How Much Liquidity Insurance Can Lines of Credit Provide? the Impact of Bank Reputation and Lending Relationship*

Total Page:16

File Type:pdf, Size:1020Kb

How Much Liquidity Insurance Can Lines of Credit Provide? the Impact of Bank Reputation and Lending Relationship* How Much Liquidity Insurance Can Lines of Credit Provide? * The Impact of Bank Reputation and Lending Relationship Zhaohui Chen McIntire School of Commerce University of Virginia Yan Hu University of Minnesota Duluth Connie Mao Temple University Current version: February, 2011 JEL Classification: G21, G32 Keywords: Lines of credit, liquidity insurance, bank reputation, lending relationship, moral hazard. * Zhaohui Zhen, McIntire School of Commerce, University of Virginia, Charlottesville, VA 22903. Tel: (434) 243- 1188; Email: [email protected]. Yan Hu, Department of Finance & MIS, Labovitz School of Business and Economics, University of Minnesota Duluth, Duluth, MN 55812. Tel: (218) 726-7083; Fax: (218) 726-7516; Email: [email protected]. Connie X. Mao, Department of Finance, Fox School of Business and Management, Temple University, Philadelphia, PA 19122. Tel: (215) 204-4895; Fax: (215) 204-1697; Email: [email protected]. We would like to thank Lalitha Naveen, David Reeb, Elyas Elyasian, Warren Bailey, and seminar participants at University of Virginia and University of Minnesota Duluth for their helpful comments and discussions. All errors are solely ours. How Much Liquidity Insurance Can Lines of Credit Provide? The Impact of Bank Reputation and Lending Relationship Abstract Theories suggest that firms use lines of credit as a liquidity insurance to secure a desirable investment level in the event of future downturn (Holmstrom and Tirole,1998; Tirole, 2005). In this paper we examine the liquidity insurance hypothesis by directly quantifying the extent of insurance that a line of credit provides and shed light on how bank reputation and prior lending relationship help a credit line to supply more efficient liquidity. Consistent with the liquidity insurance hypothesis, we find that firms are more likely to use credit lines at times of poor performance, and the drawdown rate is on average significantly lower than the imputed market cost of borrowing given the firm's financial condition at the time of drawdown. In addition, we document that the strength of prior lending relationship is associated with a lower drawdown rate. Furthermore, the impact of prior lending relationship on the drawdown rate only exists for borrowers subject to greater information asymmetry. While borrowers are penalized (paying a higher loan spread and annual fee and more likely to pledge collateral) on new lines of credit issued after their drawdown, the penalty is smaller as they borrow from higher reputation banks. Our results suggest that bank reputation and prior lending relation both help provide a more efficient liquidity insurance, however through different channels. 1. Introduction A line of credit is a bank's promise of future lending sold to a borrower.1 The borrower may draw down at any time prior to maturity, up to the maximum amount, paying interest at a pre-determined spread over LIBOR or prime rate specified by the agreement. Lines of credits are the most popular form of bank lending, representing 80% of commercial loans in the United States (Duca and Vanhoose 1990).2 According to FDIC (www2.fdic.gov/SDI), outstanding unused lines of credit of U.S. corporation amount to $1.7 trillion at the end of 2004. The literature offers two hypotheses for why firms use line of credit. One is the convenience hypothesis, under which a credit line assures a firm a certain level of funding in the future. This convenience is valuable if the firm faces uncertainty about its funding needs. An example is when the firm is exploring acquisition opportunities in a timely fashion.3 The other hypothesis is the liquidity insurance hypothesis. A line of credit can provide funding so that a firm can take positive NPV project when the firm cannot otherwise get financing due to frictions in the financial markets. For example, Holmstrom and Tirole (1998) and Tirole (2005, 2010) argue that in the absence of a line of credit, a firm may have to forgo positive NPV projects in a future downturn. This is because after the firm gives the minimum cash flow from the project to the entrepreneur to motivate him to work hard, there is not enough left-over cash to be pledged to 1 Borrowers usually pay a upfront fee as well as an annual commitment fee for the option to access liquidity. 2 In the Dealscan data, 63% (or 73%) of loans are lines of credit based on the number of loans (or the amount of loans). These number increases to 82% (or 86%) in our sample that are present in Compustat and CRSP, and tend to be larger firms. 