String Principal Bundles and Courant Algebroids

Total Page:16

File Type:pdf, Size:1020Kb

String Principal Bundles and Courant Algebroids String principal bundles and Courant algebroids Yunhe Sheng, Xiaomeng Xu and Chenchang Zhu Abstract Just like Atiyah Lie algebroids encode the infinitesimal symmetries of principal bundles, exact Courant algebroids encode the infinitesimal symmetries of S1-gerbes. At the same time, transitive Courant algebroids may be viewed as the higher analogue of Atiyah Lie algebroids, and the non- commutative analogue of exact Courant algebroids. In this article, we explore what the “principal bundles” behind transitive Courant algebroids are, and they turn out to be principal 2-bundles of string groups. First, we construct the stack of principal 2-bundles of string groups with connection data. We prove a lifting theorem for the stack of string principal bundles with connections and show the multiplicity of the lifts once they exist. This is a differential geometrical refinement of what is known for string structures by Redden, Waldorf and Stolz-Teichner. We also extend the result of Bressler and Chen-Stiénon-Xu on extension obstruction involving transitive Courant algebroids to the case of transitive Courant algebroids with connections, as a lifting theorem with the description of multiplicity once liftings exist. At the end, we build a morphism between these two stacks. The morphism turns out to be neither injective nor surjective in general, which shows that the process of associating the “higher Atiyah algebroid” loses some information and at the same time, only some special transitive Courant algebroids come from string bundles. Contents 1 Introduction 2 2 Preliminaries on prestacks, stacks and the plus construction 4 3 (3, 1)-sheaf of string principal bundles 6 3.1 Finite dimensional model of Stringp(G) .............................6 p+ 3.2 (3, 1)-sheaf BString(n)c of string principal bundles with connection data . .8 3.3 Lifting Theorem and Comparison . 12 p+ 4 (2, 1)-sheaf TCc of transitive Courant algebroids with connections 17 5 Morphism from the string sheaf to the transitive Courant sheaf 24 p+ p+ 5.1 Construction of the morphism Φ: BString(n)c → TCc ................... 25 p+ p+ 5.2 Property of the morphism Φ: BString(n)c → TCc ..................... 29 A Appendix 31 p+ A.1 (2, 1)-sheaf TLc of transitive Lie algebroids with connections . 31 p+ A.2 (2, 1)-sheaf ECc of exact Courant algebroids with connections . 33 A.3 Gluing transitive Courant algebroids via local data . 35 A.4 Inner automorphisms of transitive Courant algebroids . 37 0Keyword:Courant algebroids, string principal bundles, Pontryagin classes 0MSC: 18B40, 18D35, 46M20, 53D17, 58H05. 1 1 Introduction Just like Atiyah Lie algebroids encode the infinitesimal symmetries of G-principal bundles [3, 31], exact Courant algebroids are believed to encode the infinitesimal symmetries of U(1)-gerbes (or equivalently BU(1)-2-principal bundles) [10, 21, 35, 42]. Then it is proven later in [18] that the infinitesimal symmetries of an S1-gerbe equipped with a connective structure are precisely encoded by an exact Courant algebroid with a connection. Transitive Courant algebroids may be viewed as the higher analogue of Atiyah Lie algebroids, and the non-commutative analogue of exact Courant algebroids. In this article, we explore what the “principal bundles” behind transitive Courant algebroids are. First, we notice that there are topological obstructions for the existence of such transitive Courant algebroids. In [9], Bressler discovered that the obstruction to extend an Atiyah Lie algebroid to a transitive Courant algebroid is given by the real first Pontryagin class. This is further fully generalized to the case of any regular Courant algebroid by Chen-Stiénon-Xu [17] in a differential geometry setting, where the authors gave a complete classification result. In fact, Ševera outlined some very nice ideas to classify transitive Courant algebroids in a series of private letter exchanges with Weinstein [42]. The role of the Pontryagin class is further developed in his later works [43, 44]. We then notice that the first Pontryagin class arises as an obstruction in another domain. Motivated by Stolz-Teichner’s program of topological modular forms [48], Redden [34] defined a string class on a Spin(n)-principal bundle P¯ → M, as a class ξ ∈ H3(P,¯ Z), such that for every point p ∈ P¯ the associated ¯ 3 inclusion ip : Spin(n) → P by g 7→ g · p pulls back ξ to the standard generator of H (Spin(n), Z). He further proved that the obstruction for a Spin(n)-principal bundle P¯ over M to admit string classes is 1 ¯ 4 provided by the integer class of half the first Pontryagin class 2 p1(P ) ∈ H (M, Z). In [50], Waldorf proved that such string classes on P¯ are in one-to-one correspondence with the isomorphism classes of trivializations of the Chern-Simons 2-gerbe over P¯, where the Chern-Simons 2-gerbe is again characterised 1 ¯ by 2 p1(P ). Topologically, Stolz and Teichner view the above string structure on a Spin(n)-principal bundle ¯ M −→P BSpin(n) as a lift of the structure group of P¯ from Spin(n) to a certain three-connected extension, the string group String(n), BString(n) : P¯ M / BSpin(n). 