Whither Virology? Trends and Prospects in Medical Research*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herpes Simplex Virus Latency in Isolated Human Neurons [Herpesviruses/Neuron-Specific Marker/Human Leukocyte Interferon/(E)-5-(2-Bromovinyl)-2'-Deoxyuridine]
Proc. Natl. Acad. Sci. USA Vol. 81, pp. 6217-6221, October 1984 Microbiology Herpes simplex virus latency in isolated human neurons [herpesviruses/neuron-specific marker/human leukocyte interferon/(E)-5-(2-bromovinyl)-2'-deoxyuridine] BRIAN WIGDAHL, CAROL A. SMITH, HELEN M. TRAGLIA, AND FRED RAPP* Department of Microbiology and Cancer Research Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033 Communicated by Gertrude Henle, June 6, 1984 ABSTRACT Herpes simplex virus is most probably main- latency was maintained after inhibitor removal by increasing tained in the ganglion neurons of the peripheral nervous sys- the incubation temperature from 370C to 40.50C, and virus tem of humans in a latent form that can reactivate to produce replication was reactivated by decreasing the temperature recurrent disease. As an approximation of this cell-virus inter- (20, 22). As determined by DNA blot hybridization, the la- action, we have constructed a herpes simplex virus latency in tently infected HEL-F cell and neuron populations con- vitro model system using human fetus sensory neurons as the tained detectable quantities of most, if not all, HSV-1 Hin- host cell. Human fetus neurons were characterized as neuronal dIII, Xba I, and BamHI DNA fragments (21). Furthermore, in origin by the detection of the neuropeptide substance P and there was no detectable alteration in size or molarity of the the neuron-specific plasma membrane A2B5 antigen. Virus la- HSV-1 junction or terminal DNA fragments obtained by tency was established by blocking complete expression of the HindIII, Xba I, or BamHI digestion of DNA isolated from virus genome by treatment of infected human neurons with a latently infected HEL-F cells or neurons (21). -
Non-Coding Rnas: Strategy for Viruses' Offensive
non-coding RNA Review Non-Coding RNAs: Strategy for Viruses’ Offensive Alessia Gallo 1,*, Matteo Bulati 1, Vitale Miceli 1 , Nicola Amodio 2 and Pier Giulio Conaldi 1,3 1 Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Via E.Tricomi 5, 90127 Palermo, Italy; [email protected] (M.B.); [email protected] (V.M.); [email protected] (P.G.C.) 2 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; [email protected] 3 UPMC Italy (University of Pittsburgh Medical Center Italy), Discesa dei Giudici 4, 90133 Palermo, Italy * Correspondence: [email protected]; Tel.: +39-91-21-92-649 Received: 7 August 2020; Accepted: 8 September 2020; Published: 10 September 2020 Abstract: The awareness of viruses as a constant threat for human public health is a matter of fact and in this resides the need of understanding the mechanisms they use to trick the host. Viral non-coding RNAs are gaining much value and interest for the potential impact played in host gene regulation, acting as fine tuners of host cellular defense mechanisms. The implicit importance of v-ncRNAs resides first in the limited genomes size of viruses carrying only strictly necessary genomic sequences. The other crucial and appealing characteristic of v-ncRNAs is the non-immunogenicity, making them the perfect expedient to be used in the never-ending virus-host war. In this review, we wish to examine how DNA and RNA viruses have evolved a common strategy and which the crucial host pathways are targeted through v-ncRNAs in order to grant and facilitate their life cycle. -
Shared Ancestry of Herpes Simplex Virus 1 Strain Patton with Recent Clinical Isolates from Asia and with Strain KOS63
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Virology Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 December 01. Published in final edited form as: Virology. 2017 December ; 512: 124–131. doi:10.1016/j.virol.2017.09.016. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63 Aldo Pourcheta, Richard Copinb, Matthew C. Mulveyc, Bo Shopsina,b, Ian Mohra, and Angus C. Wilsona,# aDepartment of Microbiology, New York University School of Medicine, New York, New York, USA bDepartment of Medicine, New York University School of Medicine, New York, New York, USA cBeneVir Biopharm, Inc., Gaithersburg, Maryland, USA Abstract Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP- US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63. -
Where Do We Stand After Decades of Studying Human Cytomegalovirus?
