Crustal Magnetism, Tectonic Inheritance, and Continental Rifting in the Southeastern United States

Total Page:16

File Type:pdf, Size:1020Kb

Crustal Magnetism, Tectonic Inheritance, and Continental Rifting in the Southeastern United States Come to GSA in Vancouver, BC. We’ll be watching for you! Photo Tourism Vancouver / Suzanne Rushton APRIL/MAY | VOL. 24, 2014 4/5 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® Crustal magnetism, tectonic inheritance, and continental rifting in the southeastern United States APRIL/MAY 2014 | VOLUME 24, NUMBER 4/5 Featured Article GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (April/ May is a combined issue). GSA TODAY is published by The SCIENCE: Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 4 Crustal magnetism, tectonic inheritance, and ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. continental rifting in the southeastern United States GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, E.H. Parker Jr. regardless of race, citizenship, gender, sexual orientation, Cover: Seismic station deployed in the Coastal Plain of southeastern religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Georgia for the EarthScope SESAME flexible-array experiment. The 85-station SESAME array is designed to study crustal and mantle © 2014 The Geological Society of America Inc. All rights reserved. Copyright not claimed on content prepared structure across the Suwannee-Wiggins suture zone. See related wholly by U.S. government employees within the scope of article, p. 4–9. their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA GSA News TODAY for noncommercial use in classrooms to further education and science. In addition, an author has the right to use his or her article or a portion of the article in a thesis 10 2014 GSA Annual Meeting & Exposition or dissertation without requesting permission from GSA, provided the bibliographic citation and the GSA copyright 12 Action Dates credit line are given on the appropriate pages. For any other use, contact [email protected]. 13 Call for Papers Subscriptions: GSA members: Contact GSA Sales & Service, 14 Topical Sessions +1-888-443-4472; +1-303-357-1000 option 3; gsaservice@ geosociety.org for information and/or to place a claim for non-receipt or damaged copies. Nonmembers and institutions: 42 Discipline Categories GSA TODAY is US$84/yr; to subscribe, or for claims for non-receipt and damaged copies, contact gsaservice@ 44 Housing geosociety.org. Claims are honored for one year; please allow sufficient delivery time for overseas copies. Peri- odicals postage paid at Boulder, Colorado, USA, and at 45 GSA Grants & Awards additional mailing offices. Postmaster: Send address changes to GSA Sales & Service, P.O. Box 9140, Boulder, 45 New Comments & Replies Posted Online CO 80301-9140. GSA TODAY STAFF 46 Call for Committee Service Executive Director and Publisher: John W. Hess 50 Position Statement DRAFT: Sustainable Land-Use Management Science Editors: R. Damian Nance, Ohio University Dept. Requires Geoscience of Geological Sciences, 316 Clippinger Laboratories, Athens, OH 45701, USA, [email protected]; Steven 52 Soils and Soil Processes: A New Interdisciplinary Interest Group at GSA Whitmeyer, James Madison University Dept. of Geology & Environmental Science, 800 S. Main Street, MSC 6903, 53 2014 GSA Section Meeting Calendar Harrisonburg, VA 22807, USA, [email protected] Managing Editor: K.E.A. “Kea” Giles, [email protected], 53 GSA Mentor Programs at the 2014 Section Meetings [email protected] 54 GeoCorps America 2013 Highlights Graphics Production: Margo McGrew Advertising (classifieds & display): Ann Crawford, 56 GSA Foundation Update +1-800-472-1988 ext. 1053; +1-303-357-1053; Fax: +1-303- 357-1070; [email protected]; acrawford@ 57 GSA Foundation’s Silent Auction geosociety.org 57 In Memoriam GSA Online: www.geosociety.org GSA TODAY: www.geosociety.org/gsatoday/ 58 Field Opportunities: GSA/ExxonMobil Field Awards Printed in the USA using pure soy inks. 59 On To the Future Returns 59 GeoCorps™ America 60 Call for Nominations: 2015 Officers and Councilors 60 GSA Elections 61 