Phase II Study of Oral Capecitabine in Patients with Hormone-Refractory Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Phase II Study of Oral Capecitabine in Patients with Hormone-Refractory Prostate Cancer Prostate Cancer and Prostatic Diseases (2005) 8, 364–368 & 2005 Nature Publishing Group All rights reserved 1365-7852/05 $30.00 www.nature.com/pcan Phase II study of oral capecitabine in patients with hormone-refractory prostate cancer J Spicer1,2, T Plunkett1, N Somaiah1, S Chan1, A Kendall1, N Bolunwu1 & H Pandha1* 1Division of Oncology, Department of Cellular & Molecular Medicine, St George’s Hospital Medical School, Cranmer Terrace, London, UK Background: Currently available treatment for hormone refractory prostate cancer is limited in efficacy and associated with significant toxicity. This phase II study was performed to assess the efficacy of the oral fluoropyrimidine capecitabine in advanced prostate cancer. Patients and methods: Patients who had a rising prostate-specific antigen (PSA) despite androgen withdrawal, but who remained free from cancer-related symptoms. In total, 14 patients received oral capecitabine 1250 mg/m2 twice daily for two weeks of a three-week cycle. Tumour response was assessed using serum PSA measurement at 3-weekly intervals and, where present, imaging of soft tissue metastases. Results: One of 14 patients experienced a partial response as assessed by both PSA and imaging of liver metastases. In seven other patients (50%), treatment decreased the rate of PSA rise. The duration of PSA stabilisation was generally short, but in 5/14 patients (36%) was sustained beyond 18 weeks, and in one patient to 24 weeks. Toxicity was significant but manageable, the most common adverse events being nausea, mucositis and hand–foot syndrome, each occurring in 50% of patients. Other common side effects were diarrhoea and lymphopenia. All toxicities were grade 1 or 2, except for grade 3 hand–foot syndrome occurring in one patient, and no dose reduction was required because of toxicity. Conclusion: Capecitabine has limited activity as a single agent in prostate cancer, but appears to modulate tumour biology. Considering the added convenience of oral administration, these results support further evaluation of combinations containing capecitabine in hormone-refractory prostate cancer. Prostate Cancer and Prostatic Diseases (2005) 8, 364–368. doi:10.1038/sj.pcan.4500821; published online 2 August 2005 Keywords: capecitabine; chemotherapy; PSA Background cer,1,2 and offers some survival benefit.3,4 However, cancer patients express a strong preference for oral rather Patients treated with androgen withdrawal for advanced than intravenous therapies.5,6 Short-lived prostate-speci- prostate cancer become refractory to this therapy within fic antigen (PSA) responses are seen with prednisolone, a median 18–24 months. Combination chemotherapy can estramustine and diethylstilboestrol, but these last two improve symptoms in hormone-refractory prostate can- drugs are associated with significant thrombo-embolic toxicity.7 Most patients remain asymptomatic for some months following detection of PSA rise after androgen *Correspondence: H Pandha, Division of Oncology, Department of withdrawal, so there is a clear need for a well tolerated, Cellular & Molecular Medicine, St George’s Hospital Medical School, orally administered, disease-modifying therapy. Cranmer Terrace, London, SW170RE, UK. The fluoropyrimidine 5-fluorouracil (5FU), adminis- E-mail address: [email protected] 2 tered intravenously with or without folinic acid, pro- Current address: Department of Medical Oncology, Academic duces few responses in hormone-refractory prostate Oncology Offices, 3rd Floor, Thomas Guy House, Guy’s Hospital, St cancer, at the expense of significant toxicity.8–12 However, Thomas Street, London SE1 9RT, UK 13,14 Received 23 March 2005; revised 19 June 2005; accepted 19 June 2005; responses were seen using low-dose infusional 5FU. published online 2 August 2005 Capecitabine (Xeloda, Roche Products) is an orally Study of oral capecitabine J Spicer et al administered fluoropyrimidine carbamate preferentially described.23 Androgen withdrawal with an LHRH 365 converted to 5-FU at sites of disease by thymidine analogue was continued in all patients. Treatment was phosphorylase expressed in tumour cells,15 including given if the neutrophil count exceeded 0.5 Â 109/l, prostate cancer cells.16 Capecitabine is active in a number lymphocyte count exceeded 0.5 Â 109/l and platelets of tumour types including colorectal, breast, stomach were greater than 100 Â 109/l. Adverse events were and pancreatic cancer. In particular, capecitabine mono- graded on a four-point scale (WHO common toxicity therapy is now well established as first-line treatment in criteria), with an additional scale for hand–foot syn- advanced colorectal cancer,17,18 and as a preferred option drome. Capecitabine was delayed and dosage reduced in taxane-pretreated metastatic breast cancer.19 Survival by 20% for treatment-related adverse events of grade 2 or with the combination of capecitabine and docetaxel is greater. Patients were