1 Thus, if we realise “String(n)-principal bundles” in differential geometry, one may interpret 2 p1 as the lifting obstruction of a Spin(n)-principal bundle to a String(n)-principal bundle. A more familiar fact in this style is that the lifting obstruction of a SO(n)-principal bundle M −→P BSO(n) to a Spin(n)-principal P˜ bundle M −→ BSpin(n) is given by w2(P ). In fact, there is a whole sequence, called the Whitehead tower: · · · → BString(n) → BSpin(n) → BSO(n) → BO(n), 1 with obstruction w1, w2 and 2 p1 respectively. Here w1 and w2 are the first and second Stiefel-Whitney classes. Since the topological obstruction for both transitive Courant algebroids and String(n)-principal bun- dles is provided by the first Pontryagin class, we naturally believe that the principal bundle behind a transitive Courant algebroid is exactly a String(n)-principal bundle. This belief is also supported by another observation from T-duality. Let us start with two T-dual torus bundles X, Xˆ over M, and matching T-dual S1-gerbes G → X and Gˆ → Xˆ, Bouwknegt-Evslin-Mathai [7] and Bunke-Schick [12] proved that the twisted K-theory for the T-dual pairs are isomorphic, that is, there is an isomorphism between twisted K-groups K•(X, G) =∼ K•(X,ˆ Gˆ). On the level of differential geometric objects, Cavalcanti-Gualtieri [16] proved that the exact Courant algebroid associated to the T- dual S1-gerbes are the same. Now we extend this story Spin(n)-equivariantly. We begin with two T-dual torus bundles X, Xˆ over M, and their matching T-dual string structures (P, ξ) → X and (P,ˆ ξˆ) → Xˆ, 2 where P and Pˆ are Spin(n)-principal bundles over X and Xˆ respectively, and ξ, ξˆ are string classes on P and Pˆ respectively. Leaving alone what the cohomological invariants should be, Baraglia and Hekmati [5] showed that, on the level of differential geometric objects, the transitive Courant algebroids associated to both sides are isomorphic. In this article, we realise String(n)-principal bundles and their connections as differential geometric p+ objects by describing the entire (3, 1)-sheaf (or 2-stack) BString(n)c . Then we make the connection between transitive Courant algebroids and string principal bundles explicit and functorial by constructing a morphism between their corresponding stacks. For this purpose, first we study what a String(n)-principal bundle with connection data really is. As we have seen, String(n) is a three-connected cover of Spin(n), and this forces the model of String(n) to be either infinite-dimensional or finite-dimensional however higher (namely being a Lie 2-group)1. We take the second approach with the model of Schommer-Pries [39] for String(n). The advantage of this model is that the spaces it involves are all nice finite dimensional manifolds, thus there is no additional analytic difficulty when solving equations or constructing covers; at the same time, this is paid off by algebraic difficulty of chasing through various pages of spectral sequences of cohomological calculation. p First we construct a (3, 1)-presheaf of String(n)-principal bundles with connection data BString(n)c p+ and complete it into a (3, 1)-sheaf (or a 2-stack) BString(n)c using the plus construction. This is essentially to build a String(n)-principal bundle with a connection from local data and gluing conditions in the fashion of Breen-Messing. Breen and Messing studied connections for gerbes in their original work [8]. See [15] for more details. We also notice that in a recent work [51], connections for 2-principal bundles of strict 2-groups are studied both locally and globally. However, the finite-dimensional differential geometric model for String(n) is a non-strict Lie 2-group. This forces us to develop our own formula instead of using existing results in literature. We also noticed that [22] develops a very nice model which explains connection data for all L∞-algebras based on the infinite dimensional integration model of L∞- algebras in [26, 28]. However, to relate their infinite dimensional model to our formula of describing connection with descent equations (Eqs. (5)-(8)), one needs to solve variables on ∆n in their model in some Lie type of PDE’s. This is a non-trivial task and we delay it to a future project with more specific focus. To justify our construction, we prove directly the lifting theorem that one expects for String(n)- principal bundles and provide a comparison to previous string concepts of Stolz-Teichner, Redden and Waldorf respectively in Section 3.3: P¯ Theorem 1.1.