Classified Advertising 63 2014 GSA GeoVentures and K–12 Teacher Field Camps Erratum: In the January, February, and March 2014 issues of GSA Today, the GSA elections deadline was incorrectly listed as 13 April. The correct deadline for ballots is 6 April. See p. 60 for more information. Crustal magnetism, tectonic inheritance, and continental rifting in the southeastern United States E.H. Parker, Jr., University of Georgia, Department of Geology, 210 Field St., Athens, Georgia, 30602, USA, [email protected] ABSTRACT The Brunswick magnetic anomaly (BMA) in southern Georgia is coincident with seismic reflectivity marking the deep crustal suture between Laurentia and a crustal block of Gondwanan affinity. The source of the BMA remains enigmatic because of its apparent relationship with both the Permo-Carboniferous Alleghanian orogeny (ca. 315–270 Ma) and the emplacement of the Central Atlantic Magmatic Province (ca. 200 Ma). In this paper, the BMA is modeled using relatively weak (<0.5 A/m) reversed-polarity remanent magnetization in lower crustal rocks (16–24 km depth) outboard of the Laurentian margin. The acqui- sition of this magnetic signature is consistent with transpression and strike-slip motion along the margin during the initial stage of Alleghanian convergence, which overlaps with the Kiaman Reversed Superchron (ca. 320–263 Ma). Simple magnetic models show that the onshore segment of the BMA can be explained as an effect of continental collision rather than voluminous magmatism along the suture zone. If Central Atlantic Magmatic Province intrusions were not focused along the suture zone, then evidence for tectonic wedging at the crust-mantle boundary associated with Alleghanian convergence may be preserved along the onshore segment of the BMA, rather than over-printed by Mesozoic magmatism. INTRODUCTION Figure 1. Aeromagnetic map (red = high; blue = low) of the eastern margin of The Brunswick magnetic anomaly (BMA) coincides with deep North America showing the approximate locations of existing seismic profiles seismic reflectivity marking the Late Paleozoic Suwannee-Wiggins crossing the Brunswick magnetic anomaly (BMA) and East Coast magnetic suture zone (SWS) between Laurentia and a crustal block of anomaly (ECMA). Seismic profiles from EDGE 801, USGS 32, and BA-6 Gondwanan origin (McBride et al., 2005). In southern Georgia, indicate relatively abrupt crustal thinning from ~35 km to ~15 km across the prominent, south-dipping reflectors on Consortium for ECMA. Inboard of the ocean-continent transition, crustal thickness estimates Continental Reflection Profiling (COCORP) lines crossing the range from 35 to 40 km on line BA-3 and 33–36 km for both Consortium for Continental Reflection Profiling (COCORP) transects. Strong dipping BMA define the lower crustal suture (Figs. 1 and 2) (McBride and reflectivity marking the Suwannee-Wiggins suture (SWS) is evident on EDGE Nelson, 1988). The reflectivity is interpreted as a mylonitic zone 801, BA-6, and both COCORP transects. The dipping reflectivity and change between Grenville-age North American basement and a in crustal structure as the BMA diverges from the ECMA suggest the magnetic Gondwanan crustal block accreted during the Permo- low is related to continental collision. BA—Brunswick anomaly; BSFZ—Blake Carboniferous Alleghanian orogeny (Thomas, 2010). Drilling Spur fracture zone. (Map modified from Tréhu et al., 1989; Austin et al., 1990; data across the Atlantic Coastal Plain show that the BMA is Sheridan et al., 1993; Lizarralde et al., 1994; North American Magnetic Anomaly Group, 2002; Bartholomew and Hatcher, 2010.) 2014 roughly coincident with the boundary between accreted peri- Gondwanan terranes and the Gondwanan Suwannee terrane (Chowns and Williams, 1983; Dallmeyer et al., 1987). However, Mesozoic rifting and emplacement of the Central Atlantic rocks related to the Suwannee terrane are found north of the BMA Magmatic Province (CAMP) overprint Alleghanian structure (Tauvers and Muehlberger, 1987), suggesting the magnetic across the southeastern United States. The Triassic–Jurassic South anomaly is more closely associated with the deep crustal suture Georgia basin cuts across the BMA (McBride, 1991), and rift basin than the upper-crustal terrane boundary. formation was followed by extensive magmatism across the GSA TODAY | APRIL/MAY GSA Today, v. 24, no. 4–5, doi: 10.1130/GSAT-G192A.1. 