eligible to receive eight cycles, with superior to docetaxel alone in metastatic breast cancer.20 the option to continue in the event of maintained There is anecdotal evidence of capecitabine activity in response. Treatment was discontinued in the absence of prostate cancer,21 and we have conducted an open label PSA response or control (a fall in PSA velocity by 50% or phase II study to evaluate the efficacy and safety of this more) after four cycles, on PSA progression subse- drug in patients with hormone-refractory prostate quently, or on symptomatic deterioration. cancer. PSA response was chosen as the primary end point, according to published guidelines.22 Patient assessment and response criteria Patients and methods Screening assessments, including a medical history, physical examination, full blood count and chemistry Study design profile were performed within 1 week before treatment began. Serial rises in serum PSA, as above, were required This open label, phase II, non-randomised single-centre before trial entry. PSA level and full blood count were study was designed to investigate the efficacy of repeated with each 21-day cycle. A PSA response was capecitabine in prostate cancer patients with progressive defined as a X50% decrease from baseline in serum PSA, disease despite androgen withdrawal. The study re- determined by two observations not less than 4 weeks ceived ethical approval from the local ethics review apart. PSA velocity was defined as the rate of change of committee, and all patients gave written, informed the natural logarithm of PSA with time, and baseline PSA consent. velocity was calculated using at least two pre-treatment PSA values for each patient. PSA stabilisation was defined as a fall in PSA velocity by 50% or more. Patients Patient eligibility meeting neither of these criteria were considered to have progressive disease. For patients with measurable dis- Eligible patients had histologically confirmed adenocar- ease, radiological investigations were repeated after cinoma of the prostate with progression of locally three cycles, or at biochemical or clinical progression. advanced or metastatic disease despite androgen with- Response was assessed according to RECIST criteria,24 drawal with a luteinising hormone releasing hormone with partial response defined as a X30% decrease from (LHRH) agonist. Disease progression was defined as a baseline. rise in serum PSA on two consecutive occasions at least 2 weeks apart.22 Patients with measurable disease were also included. Statistical methods Patients who had received prior chemotherapy were not eligible. Previous or concurrent radiotherapy was The aims of this phase II study were to assess the efficacy allowed. Patients were required to have a WHO and toxicity of capecitabine in hormone refractory performance status of 2 or less, and to have a life prostate cancer. The primary end point was response as expectancy of at least 3 months. Those with significant assessed using serum PSA. Using a sequential analysis weight loss or severe pain were excluded. Patients with design,25 the absence of a response among the first 14 inadequate haematological, renal or liver parameters patients would indicate insufficient study drug activity (neutrophils o0.5 Â 109/l, calculated creatinine clearance to warrant further study. Thus 14 assessable subjects o50 ml/min, platelets o100 Â 109/l, bilirubin 430), were recruited. intracranial metastases or cord compression were also The analysis of efficacy was based on all patients who excluded. Other exclusion criteria included any concur- received at least one dose of capecitabine. Similarly, rent medical condition or laboratory abnormality that safety was assessed for all patients who received at least could compromise the safety of the patient or interfere one dose of the study drug. with the interpretation of the results. Treatment regimen Results Patients were treated with oral capecitabine 1250 mg/m2 A total of 14 patients were enrolled in this study between self-administered twice daily (2500 mg/m2/day), as July 2002 and November 2003. All patients completed at intermittent therapy in 3-week cycles consisting of 14 least one cycle of capecitabine and were assessable for days of treatment followed by 7 days without treatment. response. All patients had progressed following LHRH Details of the treatment regimen have been previously therapy. The median PSA at study entry was 496 ng/ml, Prostate Cancer and Prostatic Diseases Study of oral capecitabine J Spicer et al 366 Table 1 Baseline characteristics of patients treated 3 Age Performance Sites of Baseline PSA 2 status metastatic (ng/ml) disease 1 1 72 1 Bone 724 2 73 1 Bone 15 0 3 58 0 Bone 407 1 2 3 4 5 6 7 8 9 10 11 12 13 14 4 63 0 Bone 304 -1 5 56 1 Bone; pelvic LNa 40 PSA velocity ratio PSA velocity 6 77 1 Bone 967 -2 7 73 2 Bone 176 8 41 1 None 1308 -3 9 74 1 Bone 100 Patient number 10 70 1 Liver 1474 11 69 1 Bone & liver 796 Figure 2 PSA velocity change. PSA velocity is defined as the ratio of rate 12 79 1 Bone 107 of change in ln (post-treatment PSA) to the rate of change in ln (pre- 13 69 0 Bone 217 treatment PSA).
