Regulation of Gene Expression by Rela in Activated B Lymphocytes By

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Gene Expression by Rela in Activated B Lymphocytes By Regulation of gene expression by RelA in activated B lymphocytes By Jaimy P. Joy A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland June, 2017 Abstract B cells undergo dramatic alterations in response to antigen recognition through cell surface receptors, which requires active transcription and translation. The temporal expression of transcripts is germane and integral in determining underlying complex biological phenomena. The transcription factor RelA is rapidly expressed in the nucleus in response to BCR crosslinking, and downregulated within hours. However, many putative NF-B target genes expressed by stimulated B cells do not follow the same kinetic pattern as the transcription factor, suggesting complex transcriptional and post-transcriptional regulation. The current work seeks to explore the mechanisms by which genes are regulated by NF-B in primary murine splenic B cells in response to BCR crosslinking. To do this, we examined the kinetics of genome-wide RelA binding, the inducible transcriptome, and RNA stability of induced genes. NF-B target genes, as inferred from RelA ChIP-seq analyses and pharmacological inhibition of IKK-2 inhibitors, were amongst the most highly induced genes in response to BCR crosslinking. Highly induced transcripts had shorter half-lives (t1/2s) than those with less robust induction one hour after stimulation. The majority of inducible genes with fast t1/2s displayed exponential decay, while the majority of inducible genes with slow t1/2s displayed non-exponential decay. As exponential decay is likely to mean a single-step decay mechanism and the 3’ UTRs are known to play a critical role in RNA stability, we looked to the presence of RNABP consensus motifs in genes of various decay patterns. Our analyses revealed that hnRNPA1 binding sites were highly enriched in the 3’ UTRs of genes with fast, ii exponential decay. siRNA mediated knockdown of hnRNPA1 in two mature B cell lines, Bal17 and M12, revealed greater RNA stability of many genes that have fast, exponential decay and are RelA target genes based on inducible RelA binding and IKK- 2 inhibition. These findings suggest a tantalizing model in which mRNA decay is dependent on transcription factors, such as RelA, that inducibly bind to its target genes and induce RNA. Mentor: Ranjan Sen, Ph.D. Reader: Joel Pomerantz, Ph.D. iii Acknowledgements The journey of 1,000 miles begins with a single step and I am grateful to have taken the first step five and a half years ago. It has been an arduous and tumultuous experience, but just as rewarding, and not one I would trade for anything. The science, friendships, and memories will be treasured for years to come. To my friends and family who loved, supported, and encouraged me even when I didn’t deserve it or show my appreciation for it, thank you. This body of work would have been impossible without your unwavering support. You no longer have to ask me “when will you be done?” and I no longer have to silently resent you for it. To my thesis committee members, Joel, Stuart, and Jef, thank you for the consistent years of reliability and helpfulness. Your keen sense of good science and mentorship have been an invaluable part of my scientific growth and maturity. If only all grad students can be so lucky. To the immunology training program, Mark, Joel, Ms. Angela, Ms. Lin, and Lori, thank you for giving me the opportunity to pursue my Ph.D.. You put up with a lot and I hope to make you proud. To the members of the Sen lab, I could not have asked for a better group of people to call my work family. Everyone, both past and present members, has been an incredible resource and support system. If anyone goes through any of my lab notebooks and comes across random wrinkly patches and bleeding ink, assume I was having a bad day. Finally, to Dr. Sen, the person I am lucky to have called my mentor, I (yes, even I) cannot fully express my gratitude due to the limited nature of the English language. I iv came to Hopkins to be trained as a scientist and I leave knowing that to be true. From journal clubs, lab meetings, one-on-one meetings, seminars, to everything in between, I learned to question everything and be critical in my analyses. I could not have asked to train under a better scientist. Somehow, you also managed to be a good and patient person and set the bar for all PIs unrealistically high. To any future graduate student who stumbles onto this thesis, it gets better, but if it doesn’t, Robert Frost said it best: “it [life] goes on”. As this 1,000-mile journey ends, I wish to finish it in the same way I began, by giving thanks to Christ and trusting that the next one will be just as fulfilling. v Table of Contents Abstract ...........................................................................................................................................ii Acknowledgements ...................................................................................................................... iv Table of Figures .......................................................................................................................... viii Chapter I: NF-B .......................................................................................................................... 1 Introduction: NF-B ...................................................................................................................... 1 NF-B and IB family members ............................................................................................. 