4 during continental rifting and emplacement of CAMP intru- sions in the southeastern United States. In this paper, the BMA is modeled using reversed-polarity remanent magnetization in lower crustal rocks (16–24 km depth) along the SWS and outboard of the Laurentian margin. Strong remanent magnetization (>3.0 A/m) of exhumed granulites in other collision zones (e.g., Australia, Adirondacks, Sweden) suggests that remanence may be the source of long-wavelength magnetic anomalies in the deep crust (McEnroe et al., 2004, and references therein). The reversed-polarity remanent magnetiza- tion of Gondwanan basement blocks may have been acquired during the Kiaman Reversed Superchron (ca. 320–263 Ma), the longest reversed polarity event in Earth’s history (Garcia et al.,
Recommended publications
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Hourglass User and Installation Guide About This Manual
    HourGlass Usage and Installation Guide Version7Release1 GC27-4557-00 Note Before using this information and the product it supports, be sure to read the general information under “Notices” on page 103. First Edition (December 2013) This edition applies to Version 7 Release 1 Mod 0 of IBM® HourGlass (program number 5655-U59) and to all subsequent releases and modifications until otherwise indicated in new editions. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below. IBM welcomes your comments. For information on how to send comments, see “How to send your comments to IBM” on page vii. © Copyright IBM Corporation 1992, 2013. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this manual ..........v Using the CICS Audit Trail Facility ......34 Organization ..............v Using HourGlass with IMS message regions . 34 Summary of amendments for Version 7.1 .....v HourGlass IOPCB Support ........34 Running the HourGlass IMS IVP ......35 How to send your comments to IBM . vii Using HourGlass with DB2 applications .....36 Using HourGlass with the STCK instruction . 36 If you have a technical problem .......vii Method 1 (re-assemble) .........37 Method 2 (patch load module) .......37 Chapter 1. Introduction ........1 Using the HourGlass Audit Trail Facility ....37 Setting the date and time values ........3 Understanding HourGlass precedence rules . 38 Introducing
    [Show full text]
  • Atomic Desktop Alarm Clock
    MODEL: T-045 (FRONT) INSTRUCTION MANUAL SCALE: 480W x 174H mm DATE: June 3, 2009 COLOR: WHITE BACKGROUND PRINTING BLACK 2. When the correct hour appears press the MODE button once to start the Minute digits Activating The Alarm Limited 90-Day Warranty Information Model T045 flashing, then press either the UP () or DOWN () buttons to set the display to the To turn the alarm ‘On’ slide the ALARM switch on the back panel to the ‘On’ position. The correct minute. Alarm On indicator appears in the display. Timex Audio Products, a division of SDI Technologies Inc. (hereafter referred to as SDI Technologies), warrants this product to be free from defects in workmanship and materials, under normal use Atomic Desktop 3. When the correct minutes appear press the MODE button once to start the Seconds At the selected wake-up time the alarm turns on automatically. The alarm begins with a single and conditions, for a period of 90 days from the date of original purchase. digits flashing. If you want to set the seconds counter to “00” press either the UP () or ‘beep’ and then the frequency of the ‘beeps’ increases. The alarm continues for two minutes, Alarm Clock DOWN () button once. If you do not wish to ‘zero’ the seconds, proceed to step 4. then shuts off automatically and resets itself for the same time on the following day. Should service be required by reason of any defect or malfunction during the warranty period, SDI Technologies will repair or, at its discretion, replace this product without charge (except for a 4.
