Peridinin-Containing Dinoflagellates Are Eukaryotic Protozoans, Which

Total Page:16

File Type:pdf, Size:1020Kb

Peridinin-Containing Dinoflagellates Are Eukaryotic Protozoans, Which Investigation of Dinoflagellate Plastid Protein Transport using Heterologous and Homologous in vivo Systems Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) Vorgelegt dem Fachbereich Biologie der Philipps-Universität Marburg von Andrew Scott Bozarth aus Columbia, Maryland, USA Marburg/Lahn 2010 Vom Fachbereich Biologie der Philipps-Universität als Dissertation angenommen am 26.07.2010 angenommen. Erstgutachter: Prof. Dr. Uwe-G. Maier Zweitgutachter: Prof. Dr. Klaus Lingelbach Prof. Dr. Andreas Brune Prof. Dr. Renate Renkawitz-Pohl Tag der Disputation am: 11.10.2010 Results! Why, man, I have gotten a lot of results. I know several thousand things that won’t work! -Thomas A. Edison Publications Bozarth A, Susanne Lieske, Christine Weber, Sven Gould, and Stefan Zauner (2010) Transfection with Dinoflagellate Transit Peptides (in progress). Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein Targeting into Secondary Plastids. J. Eukaryot. Microbiol. 56, 9–15. Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl. Microbiol. Biotechnol. 82, 195-201. Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Börner T, Tillich M (2008) Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol. 6, 36. Hempel F, Bozarth A, Sommer MS, Zauner S, Przyborski JM, Maier UG. (2007) Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem. 388, 899-906. Table of Contents TABLE OF CONTENTS 1 INTRODUCTION....................................................................................................................................... 1 1.1 THE EVOLUTION OF PHOTOSYNTHETIC EUKARYOTES............................................................................... 1 1.1.1 Primary Endosymbiosis .................................................................................................................. 1 1.1.2 Protein Targeting to Primary Plastids ........................................................................................... 3 1.2 SECONDARY ENDOSYMBIOSIS AND THE CHROMALVEOLATE HYPOTHESIS ............................................... 5 1.3 CONSEQUENCES OF HARBORING EUKARYOTIC ENDOSYMBIONTS ............................................................ 8 1.3.1 Genomic Reorganization ................................................................................................................ 8 1.3.2 Protein Transport into Chromist Plastids....................................................................................... 9 1.4 INFRAKINGDOM ALVEOLATA .................................................................................................................. 11 1.4.1 Alveolates as Such ........................................................................................................................ 11 1.4.2 Protein Transport into Apicomplexan Plastids ............................................................................. 12 1.5 DINOFLAGELLATES ................................................................................................................................. 14 1.5.1 Features of Dinoflagellate ............................................................................................................ 14 1.5.2 Ecological Impetus ....................................................................................................................... 16 1.5.3 Genomic Arrangement of Dinoflagellates .................................................................................... 17 1.5.4 Protein Targeting in Dinoflagellates ............................................................................................ 19 1.5.5 Ceratium horridum ....................................................................................................................... 23 1.5.6 Amphidinium carterae .................................................................................................................. 23 2 AIMS .......................................................................................................................................................... 25 3 RESULTS .................................................................................................................................................. 26 3.1 ANALYSIS OF SYNTHESIZED CERATIUM HORRIDUM ESTS ...................................................................... 26 3.1.1 Analysis of Ceratium horridum cDNA Library ............................................................................. 26 3.1.2 C. horridum EST Sequence Homologies ....................................................................................... 