CORE Metadata, citation and similar papers at core.ac.uk Provided by Woods Hole Open Access Server 1 Characterization of lipids in adipose depots associated with minke and fin whale ears: 2 comparison with “acoustic fats” of toothed whales 3 Maya Yamato[1], Heather Koopman[2], Misty Niemeyer[3], Darlene Ketten[4] 4 [1] Department of Vertebrate Zoology, Smithsonian Institution National Museum of Natural 5 History, Washington, DC 20013 USA 6 [2] Department of Biology and Marine Biology, University of North Carolina Wilmington, 7 Wilmington, NC 28403 USA 8 [3] Marine Mammal Rescue and Research, International Fund for Animal Welfare, Yarmouth 9 Port, MA 02675 USA 10 [4] Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 11 USA 12 13 Corresponding author: Maya Yamato 14 Email address:
[email protected] 15 phone: (202) 633-1572 16 fax: (202) 633-0182 17 18 Key words: Cetacea, mysticete, hearing, sound reception, ear fat, mandibular fat 1 19 In an underwater environment where light attenuates much faster than in air, cetaceans 20 have evolved to rely on sound and their sense of hearing for vital functions. Odontocetes 21 (toothed whales) have developed a sophisticated biosonar system called echolocation, allowing 22 them to perceive their environment using their sense of hearing (Schevill and McBride 1956, 23 Kellogg 1958, Norris et al. 1961). Echolocation has not been demonstrated in mysticetes (baleen 24 whales). However, mysticetes rely on low frequency sounds, which can propagate very long 25 distances under water, to communicate with potential mates and other conspecifics (Cummings 26 and Thompson 1971).