    [Show full text]
  • IN the CARBONIFEROUS of POLAND and USSR the Present
    ACTA PALAEONTOLOGICA POLONICA Vol. XIII 1968 NO.3 HALSZKA OSMOLSKA BRACHYMETOPUS McCOY (TRILOBITA) IN THE CARBONIFEROUS OF POLAND AND U.S.S.R. Abstract. - Several Carboniferous representatives of Brachymetopus McCoy are described from Poland and U.S.S.R. They are: B. maccoyi maccoyi (Portlock, 1843), B. weberi n. sp., B. ouralicus sanctacrucensis n. subsp., B. moeUeri parvus n. subsp., Brachymetopus n. sp. and ?Brachymetopus sp. The widely distributed species B. ouralicus (de Verneuil, 1845) is revised. INTRODUCTION The present paper deals with the some representatives of the genus Brachymetopus McCoy from the Carboniferous of Eastern Europe and parts of Asia. The material mainly consists of the specimens collected by the present Gal~zice, writer in the Visean Limestone (D 2) of Holy Cross Mountains (Gory Swi~tokrzyskie), Poland. She had also at her disposal a collection described by Jarosz (1909) from the Tournaisian of the Raclawka valley, Cracow region, Poland. During her stay in U.S.S.R. in 1967, on a grant given by the Polish Academy of Sciences, the present author had the opportunity to investigate some representatives of Brachymetopus from the Lower and Upper Carboniferous deposits of the Donetz Basin, Vai­ gatch Island, the Urals, Khirgiz Steppe and the Altai, previously des­ cribed by Moeller (1867) and Weber (1933, 1937). Those specimens are housed iJn the Tshernyshev's Museum, Leningrad. Investigating this material, it was possible to make some corrections of the previous determinations to give a comparatively complete picture of the distribution of so far known Brachymetopus species in Eastern Europe and parts of Asia.
    [Show full text]
  • Daylight Saving Time (DST)
    Daylight Saving Time (DST) Updated September 30, 2020 Congressional Research Service https://crsreports.congress.gov R45208 Daylight Saving Time (DST) Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in most parts of the United States are set one hour ahead of standard time. DST begins on the second Sunday in March and ends on the first Sunday in November. The beginning and ending dates are set in statute. Congressional interest in the potential benefits and costs of DST has resulted in changes to DST observance since it was first adopted in the United States in 1918. The United States established standard time zones and DST through the Calder Act, also known as the Standard Time Act of 1918. The issue of consistency in time observance was further clarified by the Uniform Time Act of 1966. These laws as amended allow a state to exempt itself—or parts of the state that lie within a different time zone—from DST observance. These laws as amended also authorize the Department of Transportation (DOT) to regulate standard time zone boundaries and DST. The time period for DST was changed most recently in the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58). Congress has required several agencies to study the effects of changes in DST observance. In 1974, DOT reported that the potential benefits to energy conservation, traffic safety, and reductions in violent crime were minimal. In 2008, the Department of Energy assessed the effects to national energy consumption of extending DST as changed in EPACT 2005 and found a reduction in total primary energy consumption of 0.02%.