27 3.1.3 C. horridum EST Sequence Functions .......................................................................................... 30 3.1.4 Determination of Ceratium horridum Plastid-Targeted Proteins ................................................ 32 3.1.5 Ceratium horridum Transit Peptide Classification ...................................................................... 34 3.1.6 Ceratium horridum Transit Peptide Variations between Isoforms ............................................... 36 3.1.7 Comparison of Ceratium horridum Transit Peptides with Those of Other Phototrophs .............. 37 3.1.8 Statistical Comparative Analysis of Dinoflagellate Transit Peptides ........................................... 40 3.2 HETEROLOGOUS IN VIVO IMPORT STUDIES ............................................................................................. 43 3.2.1 Heterologous in vivo Import into the Pisum sativum Chloroplasts using Amphidinium carterae PsbO and Prk Transit Peptides ................................................................................................................... 44 3.2.2 Heterologous in vivo Import into the Pisum sativum Chloroplasts using Chromalveolate PsbO and Prk Transit Peptides ............................................................................................................................ 47 3.3 HETEROLOGOUS IN VIVO PROTEIN IMPORT INTO THE PLASTIDS OF PHAEODACTYLUM TRICORNUTUM USING AMPHIDINIUM CARTERAE PSBO AND PRK TARGETING SIGNALS ........................................................... 48 3.3.1 HETEROLOGOUS IN VIVO PROTEIN IMPORT IN PHAEODACTYLUM TRICORNUTUM USING AMPHIDINIUM CARTERAE PSBO AND PRK SIGNAL PEPTIDES .................................................................................................. 48 3.3.2 HETEROLOGOUS IN VIVO PROTEIN IMPORT IN PHAEODACTYLUM TRICORNUTUM USING AMPHIDINIUM CARTERAE PSBO AND PRK SIGNAL, TRANSIT, AND THYLAKOID TARGETING PEPTIDES ................................... 49 3.4 TRACKING HOMOLOGOUS PROTEIN TARGETING IN AMPHIDINIUM CARTERAE ....................................... 52 3.4.1 SUCROSE FRACTIONATION OF AMPHIDINIUM CARTERAE ................................................................... 52 3.4.2 EFFECTS OF BREFELDIN A ON PROTEIN MOBILITY IN SUCROSE GRADIENT FRACTIONATIONS OF AMPHIDINIUM CARTERAE ................................................................................................................................ 55 3.4.3 ELECTRON MICROSCOPIC EXAMINATION OF THE EFFECTS OF BREFELDIN A ON PROTEIN LOCALIZATION IN AMPHIDINIUM CARTERAE .................................................................................................... 59 3.4.3.1 IMMUNOGOLD LABELING WITH Α-PSBO IN AMPHIDINIUM CARTERAE CELLS TREATED WITH BREFELDIN A ................................................................................................................................................... 61 3.4.3.2 IMMUNOGOLD LABELING WITH Α-RBCL IN AMPHIDINIUM CARTERAE CELLS TREATED WITH BREFELDIN A ................................................................................................................................................... 63 4 DISCUSSION ............................................................................................................................................ 66 i 4.1 CERATIUM HORRIDUM EST LIBRARY ..................................................................................................... 66 4.1.1 General Features .......................................................................................................................... 66 4.1.2 Gene Transfers ............................................................................................................................. 67 4.1.3 Plastid Targeting Signals ............................................................................................................. 69 4.2 HETEROLOGOUS IN VIVO IMPORT ASSAYS USING DINOFLAGELLATE TARGETING SIGNALS .................... 72 4.2.1 In vivo transfection of Pisum sativum with Amphidinium carterae PsbO and Prk Transit Peptides 73 4.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum ............................................ 74 4.2.2.1 Heterologous in vivo Transfections of Phaeodactylum tricornutum with Amphidinium carterae Signal Peptides ............................................................................................................................. 75 4.2.2.2 Heterologous in vivo Transfections of Phaeodactylum tricornutum with Amphidinium carterae BTSs .............................................................................................................................................. 75 4.2.3 Implications of in vivo Transfections ...........................................................................................