Recommended publications
  • Generalized Connections and Higgs Fields on Lie Algebroids Nijmegen, April 5, 2016
    Generalized connections and Higgs fields on Lie algebroids Nijmegen, April 5, 2016 Thierry Masson Centre de Physique Théorique Campus de Luminy, Marseille Generalized connections and Higgs fields on Lie algebroids, Nijmegen, April 5, 2016 Thierry Masson, CPT-Luminy Motivations Discovery of Higgs particle in 2012. ➙ need for a mathematical validation of the Higgs sector in the SM. No clue from “traditional” schemes and tools. NCG: Higgs field is part of a “generalized connection”. Dubois-Violette, M., Kerner, R., and Madore, J. (1990). Noncommutative Differential Geometry and New Models of Gauge Theory. J. Math. Phys. 31, p. 323 Connes, A. and Lott, J. (1991). Particle models and noncommutative geometry. Nucl. Phys. B Proc. Suppl. 18.2, pp. 29–47 Models in NCG can reproduce the Standard Model up to the excitement connected to the diphoton resonance at 750 GeV “seen” by ATLAS and CMS! Mathematical structures difficult to master by particle physicists. Transitive Lie algebroids: ➙ generalized connections, gauge symmetries, Yang-Mills-Higgs models… ➙ Direct filiation from Dubois-Violette, Kerner, and Madore (1990). Mathematics close to “usual” mathematics of Yang-Mills theories. No realistic theory yet. 2 Generalized connections and Higgs fields on Lie algebroids, Nijmegen, April 5, 2016 Thierry Masson, CPT-Luminy How to construct a gauge field theory? The basic ingredients are: 1 A space of local symmetries (space-time dependence): ➙ a gauge group. 2 An implementation of the symmetry on matter fields: ➙ a representation theory. 3 A notion of derivation: ➙ some differential structures. 4 A (gauge compatible) replacement of ordinary derivations: ➙ a covariant derivative. 5 A way to write a gauge invariant Lagrangian density: ➙ action functional.
    [Show full text]
  • Jhep01(2020)007
    Published for SISSA by Springer Received: March 27, 2019 Revised: November 15, 2019 Accepted: December 9, 2019 Published: January 2, 2020 Deformed graded Poisson structures, generalized geometry and supergravity JHEP01(2020)007 Eugenia Boffo and Peter Schupp Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany E-mail: [email protected], [email protected] Abstract: In recent years, a close connection between supergravity, string effective ac- tions and generalized geometry has been discovered that typically involves a doubling of geometric structures. We investigate this relation from the point of view of graded ge- ometry, introducing an approach based on deformations of graded Poisson structures and derive the corresponding gravity actions. We consider in particular natural deformations of the 2-graded symplectic manifold T ∗[2]T [1]M that are based on a metric g, a closed Neveu-Schwarz 3-form H (locally expressed in terms of a Kalb-Ramond 2-form B) and a scalar dilaton φ. The derived bracket formalism relates this structure to the generalized differential geometry of a Courant algebroid, which has the appropriate stringy symme- tries, and yields a connection with non-trivial curvature and torsion on the generalized “doubled” tangent bundle E =∼ TM ⊕ T ∗M. Projecting onto TM with the help of a natural non-isotropic splitting of E, we obtain a connection and curvature invariants that reproduce the NS-NS sector of supergravity in 10 dimensions. Further results include a fully generalized Dorfman bracket, a generalized Lie bracket and new formulas for torsion and curvature tensors associated to generalized tangent bundles.