3 Lins, Servaes, and Tufano (2010) analyze survey data collected from CFOs of public and private firms in 29 countries and document that 60% of firms view that lines of credit provide certainty of funding during event risk or acquisition opportunities, and 32% of firms indicate that the time to raise funds is an important consideration as they use lines of credit. 1 the investors to raise the necessary funding for the project.4 Note that these two hypotheses are not mutually exclusive. The existing empirical evidence suggests a limit to the liquidity insurance hypothesis. Campello, Giambona, Graham, and Campbell (2010) find that firms that are more likely to need lines of credit (small, private, noninvestment grade, or unprofitable) have less access to credit lines than their large, public, investment-grade, profitable counterparts. Sufi (2009) finds that lines of credit are reduced when a firm‟s liquidity level is low. If the purpose of a line of credit is to insure a firm against liquidity shock, why is it withdrawn when the firm most needs it? A bank has at least two ways to renege on a line of credit commitment: renegotiate regarding credit line terms such as loan rate, or revoke the entire loan commitment if the firm‟s financial condition worsens by invoking the Material Adverse Change (MAC) clause.5,6 Given the lender's many options to escape the commitment, to what extent, if any, does a line of credit provide liquidity insurance? The first goal of our paper is to address this question. First, we examine the difference between the loan rate at which a firm draws down a line of credit and the rate the firm could obtain in the lending markets at the time of drawdown. The extent of liquidity insurance would be measured by the difference between the drawdown rate and the market lending rate. We find evidence supporting the liquidity insurance hypothesis: on average the drawdown rate is about 25 basis points lower than the imputed market rate given the firm‟s financial condition. For firms with a strong prior lending relationship with the bank, the drawdown rate is 63 basis points lower 4 See also Boot, Thakor, and Udell (1987, 1991) and Berkovitch and Greenbaum (1991) for other frictions that a line of credit can mitigate to reduce under-investment problem. 5 Roberts and Sufi (2009) show that over 90% of long-term debt contracts are renegotiated prior to their stated maturity. Renegotiation leads to significant changes the maturity, amount, and spread of the contract. Less than 18% of renegotiations are directly or indirectly linked to a covenant violation or payment default. 6 Most loan commitment contracts include a MAC clause, which permits the bank to decline to lend under the commitment if the borrower‟s financial condition has declined significantly since the commitment was sold. 2 than the imputed market rate. On the other hand, we find that the drawdown rate is higher than the contract rate, indicating renegotiation between the firms and banks and/or performance pricing determine the drawdown rate. Furthermore, more than 50% of the lines of credit in our sample are drawn down, suggesting that line of credit provides economically significant liquidity insurance to the firm. Finally, consistent with the insurance hypothesis, a firm is more likely to draw down when it experiences a negative shock as measured by ROA or violations of debt covenants. If a line of credit provides insurance to a firm experiencing a financial downturn, it is subject to the classic moral hazard problem extensively studied in the insurance literature (for example, Rothschild and Stiglitz, 1976). More specifically, the firm may be less careful in avoiding a financial downturn because a credit line guarantees access to relatively cheap financing.7 For lines of credit to add value, they must feature mechanisms that motivate borrowers to behave appropriately. One such mechanism in the literature is future punishment (Radner, Myerson, and Maskin, 1986; Atkeson and Lucas, 1995). More claims filed by the insured would lead to a higher premium in the future. We study this type of mechanism by investigating whether borrowers tend to be punished in the future after drawing down a line of credit. We find that a drawdown leads to higher rates and greater collateral on future lines of credit. These results hold after we control for the firm‟s characteristics at the time when the new line of credit is granted. This result supports the liquidity insurance story. An alternative form of punishment, denial of any future new line of credit, is inefficient in that it not only hurts the firm but also the bank because the bank loses business. We find that banks seldom use this form of punishment of drawdown firms. 7 Alternatively the firm may undertake negative-NPV projects to take advantage of the cheap financing as shown by Holmstrom and Tirole (1998). 3 Both borrowers and lenders are subject to moral hazard problems in their management of lines of credit. As mentioned previously, the bank can renege on its commitment and the firm can take higher risk to exploit the liquidity insurance the bank provides.