Recommended publications
  • COMPARISON of HEMOLYTIC ACTIVITY of Amphidinium Carterae and Amphidinium Klebsii
    ENVIRONMENTAL REGULATION OF TOXIN PRODUCTION: COMPARISON OF HEMOLYTIC ACTIVITY OF Amphidinium carterae AND Amphidinium klebsii Leigh A. Zimmermann A Thesis Submitted to University of North Carolina Wilmington in Partial Fulfillment Of the Requirements for the Degree of Master of Science Center for Marine Science University of North Carolina Wilmington 2006 Approved by Advisory Committee ______________________________ ______________________________ ______________________________ Chair Accepted by _____________________________ Dean, Graduate School This thesis was prepared according to the formatting guidelines of the Journal of Phycology. TABLE OF CONTENTS ABSTRACT................................................................................................................................... iv ACKNOWLEDGEMENTS.............................................................................................................v LIST OF TABLES......................................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION ...........................................................................................................................1 METHODS AND MATERIALS.....................................................................................................6 Algal Culture........................................................................................................................6
    [Show full text]
  • Redalyc.Impact of Increasing Water Temperature on Growth
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Aquino-Cruz, Aldo; Okolodkov, Yuri B. Impact of increasing water temperature on growth, photosynthetic efficiency, nutrient consumption, and potential toxicity of Amphidinium cf. carterae and Coolia monotis (Dinoflagellata) Revista de Biología Marina y Oceanografía, vol. 51, núm. 3, diciembre, 2016, pp. 565-580 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47949206008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 51, Nº3: 565-580, diciembre 2016 DOI 10.4067/S0718-19572016000300008 ARTICLE Impact of increasing water temperature on growth, photosynthetic efficiency, nutrient consumption, and potential toxicity of Amphidinium cf. carterae and Coolia monotis (Dinoflagellata) Impacto del aumento de temperatura sobre el crecimiento, actividad fotosintética, consumo de nutrientes y toxicidad potencial de Amphidinium cf. carterae y Coolia monotis (Dinoflagellata) Aldo Aquino-Cruz1 and Yuri B. Okolodkov2 1University of Southampton, National Oceanography Centre Southampton, European Way, Waterfront Campus, SO14 3HZ, Southampton, Hampshire, England, UK. [email protected] 2Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Calle Hidalgo 617, Col. Río Jamapa, Boca del Río, 94290, Veracruz, México. [email protected] Resumen.- A nivel mundial, el aumento de la temperatura en ecosistemas marinos podría beneficiar la formación de florecimientos algales nocivos. Sin embargo, la comprensión de la influencia del aumento de la temperatura sobre el crecimiento de poblaciones nocivas de dinoflagelados bentónicos es prácticamente inexistente.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Planktonic Algal Blooms from 2000 to 2015 in Acapulco
    125: 61-93 October 2018 Research article Planktonic algal blooms from 2000 to 2015 in Acapulco Bay, Guerrero, Mexico Florecimientos de microalgas planctónicas de 2000 al 2015 en la Bahía de Acapulco, Guerrero, México María Esther Meave del Castillo1,2 , María Eugenia Zamudio-Resendiz1 ABSTRACT: 1 Universidad Autónoma Metro- Background and Aims: Harmful algal blooms (HABs) affect the marine ecosystem in multiple ways. The politana, Unidad Iztapalapa, De- objective was to document the species that produced blooms in Acapulco Bay over a 15-year period (2000- partamento de Hidrobiología, La- boratorio de Fitoplancton Marino 2015) and analyze the presence of these events with El Niño-Southern Oscillation (ENSO). y Salobre, Av. San Rafael Atlixco Methods: Thirty-five collections, made during the years 2000, 2002-2004, 2006-2011, 2013-2015, were 186, Col. Vicentina, Iztapalapa, undertaken with phytoplankton nets and Van Dorn bottle, yielding 526 samples, of which 423 were quanti- 09340 Cd. Mx., México. fied using the Utermöhl method. The relationship of HAB with ENSO was made with standardized values 2 Author for correspondence: of Multivariate ENSO Index (MEI) and the significance was evaluated with the method quadrant sums of [email protected] Olmstead-Tukey. Key results: Using data of cell density and high relative abundance (>60%), 53 blooms were recorded, most Received: November 21, 2017. of them occurring during the rainy season (June-October) and dry-cold season (November-March), plus 37 Reviewed: January 10, 2018. blooms reported by other authors. These 90 blooms were composed of 40 taxa: 21 diatoms and 19 dinoflagel- Accepted: April 6, 2018.