Recommended publications
  • A Phase II Study of Paclitaxel and Capecitabine As a First-Line Combination Chemotherapy for Advanced Gastric Cancer
    British Journal of Cancer (2008) 98, 316 – 322 & 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $30.00 www.bjcancer.com A phase II study of paclitaxel and capecitabine as a first-line combination chemotherapy for advanced gastric cancer Clinical Studies HJ Kang1, HM Chang1, TW Kim1, M-H Ryu1, H-J Sohn1, JH Yook2,STOh2, BS Kim2, J-S Lee1 and Y-K Kang*,1 1 2 Division of Oncology, Department of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea Paclitaxel and capecitabine, which have distinct mechanisms of action and toxicity profiles, have each shown high activity as single agents in gastric cancer. Synergistic interaction between these two drugs was suggested by taxane-induced upregulation of thymidine phosphorylase. We, therefore, evaluated the antitumour activity and toxicities of paclitaxel and capecitabine as first-line therapy in patients with advanced gastric cancer (AGC). Patients with histologically confirmed unresectable or metastatic AGC were treated À2 À2 with capecitabine 825 mg m p.o. twice daily on days 1–14 and paclitaxel 175 mg m i.v. on day 1 every 3 weeks until disease progression or unacceptable toxicities. Between June 2002 and May 2004, 45 patients, of median age 57 years (range ¼ 38–73 years), were treated with the combination of capecitabine and paclitaxel. After a median 6 cycles (range ¼ 1–9 cycles) of chemotherapy, 43 were evaluable for toxicity and response. A total of 2 patients showed complete response and 20 showed partial response making the overall response rate 48.9% (95% CI ¼ 30.3–63.5%).
    [Show full text]
  • A Phase II Study of Capecitabine and Docetaxel Combination Chemotherapy in Patients with Advanced Gastric Cancer
    British Journal of Cancer (2004) 90, 1329 – 1333 & 2004 Cancer Research UK All rights reserved 0007 – 0920/04 $25.00 www.bjcancer.com A phase II study of capecitabine and docetaxel combination chemotherapy in patients with advanced gastric cancer YH Park*,1, B-Y Ryoo1, S-J Choi1and H-T Kim1 1 Division of Haematology and Oncology, Department of Internal Medicine, Korea Institute of Radiological and Medical Science, Seoul, Korea Clinical Capecitabine and docetaxel have considerable single-agent activity in gastric cancer with distinct mechanisms of action and no overlap of key toxicities. A synergistic interaction between these two drugs is mediated by taxane-induced upregulation of thymidine phosphorylase. We investigated the activity and the feasibility of capecitabine and docetaxel combination chemotherapy in patients with previously untreated advanced gastric cancer (AGC). From September 2001 to March 2003, 42 patients with AGC received À2 À2 21-day cycles of oral capecitabine (1250 mg m twice daily on days 1–14) and docetaxel (75 mg m i.v. on day 1). The patients received a total of 164 cycles of chemotherapy. The median age was 53.5 years (range 33–73 years). The overall response rate in the 38 efficacy-evaluable patients was 60% (95% confidence interval, 45–74%). The median progression-free survival was 5.2 months (range, 1.0–15.5 þ months) and the median overall survival was 10.5 months (range, 2.9–23.7 þ months). The most common grade 3/4 adverse events were hand–foot syndrome (HFS: G3 50%), neutropenia (15%) and leucopenia (12%). Further studies of this combination are clearly warranted, albeit with lower doses of both agents (1000 mg mÀ2 twice daily and 60 mg mÀ2) to reduce the rate of HFS and onycholysis.