    [Show full text]
  • Some Stuff About the String Gerbe
    Some Stuff about the String Gerbe Danny Stevenson Department of Mathematics, University of California, Riverside Riverside, CA 92521, USA email: [email protected] March 14, 2006 1 Introduction Let G be a compact, simple and simply connected Lie group and let π : P → M be a principal G bundle over a smooth manifold M. Let ν denote the universally transgressive generator of H3(G; Z) = Z and let c ∈ H4(BG; Z) = H3(G; Z) be the transgression of ν. By regarding H4(BG; Z) as a lattice in (S2g∗)G we will allow ourselves to confuse c and the basic inner product h , i on g. Recall [23] that h ,√i is the Killing form on g, normalised so that the longest root θ has length 2. In the physics literature, M is said to be string, or admit a string structure, if a certain characteristic class in H3(LM; Z) vanishes (here LM denotes the free loop space of M). This characteristic class is the obstruction to lifting the structure group of the principal LG- bundle LP → LM to LGc — the Kac-Moody group. As has been observed by several authors [12, 13, 19] the obstruction in H3(LM; Z) is closely related to the characteristic class c ∈ H4(M; Z): if M is 2-connected a lift of the structure group to LGc exists precisely when the map c: M → K(Z, 4) is null- homotopic. As is well known, if G = Spin(n) then 2c = p1. This obstruction problem on LM can be phrased in the language of homotopy theory down on M.
    [Show full text]
  • Mechanics, Control and Lie Algebroids, Geometry Meeting 2009
    Mechanics, Control and Lie algebroids Geometry Meeting 2009 Eduardo Martínez University of Zaragoza [email protected] Escola Universitaria Politécnica, Ferrol, October 29–30, 2009 Abstract The most relevant ideas and results about mechanical systems defined on Lie algebroids are presented. This was a program originally proposed by Alan Weinstein (1996) and developed by many authors. 1 Several reasons for formulating Mechanics on Lie algebroids The inclusive nature of the Lie algebroid framework: under the same formalism one can consider standard mechanical systems, systems on Lie algebras, systems on semidirect products, systems with symme- tries. The reduction of a mechanical system on a Lie algebroid is a mechan- ical system on a Lie algebroid, and this reduction procedure is done via morphisms of Lie algebroids. Well adapted: the geometry of the underlying Lie algebroid deter- mines some dynamical properties as well as the geometric structures associated to it (e.g. Symplectic structure). Provides a natural way to use quasi-velocities in Mechanics. 2 Introduction Lagrangian systems Given a Lagrangian L 2 C1(TQ), the Euler-Lagrange equations define a dynamical system q_i = vi d @L @L = : dt @vi @qi Variational Calculus. Symplectic formalism 4 Geodesics of left invariant metrics For instance, if k is a Riemannian metric on a manifold Q , the Euler- 1 Lagrange equations for L(v) = 2 k(v; v) are the equation for the geodesics rvv = 0 If Q = G is a Lie group and k is left invariant, then L defines a function 1 l on the Lie algebra g, by restriction l(ξ) = 2 k(ξ; ξ).
    [Show full text]
  • Courant Algebroids: Cohomology and Matched Pairs
    The Pennsylvania State University The Graduate School Eberly College of Science Courant Algebroids: Cohomology and Matched Pairs A Dissertation in Mathematics by Melchior Gr¨utzmann c 2009Melchior Gr¨utzmann Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2009 The dissertation of Melchior Gr¨utzmann was reviewed and approved1 by the following: Ping Xu Professor of Mathematics Dissertation Advisor Co-Chair of Committee Mathieu Sti´enon Professor of Mathematics Co-Chair of Committee Martin Bojowald Professor of Physics Luen-Chau Li Professor of Mathematics Adrian Ocneanu Professor of Mathematics Aissa Wade Professor of Mathematics Gr´egory Ginot Professor of Mathematics of Universit´eParis 6 Special Signatory Alberto Bressan Professor of Mathematics Director of graduate studies 1The signatures are on file in the Graduate School. Abstract Courant Algebroids: Cohomology and Matched Pairs We introduce Courant algebroids, providing definitions, some historical notes, and some elementary properties. Next, we summarize basic properties of graded manifolds. Then, drawing on the work by Roytenberg and others, we introduce the graded or supergraded language demostrating a cochain com- plex/ cohomology for (general) Courant algebroids. We review spectral se- quences and show how this tool is used to compute cohomology for regular Courant algebroids with a split base. Finally we analyze matched pairs of Courant algebroids including the complexified standard Courant algebroid of a complex manifold and the matched pair arising from a holomorphic Courant algebroid. iii Contents Acknowledgements vi 1 Introduction 1 2 Basic notions 3 2.1 Courant algebroids and Dirac structures ............ 3 2.1.1 Lie algebroids ....................... 3 2.1.2 Lie bialgebroids .....................
