Lie Algebroid Structures on Double Vector Bundles and Representation Theory of Lie Algebroids
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Advances in Mathematics 223 (2010) 1236–1275 www.elsevier.com/locate/aim Lie algebroid structures on double vector bundles and representation theory of Lie algebroids Alfonso Gracia-Saz a,∗, Rajan Amit Mehta b a Department of Mathematics, University of Toronto, 40 Saint George Street, Room 6290, Toronto, ON, Canada M5S 2E4 b Department of Mathematics, Washington University in Saint Louis, One Brookings Drive, Saint Louis, MO 63130, USA Received 29 October 2008; accepted 24 September 2009 Available online 3 October 2009 Communicated by the Managing Editors of AIM Abstract A VB-algebroid is essentially defined as a Lie algebroid object in the category of vector bundles. There is a one-to-one correspondence between VB-algebroids and certain flat Lie algebroid superconnections, up to a natural notion of equivalence. In this setting, we are able to construct characteristic classes, which in special cases reproduce characteristic classes constructed by Crainic and Fernandes. We give a complete classification of regular VB-algebroids, and in the process we obtain another characteristic class of Lie algebroids that does not appear in the ordinary representation theory of Lie algebroids. © 2009 Elsevier Inc. All rights reserved. Keywords: Lie algebroid; Representation; Superconnection; Double category; Characteristic classes 1. Introduction Double structures, such as double vector bundles, double Lie groupoids, double Lie alge- broids, and LA-groupoids, have been extensively studied by Kirill Mackenzie and his collabora- tors [11–15]. In this paper, we study VB-algebroids, which are essentially Lie algebroid objects in the category of vector bundles.
[Show full text]