Recommended publications
  • Portfolio Optimization with Drawdown Constraints
    Implemented in Portfolio Safeguard by AOrDa.com PORTFOLIO OPTIMIZATION WITH DRAWDOWN CONSTRAINTS Alexei Chekhlov1, Stanislav Uryasev2, Michael Zabarankin2 Risk Management and Financial Engineering Lab Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida, Gainesville, FL 32611 Date: January 13, 2003 Correspondence should be addressed to: Stanislav Uryasev Abstract We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which is called conditional drawdown-at-risk (CDaR). These risk functions depend on the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter a , the CDaR is defined as the mean of the worst (1-a) *100% drawdowns. The CDaR risk function contains the maximal drawdown and average drawdown as its limiting cases. For a particular example, we find optimal portfolios with constraints on the maximal drawdown, average drawdown and several intermediate cases between these two. The CDaR family of risk functions originates from the conditional value-at-risk (CVaR) measure. Some recommendations on how to select the optimal risk measure for getting practically stable portfolios are provided. We solved a real life portfolio allocation problem using the proposed risk functions. 1. Introduction Optimal portfolio allocation is a longstanding issue in both practical portfolio management and academic research on portfolio theory. Various methods have been proposed and studied (for a review, see, for example, Grinold and Kahn, 1999). All of them, as a starting point, assume some measure of portfolio risk. From a standpoint of a fund manager, who trades clients' or bank’s proprietary capital, and for whom the clients' accounts are the only source of income coming in the form of management and incentive fees, losing these accounts is equivalent to the death of his business.
    [Show full text]
  • ESG Considerations for Securitized Fixed Income Notes
    ESG Considerations for Securitized Fixed Neil Hohmann, PhD Managing Director Income Notes Head of Structured Products BBH Investment Management [email protected] +1.212.493.8017 Executive Summary Securitized assets make up over a quarter of the U.S. corporations since 2010, we find median price declines fixed income markets,1 yet assessments of environmental, for equity of those companies of -16%, and -3% median social, and governance (ESG) risks related to this sizable declines for their corporate bonds.3 Yet, the median price segment of the bond market are notably lacking. decline for securitized notes during these periods is 0% – securitized notes are as likely to climb in price as they are The purpose of this study is to bring securitized notes to fall in price, through these incidents. This should not be squarely into the realm of responsible investing through the surprising – securitizations are designed to insulate inves- development of a specialized ESG evaluation framework tors from corporate distress. They have a senior security for securitizations. To date, securitization has been notably interest in collateral, ring-fenced legal structures and absent from responsible investing discussions, probably further structural protections – all of which limit their owing to the variety of securitization types, their structural linkage to the originating company. However, we find that complexities and limited knowledge of the sector. Manag- a few securitization asset types, including whole business ers seem to either exclude securitizations from ESG securitizations and RMBS, can still bear substantial ESG assessment or lump them into their corporate exposures. risk. A specialized framework for securitizations is needed.
    [Show full text]
  • Portfolio Optimization with Drawdown Constraints
    PORTFOLIO OPTIMIZATION WITH DRAWDOWN CONSTRAINTS Alexei Chekhlov1, Stanislav Uryasev2, Michael Zabarankin2 Risk Management and Financial Engineering Lab Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida, Gainesville, FL 32611 Date: January 13, 2003 Correspondence should be addressed to: Stanislav Uryasev Abstract We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which is called conditional drawdown-at-risk (CDaR). These risk functions depend on the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter a , the CDaR is defined as the mean of the worst (1-a) *100% drawdowns. The CDaR risk function contains the maximal drawdown and average drawdown as its limiting cases. For a particular example, we find optimal portfolios with constraints on the maximal drawdown, average drawdown and several intermediate cases between these two. The CDaR family of risk functions originates from the conditional value-at-risk (CVaR) measure. Some recommendations on how to select the optimal risk measure for getting practically stable portfolios are provided. We solved a real life portfolio allocation problem using the proposed risk functions. 1. Introduction Optimal portfolio allocation is a longstanding issue in both practical portfolio management and academic research on portfolio theory. Various methods have been proposed and studied (for a review, see, for example, Grinold and Kahn, 1999). All of them, as a starting point, assume some measure of portfolio risk. From a standpoint of a fund manager, who trades clients' or bank’s proprietary capital, and for whom the clients' accounts are the only source of income coming in the form of management and incentive fees, losing these accounts is equivalent to the death of his business.