    [Show full text]
  • Fluorouracil-Methotrexate (CMF PO)
    Chemotherapy Protocol BREAST CANCER CYCLOPHOSPHAMIDE (PO)-FLUOROURACIL-METHOTREXATE (CMF-PO) Regimen • Breast Cancer – Cyclophosphamide (PO)-Fluorouracil-Methotrexate (CMF PO) Indication • Adjuvant treatment of early breast cancer • WHO Performance status 0, 1, 2 Toxicity Drug Adverse Effect Cyclophosphamide Dysuria, haemorrhagic cystitis, taste disturbances Fluorouracil Diarrhoea, stomatitis Methotrexate Stomatitis, conjunctivitis, renal toxicity The presence of a third fluid compartment e.g. ascities or renal failure may delay methotrexate clearance hence increase toxicity. The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Monitoring Regimen • FBC, U&E’s and LFT’s prior to each cycle. • Patients with complete or partial dihydropyrimidine dehydrogenase (DPD) deficiency are at increased risk of severe and fatal toxicity during treatment with fluorouracil. All patients should be tested for DPD deficiency before initiation (cycle 1) to minimise the risk of these reactions Dose Modifications The dose modifications listed are for haematological, liver and renal function only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re- escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Version 1.2 (November 2020) Page 1 of 6 Breast – Cyclophosphamide (PO)-Fluorouracil-Methotrexate (CMF-PO) Please discuss all dose reductions / delays with the relevant consultant before prescribing, if appropriate. The approach may be different depending on the clinical circumstances. The following is a general guide only. Haematological Prior to prescribing the following treatment criteria must be met on day 1 of treatment.
    [Show full text]
  • 5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells
    Article Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells Maria Pereira-Oliveira, Ana Reis-Mendes, Félix Carvalho, Fernando Remião, Maria de Lourdes Bastos and Vera Marisa Costa * UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; [email protected] (M.P.-O.); [email protected] (A.R.-M.); [email protected] (F.C.); [email protected] (F.R.); [email protected] (M.L.B.) * Correspondence: [email protected] Received: 4 October 2018; Accepted: 3 January 2019; Published: 10 January 2019 Abstract: Currently, a common therapeutic approach in cancer treatment encompasses a drug combination to attain an overall better efficacy. Unfortunately, it leads to a higher incidence of severe side effects, namely cardiotoxicity. This work aimed to assess the cytotoxicity of doxorubicin (DOX, also known as Adriamycin), 5-fluorouracil (5-FU), cyclophosphamide (CYA), and their combination (5-Fluorouracil + Adriamycin + Cyclophosphamide, FAC) in H9c2 cardiac cells, for a better understanding of the contribution of each drug to FAC-induced cardiotoxicity. Differentiated H9c2 cells were exposed to pharmacological relevant concentrations of DOX (0.13–5 μM), 5-FU (0.13–5 μM), CYA (0.13–5 μM) for 24 or 48 h. Cells were also exposed to FAC mixtures (0.2, 1 or 5 μM of each drug and 50 μM 5-FU + 1 μM DOX + 50 μM CYA). DOX was the most cytotoxic drug, followed by 5-FU and lastly CYA in both cytotoxicity assays (reduction of 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide (MTT) and neutral red (NR) uptake).
    [Show full text]
  • Arsenic Trioxide Targets MTHFD1 and SUMO-Dependent Nuclear De Novo Thymidylate Biosynthesis
    Arsenic trioxide targets MTHFD1 and SUMO-dependent PNAS PLUS nuclear de novo thymidylate biosynthesis Elena Kamyninaa, Erica R. Lachenauera,b, Aislyn C. DiRisioa, Rebecca P. Liebenthala, Martha S. Fielda, and Patrick J. Stovera,b,c,1 aDivision of Nutritional Sciences, Cornell University, Ithaca, NY 14853; bGraduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853; and cGraduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 Contributed by Patrick J. Stover, February 12, 2017 (sent for review December 1, 2016; reviewed by I. David Goldman and Anne Parle-McDermott) Arsenic exposure increases risk for cancers and is teratogenic in levels. Decreased rates of de novo dTMP synthesis can be caused animal models. Here we demonstrate that small ubiquitin-like by the action of chemotherapeutic drugs (19), through inborn modifier (SUMO)- and folate-dependent nuclear de novo thymidylate errors of folate transport and metabolism (15, 18, 20, 21), by (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), inhibiting translocation of the dTMP synthesis pathway enzymes leading to uracil misincorporation into DNA and genome instability. into the nucleus (2) and by dietary folate deficiency (22, 23). Im- Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine paired dTMP synthesis leads to genome instability through well- hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahy- characterized mechanisms associated with uracil misincorporation drofolate for de novo dTMP biosynthesis and translocate to the nu- into nuclear DNA and subsequent futile cycles of DNA repair (24, cleus during S-phase, where they form a multienzyme complex with 25). Nuclear DNA is surveyed for the presence of uracil by a thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as family of uracil glycosylases including: uracil N-glycolase (UNG), well as the components of the DNA replication machinery.