microorganisms Review Where do we Stand after Decades of Studying Human Cytomegalovirus? 1, 2, 1 1 Francesca Gugliesi y, Alessandra Coscia y, Gloria Griffante , Ganna Galitska , Selina Pasquero 1, Camilla Albano 1 and Matteo Biolatti 1,* 1 Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] (F.G.); gloria.griff[email protected] (G.G.); [email protected] (G.G.); [email protected] (S.P.); [email protected] (C.A.) 2 Complex Structure Neonatology Unit, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 March 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance. -
Virus Goes Viral: an Educational Kit for Virology Classes
Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus. -
View Policy Viral Infectivity
Virology Journal BioMed Central Editorial Open Access Virology on the Internet: the time is right for a new journal Robert F Garry* Address: Department of Microbiology and Immunology Tulane University School of Medicine New Orleans, Louisiana USA Email: Robert F Garry* - [email protected] * Corresponding author Published: 26 August 2004 Received: 31 July 2004 Accepted: 26 August 2004 Virology Journal 2004, 1:1 doi:10.1186/1743-422X-1-1 This article is available from: http://www.virologyj.com/content/1/1/1 © 2004 Garry; licensee BioMed Central Ltd. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Virology Journal is an exclusively on-line, Open Access journal devoted to the presentation of high- quality original research concerning human, animal, plant, insect bacterial, and fungal viruses. Virology Journal will establish a strategic alternative to the traditional virology communication process. The outbreaks of SARS coronavirus and West Nile virus Open Access (WNV), and the troubling increase of poliovirus infec- Virology Journal's Open Access policy changes the way in tions in Africa, are but a few recent examples of the unpre- which articles in virology can be published [1]. First, all dictable and ever-changing topography of the field of articles are freely and universally accessible online as soon virology. Previously unknown viruses, such as the SARS as they are published, so an author's work can be read by coronavirus, may emerge at anytime, anywhere in the anyone at no cost. -
Review Article DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 3179421, 16 pages https://doi.org/10.1155/2017/3179421 Review Article DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations 1 1 2 Mankgopo Magdeline Kgatle, Catherine Wendy Spearman, Asgar Ali Kalla, and 1 Henry Norman Hairwadzi 1Division of Hepatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa 2Division of Rheumatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa Correspondence should be addressed to Mankgopo Magdeline Kgatle; [email protected] Received 27 January 2017; Revised 1 May 2017; Accepted 23 May 2017; Published 27 June 2017 Academic Editor: Peeter Karihtala Copyright © 2017 Mankgopo Magdeline Kgatle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV), hepatitis B virus (HBV), and Epstein-Barr virus (EBV). Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. -
Viral Epigenomes in Human Tumorigenesis
Oncogene (2010) 29, 1405–1420 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW Viral epigenomes in human tumorigenesis AF Fernandez1 and M Esteller1,2 1Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain and 2Institucio Catalana de Recerca i Estudis Avanc¸ats (ICREA), Barcelona, Catalonia, Spain Viruses are associated with 15–20% of human cancers is altered in cancer (Fraga and Esteller, 2005; Chuang worldwide. In the last century, many studies were directed and Jones, 2007; Lujambio et al., 2007). towards elucidating the molecular mechanisms and genetic DNA methylation mainly occurs on cytosines that alterations by which viruses cause cancer. The importance precede guanines to yield 5-methylcytosine; these of epigenetics in the regulation of gene expression has dinucleotide sites are usually referred to as CpGs prompted the investigation of virus and host interactions (Herman and Baylin, 2003). CpGs are asymmetrically not only at the genetic level but also at the epigenetic level. distributed into CpG-poor regions and dense regions In this study, we summarize the published epigenetic called ‘CpG islands’, which are located in the promoter information relating to the genomes of viruses directly or regions of approximately half of all genes. These CpG indirectly associated with the establishment of tumori- islands are usually unmethylated in normal cells, with genic processes. We also review aspects such as viral the exceptions listed below, whereas the sporadic CpG replication and latency associated with epigenetic changes sites in the rest of the genome are generally methylated and summarize what is known about epigenetic alterations (Jones and Takai, 2001). -
Viral Gene Therapy Lecture 25 Biology 3310/4310 Virology Spring 2017