    [Show full text]
  • A Construction of String 2-Group Modelsusing a Transgression
    A Construction of String 2-Group Models using a Transgression-Regression Technique Konrad Waldorf Fakult¨at f¨ur Mathematik Universit¨at Regensburg Universit¨atsstraße 31 D–93053 Regensburg [email protected] Dedicated to Steven Rosenberg on the occasion of his 60th birthday Abstract In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gaw¸edzki-Reis and Meinrenken. The main new insight is that under a transgression- regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries. MSC 2010: Primary 22E67; secondary 53C08, 81T30, 58H05 arXiv:1201.5052v2 [math.DG] 4 May 2012 1 Introduction The string group String(n) is a topological group defined up to homotopy equivalence as the 3-connected cover of Spin(n), for n =3 or n> 4. Concrete models for String(n) have been provided by Stolz [Sto96] and Stolz-Teichner [ST04]. In order to understand, e.g. the differential geometry of String(n), the so-called “string geometry”, it is necessary to have models in better categories than topological groups. Its 3-connectedness implies that String(n) is a K(Z, 2)-fibration over Spin(n), so that it cannot be a (finite-dimensional) Lie group.
    [Show full text]
  • Regular Jacobi Structures and Generalized Contact Bundles
    Regular Jacobi Structures and Generalized Contact Bundles Jonas Schnitzer∗ Dipartimento di Matematica Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy June 14, 2021 Abstract A Jacobi structure J on a line bundle L → M is weakly regular if the sharp map J ♯ : J 1L → DL has constant rank. A generalized contact bundle with regular Jacobi structure possess a transverse complex structure. Paralleling the work of Bailey in generalized complex geometry, we find condition on a pair consisting of a regular Jacobi structure and an transverse complex structure to come from a generalized contact structure. In this way we are able to construct interesting examples of generalized contact bundles. As applications: 1) we prove that every 5- dimensional nilmanifold is equipped with an invariant generalized contact structure, 2) we show that, unlike the generalized complex case, all contact bundles over a complex manifold possess a compatible generalized contact structure. Finally we provide a counterexample presenting a locally conformal symplectic bundle over a generalized contact manifold of complex type that do not possess a compatible generalized contact structure. Contents 1 Introduction 2 2 Preliminaries and Notation 2 3 Tranversally Complex Jacobi Structures and Generalized Contact Bundles 8 arXiv:1806.10489v1 [math.DG] 27 Jun 2018 4 The Splitting of the Spectral Sequence of a Transversally Complex Subbundle 10 5 Examples I: Five dimensional nilmanifolds 15 6 Examples II: Contact Fiber Bundles 19 7 A Counterexample 21 References 23 ∗[email protected] 1 1 Introduction Generalized geometry was set up in the early 2000’s by Hitchin [9] and further developed by Gualtieri [8], and the literature about them is now rather wide.
    [Show full text]
  • Integrability of Lie Brackets
    Annals of Mathematics, 157 (2003), 575–620 Integrability of Lie brackets By Marius Crainic and Rui Loja Fernandes* Abstract In this paper we present the solution to a longstanding problem of dif- ferential geometry: Lie’s third theorem for Lie algebroids. We show that the integrability problem is controlled by two computable obstructions. As ap- plications we derive, explain and improve the known integrability results, we establish integrability by local Lie groupoids, we clarify the smoothness of the Poisson sigma-model for Poisson manifolds, and we describe other geometrical applications. Contents 0. Introduction 1. A-paths and homotopy 1.1. A-paths 1.2. A-paths and connections 1.3. Homotopy of A-paths 1.4. Representations and A-paths 2. The Weinstein groupoid 2.1. The groupoid G(A) 2.2. Homomorphisms 2.3. The exponential map 3. Monodromy 3.1. Monodromy groups 3.2. A second-order monodromy map 3.3. Computing the monodromy 3.4. Measuring the monodromy ∗ The first author was supported in part by NWO and a Miller Research Fellowship. The second author was supported in part by FCT through program POCTI and grant POCTI/1999/MAT/33081. Key words and phrases. Lie algebroid, Lie groupoid. 576 MARIUS CRAINIC AND RUI LOJA FERNANDES 4. Obstructions to integrability 4.1. The main theorem 4.2. The Weinstein groupoid as a leaf space 4.3. Proof of the main theorem 5. Examples and applications 5.1. Local integrability 5.2. Integrability criteria 5.3. Tranversally parallelizable foliations Appendix A. Flows A.1. Flows and infinitesimal flows A.2.
