and Associations with Metabolic Traits
    J Hum Genet (2001) 46:320–324 © Jpn Soc Hum Genet and Springer-Verlag 2001 ORIGINAL ARTICLE Robert A. Hegele · D. Dan Ramdath · Matthew R. Ban Michael N. Carruthers · Christine V. Carrington Henian Cao Polymorphisms in PNLIP, encoding pancreatic lipase, and associations with metabolic traits Received: January 18, 2001 / Accepted: February 19, 2001 Abstract Pancreatic lipase (EC 3.1.1.3) is an exocrine se- Introduction cretion that hydrolyzes dietary triglycerides in the small intestine. We developed genomic amplification primers to sequence the 13 exons of PNLIP, which encodes pancreatic Pancreatic lipase (PL; EC 3.1.1.3), a 56-kD protein, is in- lipase, in order to screen for possible mutations in cell lines volved in the intestinal hydrolysis of dietary triglyceride to of four children with pancreatic lipase deficiency (OMIM fatty acids. PL deficiency (OMIM 246600) is associated with 246600). We found no missense or nonsense mutations in malabsorption of long-chain triglyceride fatty acids, failure these samples, but we found three silent single-nucleotide to thrive in infancy and childhood, and absence of PL secre- polymorphisms (SNPs), namely, 96A/C in exon 3, 486C/T in tion upon secretin stimulation (Sheldon 1964; Rey et al. exon 6, and 1359C/T in exon 13. In 50 normolipidemic 1966). PNLIP on chromosome 10q26.1 (Davis et al. 1991) is Caucasians, the PNLIP 96C and 486T alleles had frequen- a 13-exon gene that spans more than 20kb (Sims et al. 1993) cies of 0.083 and 0.150, respectively. The PNLIP 1359T and encodes the 465-amino acid PL mature protein (Lowe allele was absent from Caucasian, Chinese, South Asian, et al.
    [Show full text]
  • Anatomy of the Digestive System
    The Digestive System Anatomy of the Digestive System We need food for cellular utilization: organs of digestive system form essentially a long !nutrients as building blocks for synthesis continuous tube open at both ends !sugars, etc to break down for energy ! alimentary canal (gastrointestinal tract) most food that we eat cannot be directly used by the mouth!pharynx!esophagus!stomach! body small intestine!large intestine !too large and complex to be absorbed attached to this tube are assorted accessory organs and structures that aid in the digestive processes !chemical composition must be modified to be useable by cells salivary glands teeth digestive system functions to altered the chemical and liver physical composition of food so that it can be gall bladder absorbed and used by the body; ie pancreas mesenteries Functions of Digestive System: The GI tract (digestive system) is located mainly in 1. physical and chemical digestion abdominopelvic cavity 2. absorption surrounded by serous membrane = visceral peritoneum 3. collect & eliminate nonuseable components of food this serous membrane is continuous with parietal peritoneum and extends between digestive organs as mesenteries ! hold organs in place, prevent tangling Human Anatomy & Physiology: Digestive System; Ziser Lecture Notes, 2014.4 1 Human Anatomy & Physiology: Digestive System; Ziser Lecture Notes, 2014.4 2 is suspended from rear of soft palate The wall of the alimentary canal consists of 4 layers: blocks nasal passages when swallowing outer serosa: tongue visceral peritoneum,
    [Show full text]
  • Human CLPS / Colipase Protein (His Tag)
    Human CLPS / Colipase Protein (His Tag) Catalog Number: 13631-H08B General Information SDS-PAGE: Gene Name Synonym: CLPS Protein Construction: A DNA sequence encoding the human CLPS (P04118) (Met 1-Gln 112) was fused with a polyhistidine tag at the C-terminus. Source: Human Expression Host: Baculovirus-Insect Cells QC Testing Purity: > 90 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Colipase belongs to the colipase family. Structural studies of the complex Stability: and of colipase alone have revealed the functionality of its architecture. It is a small protein with five conserved disulphide bonds. Structural analogies ℃ Samples are stable for up to twelve months from date of receipt at -70 have been recognised between a developmental protein, the pancreatic lipase C-terminal domain, the N-terminal domains of lipoxygenases and the Ala 18 Predicted N terminal: C-terminal domain of alpha-toxin. Colipase can only be detected in Molecular Mass: pancreatic acinar cells, suggesting regulation of expression by tissue- specific elements. Colipase allows lipase to anchor noncovalently to the The recombinant human CLPS consists of 105 amino acids and predicts a surface of lipid micelles, counteracting the destabilizing influence of molecular mass of 11.5 kDa. It migrates as an approximately 12 KDa band in intestinal bile salts. Without colipase the enzyme is washed off by bile salts, SDS-PAGE under reducing conditions. which have an inhibitory effect on the lipase. Colipase is a cofactor needed by pancreatic lipase for efficient dietary lipid hydrolysis. It binds to the C- Formulation: terminal, non-catalytic domain of lipase, thereby stabilising as active conformation and considerably increasing the overall hydrophobic binding Lyophilized from sterile PBS, 500mM NaCl, pH 7.0, 10% gly site.