    [Show full text]
  • T013 Asset Allocation Minimizing Short-Term Drawdown Risk And
    Asset Allocation: Minimizing Short-Term Drawdown Risk and Long-Term Shortfall Risk An institution’s policy asset allocation is designed to provide the optimal balance between minimizing the endowment portfolio’s short-term drawdown risk and minimizing its long-term shortfall risk. Asset Allocation: Minimizing Short-Term Drawdown Risk and Long-Term Shortfall Risk In this paper, we propose an asset allocation framework for long-term institutional investors, such as endowments, that are seeking to satisfy annual spending needs while also maintaining and growing intergenerational equity. Our analysis focuses on how asset allocation contributes to two key risks faced by endowments: short-term drawdown risk and long-term shortfall risk. Before approving a long-term asset allocation, it is important for an endowment’s board of trustees and/or investment committee to consider the institution’s ability and willingness to bear two risks: short-term drawdown risk and long-term shortfall risk. We consider various asset allocations along a spectrum from a bond-heavy portfolio (typically considered “conservative”) to an equity-heavy portfolio (typically considered “risky”) and conclude that a typical policy portfolio of 60% equities, 30% bonds, and 10% real assets represents a good balance between these short-term and long-term risks. We also evaluate the impact of alpha generation and the choice of spending policy on an endowment’s expected risk and return characteristics. We demonstrate that adding alpha through manager selection, tactical asset allocation, and the illiquidity premium significantly reduces long-term shortfall risk while keeping short-term drawdown risk at a desired level. We also show that even a small change in an endowment’s spending rate can significantly impact the risk profile of the portfolio.
    [Show full text]
  • A Nonlinear Optimisation Model for Constructing Minimal Drawdown Portfolios
    A nonlinear optimisation model for constructing minimal drawdown portfolios C.A. Valle1 and J.E. Beasley2 1Departamento de Ci^enciada Computa¸c~ao, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-010, Brazil [email protected] 2Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK [email protected] August 2019 Abstract In this paper we consider the problem of minimising drawdown in a portfolio of financial assets. Here drawdown represents the relative opportunity cost of the single best missed trading opportunity over a specified time period. We formulate the problem (minimising average drawdown, maximum drawdown, or a weighted combination of the two) as a non- linear program and show how it can be partially linearised by replacing one of the nonlinear constraints by equivalent linear constraints. Computational results are presented (generated using the nonlinear solver SCIP) for three test instances drawn from the EURO STOXX 50, the FTSE 100 and the S&P 500 with daily price data over the period 2010-2016. We present results for long-only drawdown portfolios as well as results for portfolios with both long and short positions. These indicate that (on average) our minimal drawdown portfolios dominate the market indices in terms of return, Sharpe ratio, maximum drawdown and average drawdown over the (approximately 1800 trading day) out-of-sample period. Keywords: Index out-performance; Nonlinear optimisation; Portfolio construction; Portfo- lio drawdown; Portfolio optimisation 1 Introduction Given a portfolio of financial assets then, as time passes, the price of each asset changes and so by extension the value of the portfolio changes.