1 NF-B signaling ........................................................................................................................ 2 Regulation of NF-B ................................................................................................................. 3 NF- binding: specificity and dynamics .................................................................................. 7 Cell and stimulus-specific activation of NF- ...................................................................... 13 Chromatin accessibility and histone modifications ............................................................ 13 TF and cofactor interaction ................................................................................................... 15 NF-B dependent transcription and target genes ................................................................. 17 Existing NF-B target gene databases ............................................................................... 17 Criteria for NF-B target gene identification ....................................................................... 17 Experimental determination of NF-B target genes .......................................................... 18 Monophasic vs oscillatory NF-B activity ........................................................................... 20 Single cell analyses in the pursuit of NF-B target genes ............................................... 21 Kinetics of NF- target genes ............................................................................................ 22 Rate of gene induction ........................................................................................................... 22 Duration of functional promoter-bound complexes ........................................................... 23 Rate of mRNA degradation ................................................................................................... 24 Outstanding questions ............................................................................................................... 26 B cell biology ............................................................................................................................... 28 B cell development and B cell subsets ............................................................................... 28 Epigenetic landscape of B cells ........................................................................................... 28 NF- in B cells .......................................................................................................................... 31 Project Goals............................................................................................................................... 33 Chapter II: BCR-induced NF-B response in B cells ............................................................ 34 Kinetics of transcriptional response to BCR stimulation ................................................... 34 vi Genome-wide inducible RelA binding in anti-IgM stimulated B cells. ............................ 41 Basal state epigenetic and transcriptional status of genes with iRelA binding ............. 52 Stimulus specificity of NF- in B cells ............................................................................... 58 Determination of bona fide RelA target genes by use of pharmacological inhibition of IKK-2 and genetic ablation of RelA. ..................................................................................... 61 Potential RelA dependent distal regulation of CCL3 and CCL4 ..................................... 73 Chapter III: mRNA decay of RelA-dependent genes in BCR-stimulated B cells ............. 77 Introduction .................................................................................................................................. 77 Factors involved in mRNA stability .........................................................................................
Recommended publications
  • Regulation of DNA Binding by Rel/NF-Kb Transcription Factors: Structural Views
    Oncogene (1999) 18, 6845 ± 6852 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $15.00 http://www.stockton-press.co.uk/onc Regulation of DNA binding by Rel/NF-kB transcription factors: structural views Frances E Chen1 and Gourisankar Ghosh*,2 1Department of Biology, University of California ± San Diego, 9500 Gilman Drive, MC 0359, La Jolla, California, CA 92093-0359, USA; 2Department of Chemistry and Biochemistry, University of California ± San Diego, 9500 Gilman Drive, MC 0359, La Jolla, California, CA 92093-0359, USA Rel/NF-kB transcription factors form homo- and nuclear localization and IkB binding. Additional Rel/ heterodimers with dierent DNA binding site speci®cities NF-kB family members include the v-Rel oncoprotein and DNA binding anities. Several intracellular path- of the avian Rev-T retrovirus, and the Drosophila ways evoked by a wide range of biological factors and Dorsal, Dif and Relish proteins. Rel/NF-kB proteins environmental conditions can lead to the activation of bind to DNA segments with a consensus sequence of Rel/NF-kB dimers by signaling degradation of the 5'-GGGRNYYYCC-3' collectively referred to as kB inhibitory IkB protein. In the nucleus Rel/NF-kB dimers elements or kB sites. For the NF-kB p50/RelA modulate the expression of a variety of genes including heterodimer alone, there are a large number of those encoding cytokines, growth factors, acute phase dierent kB sites that display varying degrees of response proteins, immunoreceptors, other transcription consensus (Figure 1). factors, cell adhesion molecules, viral proteins and Rel/NF-kB regulation can occur at multiple levels: regulators of apoptosis.