    [Show full text]
  • Integrability of Lie Algebroids by Proper Groupoids
    Integrability of Lie algebroids by proper Lie groupoids Lu´ıs Alexandre Meira Fernandes Alves Pereira Disserta¸c˜ao para obten¸c˜aodo Grau de Mestre em Matem´atica e Aplica¸c˜oes J´uri Presidente: Prof. Doutor Miguel Tribolet de Abreu Orientador: Prof. Doutor Rui Ant´onio Loja Fernandes Vogais: Prof. Doutor Gustavo Rui de Oliveira Granja Julho de 2008 Agradecimentos Este trabalho foi apoiado por uma Bolsa de Inicia¸c˜aoCient´ıfica da Funda¸c˜ao para a Ciˆenciae a Tecnologia. 1 Resumo Um crit´eriocl´assico diz-nos que uma ´algebra de Lie (real) g ´ea ´algebra de Lie de um grupo de Lie G compacto se e s´ose existe um produto interno em g que ´einvariante para a ac¸c˜aoadjunta de g em si mesma. O objectivo deste trabalho foi o de investigar se este resultado poderia ser extendido para algebr´oides de Lie, obtendo-se um crit´erioan´alogo caracterizando quando ´eque um algebr´oide de Lie A ´eo algebr´oidede Lie de um grup´oidede Lie G pr´oprio. Teve-se como base a formula¸c˜aode uma conjectura de trabalho afirmando que a existˆenciade um produto interno em A satisfazendo uma certa propriedade de invariˆancia seria uma condi¸c˜aonecess´ariae suficiente para que A fosse in- tegrado por um grup´oide pr´oprio. O trabalho consistiu ent˜aoem decidir se a conjectura era v´alida, e caso contr´ario, porquˆee como falhava. Numa direc¸c˜ao,prov´amosque a existˆenciade um grup´oidede Lie pr´oprio integrando A e satisfazendo algumas condi¸c˜oes razo´aveis implica a existˆencia de um produto interno em A nas condi¸c˜oesda nossa conjectura.
    [Show full text]
  • Holomorphic Equivariant Cohomology of Atiyah Algebroids and Localization
    arXiv:0910.2019 [math.CV] SISSA Preprint 65/2009/fm Holomorphic equivariant cohomology of Atiyah algebroids and localization U. Bruzzo Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34151Trieste, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste E-Mail: [email protected] V. Rubtsov Universit´ed'Angers, D´epartement de Math´ematiques,UFR Sciences, LAREMA, UMR 6093 du CNRS, 2 bd. Lavoisier, 49045 Angers Cedex 01, France; ITEP Theoretical Division, 25 Bol. Tcheremushkinskaya, 117259, Moscow, Russia E-mail: [email protected] Abstract. In a previous paper we developed an equivariant cohomology the- ory associated to a set of data formed by a differentiable manifold M carrying the action of a Lie group G, and a Lie algebroid A on M equipped with a compatible infinitesimal action of G. We also obtained a localization formula for a twisted version of this cohomology, and from it, a Bott-type formula. In this paper we slightly modify that theory to obtain a localization formula for an equivariant cohomology associated to an equivariant holomorphic vector bun- dle. This formula encompasses many residues formulas in complex geometry, in particular we shall show that it admits as a special case Carrell-Lieberman's residue formula [7, 6]. Date: 10 October 2009 2000 Mathematics Subject Classification: 32L10, 53C12, 53C15, 53D17, 55N25, 55N91 The authors gratefully acknowledge financial support and hospitality during the respective vis- its to Universit´ed'Angers and SISSA. Support for this work was provided by misgam, by P.R.I.N \Geometria sulle variet`aalgebriche," the I.N.F.N.