    [Show full text]
  • Chromerid Genomes Reveal the Evolutionary Path From
    RESEARCH ARTICLE elifesciences.org Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites Yong H Woo1*, Hifzur Ansari1,ThomasDOtto2, Christen M Klinger3†, Martin Kolisko4†, Jan Michalek´ 5,6†, Alka Saxena1†‡, Dhanasekaran Shanmugam7†, Annageldi Tayyrov1†, Alaguraj Veluchamy8†§, Shahjahan Ali9¶,AxelBernal10,JavierdelCampo4, Jaromır´ Cihla´ rˇ5,6, Pavel Flegontov5,11, Sebastian G Gornik12,EvaHajduskovˇ a´ 5, AlesHorˇ ak´ 5,6,JanJanouskovecˇ 4, Nicholas J Katris12,FredDMast13,DiegoMiranda- Saavedra14,15, Tobias Mourier16, Raeece Naeem1,MridulNair1, Aswini K Panigrahi9, Neil D Rawlings17, Eriko Padron-Regalado1, Abhinay Ramaprasad1, Nadira Samad12, AlesTomˇ calaˇ 5,6, Jon Wilkes18,DanielENeafsey19, Christian Doerig20, Chris Bowler8, 4 10 3 21,22 *For correspondence: yong. Patrick J Keeling , David S Roos ,JoelBDacks, Thomas J Templeton , 12,23 5,6,24 5,6,25 1 [email protected] (YHW); arnab. Ross F Waller , Julius Lukesˇ , Miroslav Obornık´ ,ArnabPain* [email protected] (AP) 1Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering † These authors contributed Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; equally to this work 2Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Present address: ‡Vaccine and Cambridge, United Kingdom; 3Department of Cell Biology, University of Alberta, Infectious Disease Division, Fred Edmonton, Canada; 4Canadian Institute for Advanced Research, Department of Botany,
    [Show full text]
  • Plasmodiophora Brassicae
    Bi et al. Phytopathology Research (2019) 1:12 https://doi.org/10.1186/s42483-019-0018-6 Phytopathology Research RESEARCH Open Access Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways Kai Bi1,2, Tao Chen2, Zhangchao He1,2, Zhixiao Gao1,2, Ying Zhao1,2, Huiquan Liu3, Yanping Fu2, Jiatao Xie1,2, Jiasen Cheng1,2 and Daohong Jiang1,2* Abstract Plasmodiophora brassicae is an important biotrophic eukaryotic plant pathogen and a member of the rhizarian protists. This biotrophic pathogen causes clubroot in cruciferous plants via novel intracellular mechanisms that are markedly different from those of other biotrophic organisms. To date, genomes from six single spore isolates of P. brassicae have been sequenced. An accurate description of the evolutionary status of this biotrophic protist, however, remains lacking. Here, we determined the draft genome of the P. brassicae ZJ-1 strain. A total of 10,951 protein-coding genes were identified from a 24.1 Mb genome sequence. We applied a comparative genomics approach to prove the Rhizaria supergroup is an independent branch in the eukaryotic evolutionary tree. We also found that the GPCR signaling pathway, the versatile signal transduction to multiple intracellular signaling cascades in response to extracellular signals in eukaryotes, is significantly enriched in P. brassicae-expanded and P. brassicae-specific gene sets. Additionally, treatment with a GPCR inhibitor relieved the symptoms of clubroot and significantly suppressed the development of plasmodia. Our findings suggest that GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Marea Roja Producida Por Lingulodinium Polyedrum (Peridiniales, Dinophyceae) En Bahía Culebra, Golfo De Papagayo, Costa Rica
    Rev. Biol. Trop. 49. Supl. 2: 19-23, 2001 www.rbt.ac.cr, www.ucr.ac.cr COMUNICACIÓN BREVE Marea roja producida por Lingulodinium polyedrum (Peridiniales, Dinophyceae) en Bahía Culebra, Golfo de Papagayo, Costa Rica 1 2 3 4 Alvaro Morales-Ramírez , Roxana Víquez , Karina Rodríguez y Maribel Vargas 1Centro de Investigación en Ciencias del Mar y Limnogía CIMAR y Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. Correo electrónico: [email protected]; 2 Escuela de Ciencias Biológicas, Universidad Nacional, Heredia; 3Programa Regional de Posgrado en Biología, Universidad de Costa Rica; 4 Unidad de Microscopia Electrónica, Universidad de Costa Rica. (Recibido 02-VII-2001.Revisado 27-X-2001. Aceptado 02-XI-2001) Abstract: This is the first record of the dinoflagellate Lingulodinium polyedrum in a red tide bloom in the North Pacific coast of Costa Rica. The sample was collected on April 2000 at Culebra Bay, Gulf of Papagayo, from a patch of aproximatly 2000 m2, which produced a red discoloration of the water and a peculiar strong odor. This species produces spherical hypnocysts that may remain for decades when dark or anoxic conditions are present; L. polyedrum had been associated with the production of paralyzing toxins such as saxitoxins and yessotoxins. A second smaller patch was observed close Panama beach, into the bay, where we found seven puffer fish (Diodontidae) and two lobsters dead in the sand. It is important to develop a monitoring program to identify seasonal behavior of this species and ameliorate its impact on coastal human communities. Key words: Red tide, dinoflagellates, Lingulodinium polyedrum, Culebra Bay, Pacific coast, Costa Rica.