    [Show full text]
  • Rela, P50 and Inhibitor of Kappa B Alpha Are Elevated in Human Metastatic Melanoma Cells and Respond Aberrantly to Ultraviolet Light B
    PIGMENT CELL RES 14: 456–465. 2001 Copyright © Pigment Cell Res 2001 Printed in Ireland—all rights reser6ed ISSN 0893-5785 Original Research Article RelA, p50 and Inhibitor of kappa B alpha are Elevated in Human Metastatic Melanoma Cells and Respond Aberrantly to Ultraviolet Light B SUSAN E. McNULTY, NILOUFAR B. TOHIDIAN and FRANK L. MEYSKENS Jr. Department of Medicine and Chao Family Comprehensi6e Cancer Center, Uni6ersity of California Ir6ine Medical Center, 101 City Dri6e South, Orange, California 92868 *Address reprint requests to Prof. Frank L. Meyskins, Chao Family Comprehensi6e Cancer Center, Building 23, Rte 81, Uni6ersity of California Ir6ine Medical Center, 101 City Dri6e South, Orange, California 92868. E-mail: fl[email protected] Received 20 April 2001; in final form 15 August 2001 Metastatic melanomas are typically resistant to radiation and melanocytes. We also found that melanoma cells expressed chemotherapy. The underlying basis for this phenomenon may higher cytoplasmic levels of RelA, p105/p50 and the inhibitory result in part from defects in apoptotic pathways. Nuclear protein, inhibitor of kappa B alpha (IkBa) than melanocytes. factor kappa B (NFkB) has been shown to control apoptosis in To directly test whether RelA expression has an impact on many cell types and normally functions as an immediate stress melanoma cell survival, we used antisense RelA phosphoroth- response mechanism that is rigorously controlled by multiple ioate oligonucleotides and found that melanoma cell viability inhibitory complexes. We have previously shown that NFkB was significantly decreased compared with untreated or con- binding is elevated in metastatic melanoma cells relative to trol cultures. The constitutive activation of NFkBin normal melanocytes.
    [Show full text]
  • REV-Erbα Regulates CYP7A1 Through Repression of Liver
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/12/13/dmd.117.078105.DC1 1521-009X/46/3/248–258$35.00 https://doi.org/10.1124/dmd.117.078105 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:248–258, March 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics REV-ERBa Regulates CYP7A1 Through Repression of Liver Receptor Homolog-1 s Tianpeng Zhang,1 Mengjing Zhao,1 Danyi Lu, Shuai Wang, Fangjun Yu, Lianxia Guo, Shijun Wen, and Baojian Wu Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.) Received August 15, 2017; accepted December 6, 2017 ABSTRACT a Nuclear heme receptor reverse erythroblastosis virus (REV-ERB) reduced plasma and liver cholesterol and enhanced production of Downloaded from (a transcriptional repressor) is known to regulate cholesterol 7a- bile acids. Increased levels of Cyp7a1/CYP7A1 were also found in hydroxylase (CYP7A1) and bile acid synthesis. However, the mech- mouse and human primary hepatocytes after GSK2945 treatment. anism for REV-ERBa regulation of CYP7A1 remains elusive. Here, In these experiments, we observed parallel increases in Lrh-1/LRH- we investigate the role of LRH-1 in REV-ERBa regulation of CYP7A1 1 (a known hepatic activator of Cyp7a1/CYP7A1) mRNA and protein.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Cell Stress and MEKK1-Mediated C-Jun Activation Modulate NF B
    Molecular Biology of the Cell Vol. 13, 2933–2945, August 2002 Cell Stress and MEKK1-mediated c-Jun Activation Modulate NF␬B Activity and Cell Viability Isabel Sa´nchez-Pe´rez, Salvador Aznar Benitah, Montserrat Martı´nez-Gomariz, Juan Carlos Lacal, and Rosario Perona* Instituto de Investigaciones Biome´dicas Consejo Superior de Investigaciones Cientificas-Universidad Auto´noma de Madrid, 28029 Madrid, Spain Submitted January 15, 2002; Revised April 29, 2002; Accepted May 31, 2002 Monitoring Editor: Carl-Henrik Heldin Chemotherapeutic agents such as cisplatin induce persistent activation of N-terminal c-Jun Kinase, which in turn mediates induction of apoptosis. By using a common MAPK Kinase, MEKK1, cisplatin also activates the survival transcription factor NF␬B. We have found a cross-talk between c-Jun expression and NF␬B transcriptional activation in response to cisplatin. Fibroblast derived from c-jun knock out mice are more resistant to cisplatin-induced cell death, and this survival advantage is mediated by upregulation of NF␬B-dependent transcription and expression of MIAP3. This process can be reverted by ectopic expression of c-Jun in c-junϪ/Ϫ fibroblasts, which decreases p65 transcriptional activity back to normal levels. Negative regulation of NF␬B- dependent transcription by c-jun contributes to cisplatin-induced cell death, which suggests that inhibition of NF␬B may potentiate the antineoplastic effect of conventional chemotherapeutic agents. INTRODUCTION cis-Diaminedichloroplatinum (c-DDP, cisplatin) is a DNA- reactive agent commonly used in chemotherapy protocols in Induction of apoptosis is the primary mechanism of tumor the treatment of several kinds of human cancers. Lesions of cell killing by radiation and chemotherapeutic agents.