    [Show full text]
  • The Asymmetric Pitx2 Regulates Intestinal Muscular-Lacteal Development and Protects Against Fatty Liver Disease Shing Hu , Aparn
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447753; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The asymmetric Pitx2 regulates intestinal muscular-lacteal development and protects against fatty liver disease Shing Hu1, Aparna Mahadevan1, Isaac F. Elysee1, Joseph Choi1, Nathan R. Souchet1, Gloria H. Bae1, Alessandra K. Taboada1, Gerald E. Duhamel2, Carolyn S. Sevier1, Ge Tao3, and Natasza A. Kurpios1,* 1Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA 2Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA 3Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA *Correspondence and Lead Contact: [email protected] RUNNING TITLE: Pitx2c regulates gut lymphatic development bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447753; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Intestinal lacteals are the essential lymphatic channels for absorption and transport of dietary lipids and drive pathogenesis of debilitating metabolic diseases. Yet, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover a novel intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2.
    [Show full text]
  • Synthesis and Transport of Lipoprotein Particles by Intestinal Absorptive Cells in Man
    Synthesis and transport of lipoprotein particles by intestinal absorptive cells in man Guido N. Tytgat, … , Cyrus E. Rubin, David R. Saunders J Clin Invest. 1971;50(10):2065-2078. https://doi.org/10.1172/JCI106700. Research Article The site of synthesis and some new details of lipoprotein particle transport have been demonstrated within the jejunal mucosa of man. In normal fasting volunteers, lipoprotein particles (88%, 150-650 A diameter) were visualized within the smooth endoplasmic reticulum and Golgi cisternae of absorptive cells covering the tips of jejunal villi. Electron microscopic observations suggested that these particles exited through the sides and bases of absorptive cells by reverse pinocytosis and then passed through the extracellular matrix of the lamina propria to enter lacteal lumina. When these lipid particles were isolated from fasting intestinal biopsies by preparative ultracentrifugation, their size distribution was similar to that of very low density (Sf 20-400) lipoprotein (VLDL) particles in plasma. After a fatty meal, jejunal absorptive cells and extracts of their homogenates contained lipid particles of VLDL-size as well as chylomicrons of various sizes. The percentage of triglyceride in isolated intestinal lipid particles increased during fat absorption. Our interpretation of these data is that chylomicrons are probably derived from intestinal lipoprotein particles by addition of triglyceride. Find the latest version: https://jci.me/106700/pdf Synthesis and 1 ransport of Lipoprotein Particles by Intestinal Absorptive Cells in Man Gumo N. TYTGAT, CYRUS E. RUBIN, and DAVID R. SAUNDERS From the Division of Gastroenterology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98105 A B S T R A C T The site of synthesis and some new de- to be a source of these small (< 0.1 /A), very low den- tails of lipoprotein particle transport have been demon- sity (d < 1.006) lipoprotein particles (VLDL)1 (1-7).
    [Show full text]
  • Protein and Lipid Digestion
    MMHS Anatomy and Physiology A. Begins in the stomach, by the action of pepsin. 1. Pepsin breaks down proteins into short chains of amino acids called peptides. 2. Pepsin is released as inactive pepsinogen and is activated by (HCl) hydrochloric acid in the stomach. Pepsin B. In the small intestine (SI), several enzymes act: 1. Trypsin (made in the pancreas) breaks down the peptide chains into dipeptides (2 amino acids) a. Trypsin will destroy the proteins that make up the pancreas, SO… b. It is first released as inactive Trypsinogen. c. In the small intestine (SI), the regulatory enzyme enterokinase, an intestinal enzyme, activates trypsin from inactive trypsinogen. C. A group of intestinal enzymes called Peptidases (Erepsin is one such enzyme) that completes protein digestion by converting dipeptides into individual amino acids. D. Amino Acids are absorbed by active transport (*ATP) into simple columnar cells of the villus, then into the capillaries by diffusion. (this is the same pathway as monosacchs. * = requires ATP The Process of Condensation (=the removal of H2O) to form a dipeptide from 2 amino acids. 2 Amino Acids Dipeptide The Process of Hydrolysis (=the addition of water to form two simple sugars from the disaccharide sucrose. Protein Digesting Enzymes The protein enzyme “Bromelain” comes from Pineapples. = If you add pineapple to jello it will digest the jello and turn it to mush (YUK) A. The main lipids stored in the body are triglycerides. 1. 3 Fatty Acids are attached to a single glycerol molecule. B. Lipid digestion begins in the small intestine. 1. Bile (not an enzyme) –made in the liver, stored in the gall bladder emulsifes fat into tiny droplets which ( *S.A.) 2.