    [Show full text]
  • Effects of Salinity Variation on Growth and Yessotoxin Composition in the Marine Dinoflagellate Lingulodinium Polyedra from a Sk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Harmful Algae 78 (2018) 9–17 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Effects of salinity variation on growth and yessotoxin composition in the marine dinoflagellate Lingulodinium polyedra from a Skagerrak fjord system T (western Sweden) ⁎ Carolin Petera, , Bernd Krockb, Allan Cembellab a Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany b Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany ARTICLE INFO ABSTRACT Keywords: The marine dinoflagellate Lingulodinium polyedra is a toxigenic species capable of forming high magnitude and Toxin quota occasionally harmful algal blooms (HABs), particularly in temperate coastal waters throughout the world. Three Toxin profile cultured isolates of L. polyedra from a fjord system on the Skagerrak coast of Sweden were analyzed for their – LC MS/MS growth characteristics and to determine the effects of a strong salinity gradient on toxin cell quotas and com- Protoceratium reticulatum position. The cell quota of yessotoxin (YTX) analogs, as determined by liquid chromatography coupled with YTX analogs tandem mass spectrometry (LC–MS/MS), ranged widely among strains. For two strains, the total toxin content Homo-YTX remained constant over time in culture, but for the third strain, the YTX cell quota significantly decreased (by 32%) during stationary growth phase. The toxin profiles of the three strains differed markedly and none pro- duced YTX. The analog 41a-homo-YTX (m/z 1155), its putative methylated derivative 9-Me-41a-homo-YTX (m/z 1169) and an unspecified keto-YTX (m/z 1047) were detected in strain LP29-10H, whereas strain LP30-7B contained nor-YTX (m/z 1101), and two unspecified YTX analogs at m/z 1159 and m/z 1061.
    [Show full text]
  • Nuclear Genome Sequence of the Plastid-Lacking
    Cenci et al. BMC Biology (2018) 16:137 https://doi.org/10.1186/s12915-018-0593-5 RESEARCH ARTICLE Open Access Nuclear genome sequence of the plastid- lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids Ugo Cenci1,2†, Shannon J. Sibbald1,2†, Bruce A. Curtis1,2, Ryoma Kamikawa3, Laura Eme1,2,11, Daniel Moog1,2,12, Bernard Henrissat4,5,6, Eric Maréchal7, Malika Chabi8, Christophe Djemiel8, Andrew J. Roger1,2,9, Eunsoo Kim10 and John M. Archibald1,2,9* Abstract Background: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu.
    [Show full text]
  • Horizontal Gene Transfer Is a Significant Driver of Gene Innovation in Dinoflagellates
    GBE Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates Jennifer H. Wisecaver1,3,*, Michael L. Brosnahan2, and Jeremiah D. Hackett1 1Department of Ecology and Evolutionary Biology, University of Arizona 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 3Present address: Department of Biological Sciences, Vanderbilt University, Nashville, TN *Corresponding author: E-mail: [email protected]. Accepted: November 12, 2013 Data deposition:TheAlexandrium tamarense Group IV transcriptome assembly described in this article has been deposited at DDBJ/EMBL/ GenBank under the accession GAIQ01000000. Abstract The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation.
    [Show full text]