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Retinoblastoma-Related P107 and Prb2/P130 Proteins in Malignant Lymphomas: Distinct Mechanisms of Cell Growth Control1
    Vol. 5, 4065–4072, December 1999 Clinical Cancer Research 4065 Retinoblastoma-related p107 and pRb2/p130 Proteins in Malignant Lymphomas: Distinct Mechanisms of Cell Growth Control1 Lorenzo Leoncini, Cristiana Bellan, ated according to the Kaplan-Meier method and the log- Antonio Cossu, Pier Paolo Claudio, Stefano Lazzi, rank test. We found a positive correlation between the per- Caterina Cinti, Gabriele Cevenini, centages of cells positive for p107 and proliferative features such as mitotic index and percentage of Ki-67(1) and cyclin Tiziana Megha, Lorella Laurini, Pietro Luzi, A(1) cells, whereas such correlation could not be demon- Giulio Fraternali Orcioni, Milena Piccioli, strated for the percentages of pRb2/p130 positive cells. Low Stefano Pileri, Costantino Giardino, Piero Tosi, immunohistochemical levels of pRb2/p130 detected in un- and Antonio Giordano2 treated patients with NHLs of various histiotypes inversely Institute of Pathologic Anatomy and Histology, University of Sassari, correlated with a large fraction of cells expressing high Sassari, Italy [L. L., A. C.]; Institute of Pathologic Anatomy and levels of p107 and proliferation-associated proteins. Such a Histology [C. B., S. L., T. M., L. L., P. L., P. T.] and Institute of pattern of protein expression is normally observed in con- Thoracic and Cardiovascular Surgery and Biomedical Technology tinuously cycling cells. Interestingly, such cases showed the [G. C.], University of Siena, Siena, Italy; Departments of Pathology, highest survival percentage (82.5%) after the observation Anatomy, and Cell Biology, Jefferson Medical College, and Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, period of 10 years. Thus, down-regulation of the RB-related Pennsylvania 19107 [P.
    [Show full text]
  • A Dissertation Entitled the Androgen Receptor
    A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.
    [Show full text]
  • And UV-Responsive Protein Kinase That Binds and Potentiates the C-Jun Activation Domain
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain Masahiko Hibi, ~ Anning Lin, 1 Tod Smeal, 1'2 Audrey Minden, ~ and Michael Karin ~'3 Departments of 1Pharmacology and ZBiology, Center for Molecular Genetics, University of California San Diego, School of Medicine, La Jolla, California 92093-0636 USA The activity of c-Jun is regulated by phosphorylation. Various stimuli including transforming oncogenes and UV light, induce phosphorylation of serines 63 and 73 in the amino-terminal activation domain of c-Jun and thereby potentiate its trans-activation function. We identified a serine/threonine kinase whose activity is stimulated by the same signals that stimulate the amino-terminal phosphorylation of c-Jun. This novel c-Jun amino-terminal kinase (JNK), whose major form is 46 kD, binds to a specific region within the c-Jun trans-activation domain and phosphorylates serines 63 and 73. Phosphorylation results in dissociation of the c-Jun-JNK complex. Mutations that disrupt the kinase-binding site attenuate the response of c-Jun to Ha-Ras and UV. Therefore the binding of JNK to c-Jun is of regulatory importance and suggests a mechanism through which protein kinase cascades can specifically modulate the activity of distinct nuclear targets. [Key Words: C-Jun; protein kinase; trans-activation function; phosphorylation] Received June 29, 1993; revised version accepted August 24, 1993. c-Jun, encoded by the c-jun protooncogene, is an impor- that this kinase is activated by a pathway that transmits tant component of the dimeric, sequence specific, tran- signals from cell-surface-associated tyrosine kinases, scriptional activator AP-1 (for review, see Angel and through Ha-Ras, to the nucleus (Smeal et al.