    [Show full text]
  • Metronomic Chemotherapy
    cancers Review Metronomic Chemotherapy Marina Elena Cazzaniga 1,2,*,†, Nicoletta Cordani 1,† , Serena Capici 2, Viola Cogliati 2, Francesca Riva 3 and Maria Grazia Cerrito 1,* 1 School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy; [email protected] 2 Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; [email protected] (S.C.); [email protected] (V.C.) 3 Unit of Clinic Oncology, ASST-Monza (MB), 20900 Monza, Italy; [email protected] * Correspondence: [email protected] (M.E.C.); [email protected] (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.) † Co-first authors. Simple Summary: The present article reviews the state of the art of metronomic chemotherapy use to treat the principal types of cancers, namely breast, non-small cell lung cancer and colorectal ones, and of the most recent progresses in understanding the underlying mechanisms of action. Areas of novelty, in terms of new regimens, new types of cancer suitable for Metronomic chemotherapy (mCHT) and the overview of current ongoing trials, along with a critical review of them, are also provided. Abstract: Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, Citation: Cazzaniga, M.E.; Cordani, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be N.; Capici, S.; Cogliati, V.; Riva, F.; considered a multi-target therapy itself.
    [Show full text]
  • Dosage of Capecitabine and Cyclophosphamide Combination Therapy in Patients with Metastatic Breast Cancer
    ANTICANCER RESEARCH 27: 1009-1014 (2007) Dosage of Capecitabine and Cyclophosphamide Combination Therapy in Patients with Metastatic Breast Cancer SHINJI OHNO1, SHOSHU MITSUYAMA2, KAZUO TAMURA3, REIKI NISHIMURA4, MAKI TANAKA5, YUZO HAMADA6, SHOJI KUROKI7 and THE KYUSHU BREAST CANCER STUDY GROUP 1Department of Breast Oncology, National Kyushu Cancer Center Hospital, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395; 2Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu City, Fukuoka 802-0077; 3First Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0818; 4Department of Breast and Endocrine Surgery, Kumamoto City Hospital, 1-1-60 Kotoh Kumamoto City, Kumamoto 862-8505; 5Department of Surgery, Social Insurance Kurume Daiichi Hospital, 21 Kushihara-machi, Kurume City, Fukuoka 830-0013; 6Department of Breast Surgery, Hirose Hospital, 1-12-12 Watanabedouri Chuo-ku, Fukuoka 810-0004; 7Department of Surgery and Oncology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan Abstract. Background: Capecitabine is a highly effective and taxane therapy is distressing for women and can lead patients well-tolerated treatment for metastatic breast cancer (MBC) and to consider stopping therapy (1). Intense nausea associated extends survival when combined with docetaxel. Capecitabine with anthracycline-based therapy also adversely affects and cyclophosphamide are orally administered and have patients' quality of life (2). Therefore a chemotherapy preclinical synergy and non-overlapping toxicities. Patients and regimen that minimises these effects is likely to be attractive Methods: Sixteen pretreated MBC patients received escalating to patients. Another important consideration with taxane- doses of oral capecitabine 628 to 829 mg/m2 twice daily (bid) and anthracycline-based therapies is the need for regular plus oral cyclophosphamide 33 to 50 mg/m2 bid, on days 1 to 14 clinic visits or hospitalisations for intravenous administration every 21 days.