    [Show full text]
  • Maximum Drawdown Is Generally Greater Than in IID Normal Case
    THE HIGH COST OF SIMPLIFIED MATH: Overcoming the “IID Normal” Assumption in Performance Evaluation Marcos López de Prado Hess Energy Trading Company Lawrence Berkeley National Laboratory Electronic copy available at: http://ssrn.com/abstract=2254668 Key Points • Investment management firms routinely hire and fire employees based on the performance of their portfolios. • Such performance is evaluated through popular metrics that assume IID Normal returns, like Sharpe ratio, Sortino ratio, Treynor ratio, Information ratio, etc. • Investment returns are far from IID Normal. • If we accept first-order serial correlation: – Maximum Drawdown is generally greater than in IID Normal case. – Time Under Water is generally longer than in IID Normal case. – However, Penance is typically shorter than 3x (IID Normal case). • Conclusion: Firms evaluating performance through Sharpe ratio are firing larger numbers of skillful managers than originally targeted, at a substantial cost to investors. 2 Electronic copy available at: http://ssrn.com/abstract=2254668 SECTION I The Need for Performance Evaluation Electronic copy available at: http://ssrn.com/abstract=2254668 Why Performance Evaluation? • Hedge funds operate as banks lending money to Portfolio Managers (PMs): – This “bank” charges ~80% − 90% on the PM’s return (not the capital allocated). – Thus, it requires each PM to outperform the risk free rate with a sufficient confidence level: Sharpe ratio. – This “bank” pulls out the line of credit to underperforming PMs. Allocation 1 … Investors’ funds Allocation N 4 How much is Performance Evaluation worth? • A successful hedge fund serves its investors by: – building and retaining a diversified portfolio of truly skillful PMs, taking co-dependencies into account, allocating capital efficiently.
    [Show full text]
  • Capital Adequacy Requirements (CAR)
    Guideline Subject: Capital Adequacy Requirements (CAR) Chapter 3 – Credit Risk – Standardized Approach Effective Date: November 2017 / January 20181 The Capital Adequacy Requirements (CAR) for banks (including federal credit unions), bank holding companies, federally regulated trust companies, federally regulated loan companies and cooperative retail associations are set out in nine chapters, each of which has been issued as a separate document. This document, Chapter 3 – Credit Risk – Standardized Approach, should be read in conjunction with the other CAR chapters which include: Chapter 1 Overview Chapter 2 Definition of Capital Chapter 3 Credit Risk – Standardized Approach Chapter 4 Settlement and Counterparty Risk Chapter 5 Credit Risk Mitigation Chapter 6 Credit Risk- Internal Ratings Based Approach Chapter 7 Structured Credit Products Chapter 8 Operational Risk Chapter 9 Market Risk 1 For institutions with a fiscal year ending October 31 or December 31, respectively Banks/BHC/T&L/CRA Credit Risk-Standardized Approach November 2017 Chapter 3 - Page 1 Table of Contents 3.1. Risk Weight Categories ............................................................................................. 4 3.1.1. Claims on sovereigns ............................................................................... 4 3.1.2. Claims on unrated sovereigns ................................................................. 5 3.1.3. Claims on non-central government public sector entities (PSEs) ........... 5 3.1.4. Claims on multilateral development banks (MDBs)
    [Show full text]
  • Multi-Period Portfolio Selection with Drawdown Control
    Author's personal copy Annals of Operations Research (2019) 282:245–271 https://doi.org/10.1007/s10479-018-2947-3 S.I.: APPLICATION OF O. R. TO FINANCIAL MARKETS Multi-period portfolio selection with drawdown control Peter Nystrup1,2 · Stephen Boyd3 · Erik Lindström4 · Henrik Madsen1 Published online: 20 June 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this article, model predictive control is used to dynamically optimize an investment port- folio and control drawdowns. The control is based on multi-period forecasts of the mean and covariance of financial returns from a multivariate hidden Markov model with time- varying parameters. There are computational advantages to using model predictive control when estimates of future returns are updated every time new observations become available, because the optimal control actions are reconsidered anyway. Transaction and holding costs are discussed as a means to address estimation error and regularize the optimization problem. The proposed approach to multi-period portfolio selection is tested out of sample over two decades based on available market indices chosen to mimic the major liquid asset classes typ- ically considered by institutional investors. By adjusting the risk aversion based on realized drawdown, it successfully controls drawdowns with little or no sacrifice of mean–variance efficiency. Using leverage it is possible to further increase the return without increasing the maximum drawdown. Keywords Risk management · Maximum drawdown · Dynamic asset allocation · Model predictive control · Regime switching · Forecasting This work was supported by Sampension and Innovation Fund Denmark under Grant No. 4135-00077B.. B Peter Nystrup [email protected] Stephen Boyd [email protected] Erik Lindström [email protected] Henrik Madsen [email protected] 1 Department of Applied Mathematics and Computer Science, Technical University of Denmark, Asmussens Allé, Building 303B, 2800 Kgs.