    [Show full text]
  • ON a NON-ABELIAN POINCARÉ LEMMA 1. Introduction It Is Well
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 8, August 2012, Pages 2855–2872 S 0002-9939(2011)11116-X Article electronically published on December 15, 2011 ON A NON-ABELIAN POINCARE´ LEMMA THEODORE TH. VORONOV (Communicated by Varghese Mathai) Abstract. We show that a well-known result on solutions of the Maurer– Cartan equation extends to arbitrary (inhomogeneous) odd forms: any such form with values in a Lie superalgebra satisfying dω + ω2 = 0 is gauge- equivalent to a constant, ω = gCg−1 − dg g−1. This follows from a non-Abelian version of a chain homotopy formula making use of multiplicative integrals. An application to Lie algebroids and their non- linear analogs is given. Constructions presented here generalize to an abstract setting of differen- tial Lie superalgebras where we arrive at the statement that odd elements (not necessarily satisfying the Maurer–Cartan equation) are homotopic — in a certain particular sense — if and only if they are gauge-equivalent. 1. Introduction It is well known that a 1-form with values in a Lie algebra g satisfying the Maurer–Cartan equation 1 (1.1) dω + [ω, ω]=0 2 possesses a ‘logarithmic primitive’ locally or for a simply-connected domain (1.2) ω = −dg g−1 for some G-valued function, where G is a Lie group with the Lie algebra g.Here and in the sequel we write all formulas as if our algebras and groups were matrix; it makes the equations more transparent, and certainly nothing prevents us from rephrasing them in an abstract form. Therefore the main equation (1.1) will also be written as (1.3) dω + ω2 =0.
    [Show full text]
  • The Extension Problem for Lie Algebroids on Schemes
    The extension problem for Lie algebroids on schemes Ugo Bruzzo SISSA (International School for Advanced Studies), Trieste Universidade Federal da Para´ıba, Jo~aoPessoa, Brazil S~aoPaulo, November 14th, 2019 2nd Workshop of the S~aoPaulo Journal of Mathematical Sciences: J.-L. Koszul in S~aoPaulo, His Work and Legacy Ugo Bruzzo Extensions of Lie algebroids 1/26 Lie algebroids X : a differentiable manifold, or complex manifold, or a noetherian separated scheme over an algebraically closed field | of characteristic zero. Lie algebroid: a vector bundle/coherent sheaf C with a morphism of OX -modules a: C ! ΘX and a |-linear Lie bracket on the sections of C satisfying [s; ft] = f [s; t] + a(s)(f ) t for all sections s; t of C and f of OX . a is a morphism of sheaves of Lie |-algebras ker a is a bundle of Lie OX -algebras Ugo Bruzzo Extensions of Lie algebroids 2/26 Examples A sheaf of Lie algebras, with a = 0 ΘX , with a = id More generally, foliations, i.e., a is injective 1 π Poisson structures ΩX −! ΘX , Poisson-Nijenhuis bracket f!; τg = Lieπ(!)τ − Lieπ(τ)! − dπ(!; τ) Jacobi identity , [[π; π]] = 0 Ugo Bruzzo Extensions of Lie algebroids 3/26 Lie algebroid morphisms 0 f : C ! C a morphism of OX -modules & sheaves of Lie k-algebras f C / C 0 0 a a ΘX ) ker f is a bundle of Lie algebras Ugo Bruzzo Extensions of Lie algebroids 4/26 Derived functors A an abelian category, A 2 Ob(A) Hom(−; A): !Ab is a (contravariant) left exact functor, i.e., if 0 ! B0 ! B ! B00 ! 0 (∗) is exact, then 0 ! Hom(B00; A) ! Hom(B; A) ! Hom(B0; A) is exact Definition I 2 Ob(A) is injective if Hom(−; I ) is exact, i.e., for every exact sequence (*), 0 ! Hom(B00; I ) ! Hom(B; I ) ! Hom(B0; I ) ! 0 is exact Ugo Bruzzo Extensions of Lie algebroids 5/26 Definition The category A has enough injectives if every object in A has an injective resolution 0 ! A ! I 0 ! I 1 ! I 2 ! ::: A abelian category with enough injectives F : A ! B left exact functor Derived functors Ri F : A ! B Ri F (A) = Hi (F (I •)) Example: Sheaf cohomology.
    [Show full text]