    [Show full text]
  • Nuclear Receptor Reverbα Is a State-Dependent Regulator of Liver Energy Metabolism
    Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism A. Louise Huntera,1, Charlotte E. Pelekanoua,1, Antony Adamsonb, Polly Downtona, Nichola J. Barrona, Thomas Cornfieldc,d, Toryn M. Poolmanc,d, Neil Humphreysb,2, Peter S. Cunninghama, Leanne Hodsonc,d, Andrew S. I. Loudona, Mudassar Iqbale, David A. Bechtolda,3,4, and David W. Rayc,d,3,4 aCentre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom; bGenome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom; cOxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LE Oxford, United Kingdom; dNational Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom; and eDivision of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, United Kingdom Edited by David D. Moore, Baylor College of Medicine, Houston, TX, and approved August 25, 2020 (received for review April 3, 2020) The nuclear receptor REVERBα is a core component of the circadian motifs (paired AGGTCA hexamers with a two-nucleotide spacer) clock and proposed to be a dominant regulator of hepatic lipid metab- or two closely situated RORE sites (16–19) or, as has more re- olism. Using antibody-independent ChIP-sequencing of REVERBα in cently been proposed, when tethered to tissue-specific transcrip- mouse liver, we reveal a high-confidence cistrome and define direct tion factors (e.g., HNF6) through mechanisms independent of target genes. REVERBα-binding sites are highly enriched for consensus direct DNA binding (20).
    [Show full text]
  • Transcriptomic Sex Differences in Sensory Neuronal Populations of Mice
    www.nature.com/scientificreports OPEN Transcriptomic sex diferences in sensory neuronal populations of mice Jennifer Mecklenburg1, Yi Zou2, Andi Wangzhou4, Dawn Garcia2, Zhao Lai2,3, Alexei V. Tumanov5, Gregory Dussor4, Theodore J. Price 4 & Armen N. Akopian1,6* Many chronic pain conditions show sex diferences in their epidemiology. This could be attributed to sex-dependent diferential expression of genes (DEGs) involved in nociceptive pathways, including sensory neurons. This study aimed to identify sex-dependent DEGs in estrous female versus male sensory neurons, which were prepared by using diferent approaches and ganglion types. RNA-seq on non-purifed sensory neuronal preparations, such as whole dorsal root ganglion (DRG) and hindpaw tissues, revealed only a few sex-dependent DEGs. Sensory neuron purifcation increased numbers of sex-dependent DEGs. These DEG sets were substantially infuenced by preparation approaches and ganglion types [DRG vs trigeminal ganglia (TG)]. Percoll-gradient enriched DRG and TG neuronal fractions produced distinct sex-dependent DEG groups. We next isolated a subset of sensory neurons by sorting DRG neurons back-labeled from paw and thigh muscle. These neurons have a unique sex- dependent DEG set, yet there is similarity in biological processes linked to these diferent groups of sex-dependent DEGs. Female-predominant DEGs in sensory neurons relate to infammatory, synaptic transmission and extracellular matrix reorganization processes that could exacerbate neuro- infammation severity, especially in TG. Male-selective DEGs were linked to oxidative phosphorylation and protein/molecule metabolism and production. Our fndings catalog preparation-dependent sex diferences in neuronal gene expressions in sensory ganglia. Many infammatory, neuropathic and idiopathic chronic pain conditions, such as migraine, fbromyalgia, tem- poromandibular disorder (TMD/TMJ), irritable bowel syndrome (IBS), rheumatoid arthritis, neuropathies, have greater prevalence and/or symptom severity in women as compared to men 1–4.
    [Show full text]
  • Science Journals
    SCIENCE IMMUNOLOGY | RESEARCH RESOURCE T CELL MEMORY Copyright © 2020 The Authors, some rights reserved; Early precursors and molecular determinants of tissue- exclusive licensee + American Association resident memory CD8 T lymphocytes revealed by for the Advancement of Science. No claim single-cell RNA sequencing to original U.S. Nadia S. Kurd1*†, Zhaoren He2,3*, Tiani L. Louis1, J. Justin Milner3, Kyla D. Omilusik3, Government Works Wenhao Jin2, Matthew S. Tsai1, Christella E. Widjaja1, Jad N. Kanbar1, Jocelyn G. Olvera1, Tiffani Tysl1, Lauren K. Quezada1, Brigid S. Boland1, Wendy J. Huang2, Cornelis Murre3, Ananda W. Goldrath3, Gene W. Yeo2,4‡, John T. Chang1,5‡§ + During an immune response to microbial infection, CD8 T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including Downloaded from a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid + tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8 T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional + heterogeneity within the siIEL CD8 T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these http://immunology.sciencemag.org/ + findings may inform strategies to optimize CD8 T cell responses to protect against microbial infection and cancer. INTRODUCTION composed of distinct subsets that play unique roles in mediating CD8+ T cells responding to microbial challenge differentiate into protective immunity.
    [Show full text]