    [Show full text]
  • 1 John A. Tarduno
    JOHN A. TARDUNO January, 2016 Professor of Geophysics Tel: 585-275-5713 Department of Earth and Environmental Sciences Fax: 585-244-5689 University of Rochester, Rochester, NY 14627 Email: [email protected] USA http://www.ees.rochester.edu/people/faculty/tarduno_john Academic Career: 2005-present Professor of Physics and Astronomy, University of Rochester, Rochester, NY. 2000-present Professor of Geophysics, University of Rochester, Rochester, NY. 1998-2006 Chair, Department of Earth and Environmental Sciences 1996 Associate Professor of Geophysics, University of Rochester, Rochester, NY. 1993 Assistant Professor of Geophysics, University of Rochester, Rochester, NY. 1990 Assistant Research Geophysicist, Scripps Institution of Oceanography, La Jolla, Ca. 1989 National Science Foundation Postdoctoral Fellow, ETH, Zürich, Switzerland 1988 JOI/USSAC Ocean Drilling Fellow, Stanford University, Stanford, Ca. 1987 Ph.D. (Geophysics), Stanford University, Stanford, Ca. 1987 M.S. (Geophysics) Stanford University, Stanford Ca. 1983 B.S. (Geophysics) Lehigh University, Bethlehem Pa. Honors and Awards: Phi Beta Kappa (1983) Fellow, Geological Society of America (1998) JOI/USSAC Distinguished Lecturer (2000-2001) Goergen Award for Distinguished Achievement and Artistry in Undergraduate Teaching (2001) Fellow, American Association for the Advancement of Science (2003) American Geophysical Union/Geomagnetism and Paleomagnetism Section Bullard Lecturer (2004) Fellow, John Simon Guggenheim Foundation (2006-2007) Edward Peck Curtis Award for
    [Show full text]
  • How to Add Another Time Zone to a Lotus Notes Calendar
    How to Add Another Time Zone to a Lotus Notes Calendar Adding another Lotus Notes 8 allows users to set up more than one time zone in their calendar views. time zone to Please follow the steps in the table below to add another time zone to your calendar. Lotus Notes Calendar Note: This process has only been tested for Lotus Notes 8. Step Action 1 Open Lotus Notes 2 Navigate to the Calendar 3 In the lower right corner, click on the In Office drop-down menu and select Edit Locations… 4 In the navigator on the left, select Calendar and To Do, then Regional Settings 5 In the Time Zone section, checkmark the Display an additional time zone option 6 Enter the Time zone label that you wish to use Note: This is a free-form text field and is for the user only. It does not impact any system functionality. 7 Use the Time Zone drop-down to select the time zone that you wish to add Continued on next page How To Add Another Time Zone To A Lotus Notes Calendar.Doc Page 1 of 2 How to Add Another Time Zone to a Lotus Notes Calendar, Continued Adding another time zone to Step Action Lotus Notes 8 As desired, checkmark the Display an additional time zone in the main calendar Calendar and/or the Display an additional time zone in the Day-At-A-Glance calendar options (continued) 9 Once all options have been filled out, click the Save button 10 Verify that the calendar displays the time zones correctly How To Add Another Time Zone To A Lotus Notes Calendar.Doc Page 2 of 2 .
    [Show full text]
  • Geophysical Field Mapping
    Presented at Short Course IX on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 2-23, 2014. Kenya Electricity Generating Co., Ltd. GEOPHYSICAL FIELD MAPPING Anastasia W. Wanjohi, Kenya Electricity Generating Company Ltd. Olkaria Geothermal Project P.O. Box 785-20117, Naivasha KENYA [email protected] or [email protected] ABSTRACT Geophysics is the study of the earth by the quantitative observation of its physical properties. In geothermal geophysics, we measure the various parameters connected to geological structure and properties of geothermal systems. Geophysical field mapping is the process of selecting an area of interest and identifying all the geophysical aspects of the area with the purpose of preparing a detailed geophysical report. The objective of geophysical field work is to understand all physical parameters of a geothermal field and be able to relate them with geological phenomenons and come up with plausible inferences about the system. Four phases are involved and include planning/desktop studies, reconnaissance, actual data aquisition and report writing. Equipments must be prepared and calibrated well. Geophysical results should be processed, analysed and presented in the appropriate form. A detailed geophysical report should be compiled. This paper presents the reader with an overview of how to carry out geophysical mapping in a geothermal field. 1. INTRODUCTION Geophysics is the study of the earth by the quantitative observation of its physical properties. In geothermal geophysics, we measure the various parameters connected to geological structure and properties of geothermal systems. In lay man’s language, geophysics is all about x-raying the earth and involves sending signals into the earth and monitoring the outcome or monitoring natural signals from the earth.