    [Show full text]
  • Uniprot Acceprotiens 121 113 Ratio(113/12 114 Ratio
    Uniprot Acceprotiens 121 113 ratio(113/12 114 ratio(114/12 115 ratio(115/12 116 ratio(116/12 117 ratio(117/12 118 ratio(118/12 119 ratio(119/121) P02768 Serum albumin OS=Homo s666397.2 862466.6 1.29 593482.1 0.89 2220420.5 3.33 846469.3 1.27 634302.5 0.95 736961.1 1.11 842297.5 1.26 P02760 Protein AMBP OS=Homo s381627.7 294812.3 0.77 474165.8 1.24 203377.3 0.53 349197.6 0.92 346271.7 0.91 328356.1 0.86 411229.3 1.08 B4E1B2 cDNA FLJ53691, highly sim78511.8 107560.1 1.37 85218.8 1.09 199640.4 2.54 90022.3 1.15 73427.3 0.94 82722 1.05 102491.8 1.31 A0A0K0K1HEpididymis secretory sperm 3358.1 4584.8 1.37 4234.8 1.26 8496.1 2.53 4193.7 1.25 3507.1 1.04 3632.2 1.08 4873.3 1.45 D3DNU8 Kininogen 1, isoform CRA_302648.3 294936.6 0.97 257956.9 0.85 193831.3 0.64 290406.7 0.96 313453.3 1.04 279805.5 0.92 228883.9 0.76 B4E1C2 Kininogen 1, isoform CRA_167.9 229.7 1.37 263.2 1.57 278 1.66 326 1.94 265.5 1.58 290.3 1.73 341.5 2.03 O60494 Cubilin OS=Homo sapiens G40132.6 45037.5 1.12 38654.5 0.96 34055.8 0.85 39708.6 0.99 44702.9 1.11 45025.7 1.12 32701.3 0.81 P98164 Low-density lipoprotein rece40915.4 45344.8 1.11 35817.7 0.88 35721.8 0.87 42157.7 1.03 46693.4 1.14 48624 1.19 38847.7 0.95 A0A024RABHeparan sulfate proteoglyca46985.3 43536.1 0.93 49827.7 1.06 33964.3 0.72 44780.9 0.95 46858.6 1.00 47703.5 1.02 37785.7 0.80 P01133 Pro-epidermal growth factor 75270.8 73109.5 0.97 66336.1 0.88 56680.9 0.75 70877.8 0.94 76444.3 1.02 81110.3 1.08 65749.7 0.87 Q6N093 Putative uncharacterized pro47825.3 55632.5 1.16 48428.3 1.01 63601.5 1.33 65204.2 1.36 59384.5
    [Show full text]
  • Feeding & Digestion
    Feeding & Digestion Why eat? • Macronutrients Feeding & Digestion – Energy for all our metabolic processes – Monomers to build our polymers 1. Carbohydrates 2. Lipids 3. Protein • Micronutrients – Tiny amounts of vital elements & compounds our body cannot adequately synthesize 4. Vitamins 5. Minerals • Hydration 6. Water Niche: role played in a FEEDING community (grazer, predator, • “Eat”: Gr. -phagy; Lt. -vore scavenger, etc.) • Your food may not Some organisms have specialized niches so as to: • increase feeding efficiency wish to be eaten! • reduce competition • DIET & Optimal foraging model: Need to maximize benefits (energy/nutrients) while minimizing MORPHOLOGY costs (energy expended/risks) • FOOD CAPTURE • MECHANICAL PROCESSING Never give up! Optimal Foraging Model Optimal Foraging Model • Morphology reflects foraging strategies • Generalist is less limited by rarity of resources • Specialist is more efficient at exploiting a specific resource Generalist OMNIVORE opossum CARNIVORE HERBIVORE wolf elephant Optimal foraging strategies: Need to maximize benefits (energy/nutrients) INSECTIVORE PISCIVORE while minimizing costs (energy shrew osprey expended / risks) MYRMECOPHAGORE • Tapirs have 40x more meat, but are anteater much harder to find and catch. Specialist So jaguars prefer armadillos. Heyer 1 Feeding & Digestion Bird Beaks Anteater Adaptations • Generalist & specialist bills • Thick fur • Small eyes • Long claws in front • Long snout • Long barbed tongue • No teeth FOOD CAPTURE SPECIALIZATIONS Fluid Feeding – Fluid Feeding • Sucking with tube – Suspension & Deposit Feeding – mosquitoes & butterflies • Lapping with brushy tongue – Grazers & Browsers – hummingbirds, fruit bats – Predation: Ambush & Attraction – bees – Venoms – Tool Use & Team Efforts Hummingbird tongue Suspension Feeding (Filter Feeding) • Filter food (plankton, small animals, organic particles) suspended in water. • http://www.youtube.com/watch?v=1wpQ8HQEkvE • Filters are hard, soft or even sticky.
    [Show full text]