    [Show full text]
  • Paclitaxel, Vinorelbine and 5-Fluorouracil in Breast Cancer Patients Pretreated with Adjuvant Anthracyclines
    British Journal of Cancer (2005) 92, 634 – 638 & 2005 Cancer Research UK All rights reserved 0007 – 0920/05 $30.00 www.bjcancer.com Paclitaxel, vinorelbine and 5-fluorouracil in breast cancer patients pretreated with adjuvant anthracyclines Clinical Studies 1 1 1 2 2 2 3 3 A Berruti , R Bitossi , G Gorzegno , A Bottini , D Generali , M Milani , D Katsaros , IA Rigault de la Longrais , 3 4 4 4 5 6 6 7 R Bellino , M Donadio , M Ardine , O Bertetto , S Danese , MG Sarobba , A Farris , V Lorusso and ,1 L Dogliotti* 1Oncologia Medica, Azienda Ospedaliera San Luigi, Regione Gonzole 10, 10043 Orbassano (TO), Italy; 2Breast Unit, Azienda Ospedaliera Istituti Ospitalieri, largo Priori, 26100 Cremona, Italy; 3Ginecologia Oncologica, Azienda Ospedaliera OIRM Sant’Anna, via Ventimiglia 3, 10126 Torino, Italy; 4 Oncologia Medica, Centro Oncologico Ematologico Subalpino, Azienda Ospedaliera San Giovanni Battista Molinette, corso Bramante 88, 10126 Torino, 5 6 Italy; Ginecologia Divisione A, Azienda Ospedaliera OIRM Sant’Anna, corso Spezia 60, 10126 Torino, Italy; Oncologia Medica, Istituto Clinica Medica 7 Universitaria, via San Pietro 8, 07100 Sassari, Italy; Oncologia Medica, Istituto Oncologico, via Amendola 209, 70126 Bari, Italy We investigated the activity and toxicity of a combination of vinorelbine (VNB), paclitaxel (PTX) and 5-fluorouracil (5-FU) continuous infusion administered as first-line chemotherapy in metastatic breast cancer patients pretreated with adjuvant À2 À2 anthracyclines. A total of 61 patients received a regimen consisting of VNB 25 mg m on days 1 and 15, PTX 60 mg m on days 1, 8 À2 and 15 and continuous infusion of 5-FU at 200 mg m every day.
    [Show full text]
  • XELODA (Capecitabine) Is a Fluoropyrimidine Carbamate with Antineoplastic Activity
    XELODA® (capecitabine) TABLETS DESCRIPTION: XELODA (capecitabine) is a fluoropyrimidine carbamate with antineoplastic activity. It is an orally administered systemic prodrug of 5’-deoxy-5-fluorouridine (5’-DFUR) which is converted to 5-fluorouracil. The chemical name for capecitabine is 5’-deoxy-5-fluoro-N-[(pentyloxy) carbonyl]-cytidine and has a molecular weight of 359.35. Capecitabine has the following structural formula: O N NH O O O H3C N F HO OH Capecitabine is a white to off-white crystalline powder with an aqueous solubility of 26 mg/mL at 20ºC. XELODA is supplied as biconvex, oblong film-coated tablets for oral administration. Each light peach- colored tablet contains 150 mg capecitabine and each peach-colored tablet contains 500 mg capecitabine. The inactive ingredients in XELODA include: anhydrous lactose, croscarmellose sodium, hydroxypropyl methylcellulose, microcrystalline cellulose, magnesium stearate and purified water. The peach or light peach film coating contains hydroxypropyl methylcellulose, talc, titanium dioxide, and synthetic yellow and red iron oxides. CLINICAL PHARMACOLOGY: Capecitabine is relatively non-cytotoxic in vitro. This drug is enzymatically converted to 5-fluorouracil (5-FU) in vivo. Bioactivation: Capecitabine is readily absorbed from the gastrointestinal tract. In the liver, a 60 kDa carboxyesterase hydrolyzes much of the compound to 5’-deoxy-5-fluorocytidine (5’-DFCR). Cytidine deaminase, an enzyme found in most tissues, including tumors, subsequently converts 5’-DFCR to 5’- deoxy-5-fluorouridine (5’-DFUR). The enzyme, thymidine phosphorylase (dThdPase), then hydrolyzes 5’-DFUR to the active drug 5-FU. Many tissues throughout the body express thymidine phosphorylase. Some human carcinomas express this enzyme in higher concentrations than surrounding normal tissues.