    [Show full text]
  • Mantle Flow Through the Northern Cordilleran Slab Window Revealed by Volcanic Geochemistry
    Downloaded from geology.gsapubs.org on February 23, 2011 Mantle fl ow through the Northern Cordilleran slab window revealed by volcanic geochemistry Derek J. Thorkelson*, Julianne K. Madsen, and Christa L. Sluggett Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT 180°W 135°W 90°W 45°W 0° The Northern Cordilleran slab window formed beneath west- ern Canada concurrently with the opening of the Californian slab N 60°N window beneath the southwestern United States, beginning in Late North Oligocene–Miocene time. A database of 3530 analyses from Miocene– American Holocene volcanoes along a 3500-km-long transect, from the north- Juan Vancouver Northern de ern Cascade Arc to the Aleutian Arc, was used to investigate mantle Cordilleran Fuca conditions in the Northern Cordilleran slab window. Using geochemi- Caribbean 30°N Californian Mexico Eurasian cal ratios sensitive to tectonic affi nity, such as Nb/Zr, we show that City and typical volcanic arc compositions in the Cascade and Aleutian sys- Central African American Cocos tems (derived from subduction-hydrated mantle) are separated by an Pacific 0° extensive volcanic fi eld with intraplate compositions (derived from La Paz relatively anhydrous mantle). This chemically defi ned region of intra- South Nazca American plate volcanism is spatially coincident with a geophysical model of 30°S the Northern Cordilleran slab window. We suggest that opening of Santiago the slab window triggered upwelling of anhydrous mantle and dis- Patagonian placement of the hydrous mantle wedge, which had developed during extensive early Cenozoic arc and backarc volcanism in western Can- Scotia Antarctic Antarctic 60°S ada.
    [Show full text]
  • Geological Evolution of the Red Sea: Historical Background, Review and Synthesis
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277310102 Geological Evolution of the Red Sea: Historical Background, Review and Synthesis Chapter · January 2015 DOI: 10.1007/978-3-662-45201-1_3 CITATIONS READS 6 911 1 author: William Bosworth Apache Egypt Companies 70 PUBLICATIONS 2,954 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Near and Middle East and Eastern Africa: Tectonics, geodynamics, satellite gravimetry, magnetic (airborne and satellite), paleomagnetic reconstructions, thermics, seismics, seismology, 3D gravity- magnetic field modeling, GPS, different transformations and filtering, advanced integrated examination. View project Neotectonics of the Red Sea rift system View project All content following this page was uploaded by William Bosworth on 28 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis William Bosworth Abstract The Red Sea is part of an extensive rift system that includes from south to north the oceanic Sheba Ridge, the Gulf of Aden, the Afar region, the Red Sea, the Gulf of Aqaba, the Gulf of Suez, and the Cairo basalt province. Historical interest in this area has stemmed from many causes with diverse objectives, but it is best known as a potential model for how continental lithosphere first ruptures and then evolves to oceanic spreading, a key segment of the Wilson cycle and plate tectonics.
    [Show full text]
  • Calendar: Advanced Features Set up Reminders, Sharing, Secondary Calendars, and More!
    Sign in to Google Calendar at http://email.ucsc.edu with your CruzID and Blue password. You'll see your calendar weekly view. Calendar: Advanced Features Set up reminders, sharing, secondary calendars, and more! Set up event reminders By default, you receive an email and a pop-up reminder 10 minutes before each event on your calendar. To change your default reminder settings, follow these steps: 1. Open Google Calendar. 2. In the My calendars section, click the down arrow that appears when you hover over your calendar, and select Notifications from the drop-down. 3. In the Event reminders section, select either Email or Pop-up from the drop-down. 4. Enter the corresponding reminder time (between one minute and four weeks). 5. Optionally, click Add a reminder to create a new reminder or remove to delete an existing reminder. 6. Click Save. Set up event notifications By default, you receive an email message when someone invites you to a new event, changes or cancels an existing event, or responds to an event. To change your default notification settings, follow these steps: 1. Open Google Calendar. 2. In the My calendars section, click the down arrow that appears when you hover over your calendar, and select Notifications from the drop-down. 3. In the Choose how you would like to be notified section, select the Email check box for each type of notification you’d like to receive. 4. Click Save. Note: If you select the Daily agenda option, the emailed agenda won’t reflect any event changes made after 5am in your local time zone.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]