Viral gene therapy Lecture 25 Biology 3310/4310 Virology Spring 2017 “Trust science, not scientists” --DICKSON DESPOMMIER Virus vectors • Gene therapy: deliver a gene to patients who lack the gene or carry defective versions • To deliver antigens (viral vaccines) • Viral oncotherapy • Research uses Virology Lectures 2017 • Prof. Vincent Racaniello • Columbia University A Poliovirus C (+) mRNA I AnAOH3’ Infection Cultured cells (+) Viral RNA Vaccinia virus T7 Viral DNA 5' Transfection 3' encoding T7 Plasmids expressing N, P, L, RNA polymerase and (+) strand RNA cDNA synthesis and cloning Infection Transfection Transfection Transfection Poliovirus 5' Progeny DNA 3' In vitro RNA (+) strand RNA synthesis transcript Virology Lectures 2017 • Prof. Vincent Racaniello • Columbia University ©Principles of Virology, ASM Press B Viral protein PB1 Infectious virus Translation D (+) mRNA c AnAOH3’ (+) mRNA I AnAOH3’ RNA polymerase II (splicing) Plasmid Plasmid Pol II Viral DNA Pol I T7 Viral DNA RNA polymerase I (–) vRNAs 8-plasmid 10-plasmid transfection transfection Infectious virus Infectious virus ScEYEnce Studios Principles of Virology, 4e Volume 01 Fig. 03.12 10-28-14 Adenovirus vectors Virology Lectures 2017 • Prof. Vincent Racaniello • Columbia University ©Principles of Virology, ASM Press Adenovirus vectors • Efficiently infect post-mitotic cells • Fast (48 h) onset of gene expression • Episomal, minimal risk of insertion mutagenesis • Up to 37 kb capacity • Pure, concentrated preps routine • >50 human serotypes, animal serotypes • Drawback: immunity Virology Lectures 2017 • Prof. Vincent Racaniello • Columbia University Adenovirus vectors • First generation vectors: E1, E3 deleted • E1: encodes T antigens (Rb, p53) • E3: not essential, immunomodulatory proteins Virology Lectures 2017 • Prof. Vincent Racaniello • Columbia University http://edoc.ub.uni-muenchen.de/13826/ Adenovirus vectors • Second generation vectors: E1, E3 deleted, plus deletions in E2 or E4 • More space for transgene Virology Lectures 2017 • Prof. -
Archives of Virology
Archives of Virology Binomial nomenclature for virus species: a long view --Manuscript Draft-- Manuscript Number: ARVI-D-20-00436R2 Full Title: Binomial nomenclature for virus species: a long view Article Type: Virology Division News: Virus Taxonomy/Nomenclature Keywords: virus taxonomy; species definition; virus definition; virions; metagenomes; Latinized binomials Corresponding Author: Adrian John Gibbs, Ph.D. ex-Australian National University Canberra, ACT AUSTRALIA Corresponding Author Secondary Information: Corresponding Author's Institution: ex-Australian National University Corresponding Author's Secondary Institution: First Author: Adrian John Gibbs, Ph.D. First Author Secondary Information: Order of Authors: Adrian John Gibbs, Ph.D. Order of Authors Secondary Information: Funding Information: Abstract: On several occasions over the past century it has been proposed that Latinized (Linnaean) binomial names (LBs) should be used for the formal names of virus species, and the opinions expressed in the early debates are still valid. The use of LBs would be sensible for the current Taxonomy if confined to the names of the specific and generic taxa of viruses of which some basic biological properties are known (e.g. ecology, hosts and virions); there is no advantage filling the literature with formal names for partly described viruses or virus-like gene sequences. The ICTV should support the time-honoured convention that LBs are only used with biological (phylogenetic) classifications. Recent changes have left the ICTV Taxonomy and -
View of "Bird Flu: a Virus of Our Own Hatching" by Michael Greger Chengfeng Qin* and Ede Qin
Virology Journal BioMed Central Book report Open Access Review of "Bird Flu: A Virus of Our Own Hatching" by Michael Greger Chengfeng Qin* and Ede Qin Address: State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China Email: Chengfeng Qin* - [email protected]; Ede Qin - [email protected] * Corresponding author Published: 30 April 2007 Received: 2 February 2007 Accepted: 30 April 2007 Virology Journal 2007, 4:38 doi:10.1186/1743-422X-4-38 This article is available from: http://www.virologyj.com/content/4/1/38 © 2007 Qin and Qin; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Book details behavior can cause new plagues, changes in human Michael Greger: Bird Flu: A Virus of Our Own Hatching USA: behavior may prevent them in the future". Lantern Books; 2006:465. ISBN 1590560981 Review Yes, we can change. In the last sections of the book, Greger Due to my responsibility as member of advisory commit- carefully details how to protect ourselves in the very likely tee on pandemic influenza, I regard any new publication event that a bird flu pandemic begins to sweep the world on bird flu with special enthusiasm. A book that recently and how to prevent future pandemics. Dr. Greger's simple caught my eye was one by Michael Greger titled Bird Flu: and practical suggestions are invaluable for both nation A Virus of Our Own Hatching. -
Virology Journal Biomed Central
Virology Journal BioMed Central Short report Open Access Genomic presence of recombinant porcine endogenous retrovirus in transmitting miniature swine Stanley I Martin, Robert Wilkinson and Jay A Fishman* Address: Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA Email: Stanley I Martin - [email protected]; Robert Wilkinson - [email protected]; Jay A Fishman* - [email protected] * Corresponding author Published: 02 November 2006 Received: 22 June 2006 Accepted: 02 November 2006 Virology Journal 2006, 3:91 doi:10.1186/1743-422X-3-91 This article is available from: http://www.virologyj.com/content/3/1/91 © 2006 Martin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The replication of porcine endogenous retrovirus (PERV) in human cell lines suggests a potential infectious risk in xenotransplantation. PERV isolated from human cells following cocultivation with porcine peripheral blood mononuclear cells is a recombinant of PERV-A and PERV-C. We describe two different recombinant PERV-AC sequences in the cellular DNA of some transmitting miniature swine. This is the first evidence of PERV-AC recombinant virus in porcine genomic DNA that may have resulted from autoinfection following exogenous viral recombination. Infectious risk in xenotransplantation will be defined by the activity of PERV loci in vivo. Background been detected previously in the genomes of transmitting Xenotransplantation using inbred miniature swine is a swine [5,10].