    [Show full text]
  • Capecitabine Induces Rapid, Sustained Response in Two Patients with Extensive Oral Verrucous Carcinoma1
    580 Vol. 9, 580–585, February 2003 Clinical Cancer Research Advances in Brief Capecitabine Induces Rapid, Sustained Response in Two Patients with Extensive Oral Verrucous Carcinoma1 Anastasios Salesiotis, Richie Soong, chemical evaluation of pretreatment biopsies from both pa- Robert B. Diasio, Andra Frost, and tients revealed a high level of expression of thymidine phos- Kevin J. Cullen2 phorylase, a key enzyme in the metabolism of capecitabine. Conclusions: Oral VC is a rare entity with a progressive Lombardi Cancer Center, Georgetown University, Washington DC course over years and limited options in terms of treatment. 20007 [A. S., K. C.], and University of Alabama Cancer Center, Birmingham, Alabama [R. D., R. S., A. F.] Preliminary observations in two elderly patients demon- strate that capecitabine, an oral fluoropyrimidine, is well tolerated and may induce rapid, clinically significant re- Abstract sponse. Although not curative, it may provide a cost-effec- Purpose: Oral verrucous carcinoma (VC) has been tra- tive alternative for elderly patients with a significant im- ditionally treated with surgery or radiation with frequent provement in their quality of life. recurrences and significant morbidity. We describe rapid and dramatic response to oral capecitabine in two patients Introduction with advanced refractory VC. Verrucous carcinomata are rare tumors of the oral cavity, Experimental Design: VC is a rare tumor of the oral representing anywhere from 1 to 10% of all oral squamous cavity. It does not metastasize but over time causes morbid- malignancies (1–5). Although oral presentations are most com- ity and mortality through local invasion. Radiation and mon, VC3 may also be present in the larynx or elsewhere in the surgery have been the main treatment modalities but are aerodigestive tract (6).
    [Show full text]
  • Colorectal Cancer
    Chemotherapy Protocol COLORECTAL CANCER CAPECITABINE-MITOMYCIN Regimen • Colorectal Cancer – Capecitabine-Mitomycin Indication • Second / third line therapy of metastatic/advanced colorectal cancer • WHO performance status 0, 1, 2 Adverse Effects Drug Adverse Effect Capecitabine Palmar-plantar erythrodysesthesia, diarrhoea, mucositis, chest pain Mitomycin Nephrotoxicity, myelosuppression (cumulative) The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Monitoring Regimen • FBC, LFT’s and U&E’s prior to each cycle • Patients with complete or partial dihydropyrimidine dehydrogenase (DPD) deficiency are at increased risk of severe and fatal toxicity during treatment with capecitabine. All patients should be tested for DPD deficiency before initiation (cycle 1) to minimise the risk of these reactions. Dose Modifications The dose modifications listed are for haematological, liver and renal function only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re- escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Version 1.3 (November 2020) Page 1 of 6 Colorectal – Capecitabine-Mitomycin Please discuss all dose reductions / delays with the relevant consultant before prescribing, if appropriate. The approach may be different depending on the clinical circumstances. The following is a general guide only. Haematological Prior to prescribing the following criteria must be met. Criteria Eligible Level Neutrophil equal to or more than 1.5x10 9/L Platelets equal to or more than 100x10 9/L Consider blood transfusion if patient symptomatic of anaemia or has a haemoglobin of less than 8g/dL For haematological toxicity, if the neutrophil count is less than 1.5 10 9/L or the platelet count is less than 100 10 9/L, delay the mitomycin treatment until these levels are achieved.
    [Show full text]
  • Predicted Concentrations of Anticancer Drugs in the Aquatic Environment
    Journal of Hazardous Materials 392 (2020) 122330 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? T M.B. Cristóvãoa,f, R. Janssensb, A. Yadavc, S. Pandeyd, P. Luisb, B. Van der Bruggene, K.K. Dubeyc, M.K. Mandald, J.G. Crespof, V.J. Pereiraa,g,* a iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal b Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium c Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India d National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India e KULeuven, Leuven, Belgium f LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal g Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Editor: D. Aga Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and Keywords: their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely Anticancer drugs monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into Consumption pattern the environment. Hospitalized and outpatients Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone Entry route to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region Predicted environmental concentrations (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters.
    [Show full text]