    [Show full text]
  • What Do One Million Credit Line Observations Tell Us About Exposure at Default? a Study of Credit Line Usage by Spanish Firms
    What Do One Million Credit Line Observations Tell Us about Exposure at Default? A Study of Credit Line Usage by Spanish Firms Gabriel Jiménez Banco de España [email protected] Jose A. Lopez Federal Reserve Bank of San Francisco [email protected] Jesús Saurina Banco de España [email protected] DRAFT…….Please do not cite without authors’ permission Draft date: June 16, 2006 ABSTRACT Bank credit lines are a major source of funding and liquidity for firms and a key source of credit risk for the underwriting banks. In fact, credit line usage is addressed directly in the current Basel II capital framework through the exposure at default (EAD) calculation, one of the three key components of regulatory capital calculations. Using a large database of Spanish credit lines across banks and years, we model the determinants of credit line usage by firms. We find that the risk profile of the borrowing firm, the risk profile of the lender, and the business cycle have a significant impact on credit line use. During recessions, credit line usage increases, particularly among the more fragile borrowers. More importantly, we provide robust evidence of more intensive use of credit lines by borrowers that later default on those lines. Our data set allows us to enter the policy debate on the EAD components of the Basel II capital requirements through the calculation of credit conversion factors (CCF) and loan equivalent exposures (LEQ). We find that EAD exhibits procyclical characteristics and is affected by credit line characteristics, such as commitment size, maturity, and collateral requirements.
    [Show full text]
  • Implementing and Testing the Maximum Drawdown at Risk
    Finance Research Letters 22 (2017) 95–100 Contents lists available at ScienceDirect Finance Research Letters journal homepage: www.elsevier.com/locate/frl Implementing and testing the Maximum Drawdown at Risk ∗ Beatriz Vaz de Melo Mendes a, , Rafael Coelho Lavrado b a COPPEAD/IM, Federal University at Rio de Janeiro, Brazil b IMPA, Instituto Nacional de Matemática Pura e Aplicada, Brazil a r t i c l e i n f o a b s t r a c t Article history: Financial managers are mainly concerned about long lasting accumulated large losses Received 22 October 2016 which may lead to massive money withdrawals. To assess this risk feeling we compute Revised 26 May 2017 the Maximum Drawdown, the largest price loss of an investment during some fixed time Accepted 3 June 2017 period. The Maximum Drawdown at Risk has become an important risk measure for com- Available online 9 June 2017 modity trading advisors, hedge funds managers, and regulators. In this study we propose JEL classification: an estimation methodology based on Monte Carlo simulations and empirically validate the C14 procedure using international stock indices. We find that this tool provides more accurate C15 market risk control and may be used to manage portfolio exposure, being useful to practi- C53 tioners and financial analysts. C58 ©2017 Elsevier Inc. All rights reserved. G32 Keywords: Risk management Maximum drawdown ARMA-GARCH Simulations 1. Introduction Financial managers are mainly concerned about large losses because they may destroy accumulated wealth leading to massive money withdrawals and risking the continuity of businesses. Financial crises such as the 2008 global one have shown how extensive these losses could be, with investment funds all over the world showing more than 50% losses and survivors taking several years to recover.
    [Show full text]
  • Pros and Cons of “Drawdown” As a Statistical Meadure of Risk For
    The Pros and Cons of “Drawdown” as a Statistical Measure of Risk for Investments By David Harding, Georgia Nakou & Ali Nejjar Winton Capital Management 1a St Mary Abbot’s Place London W8 6LS, United Kingdom. Tel. +44 20 7610 5350 Fax. +44 20 7610 5301 www.wintoncapital.com A key measure of track record quality and strategy “riskiness” in the managed futures industry is drawdown, which measures the decline in net asset value from the historic high point. In this discussion we want to look at its strengths and weaknesses as a summary statistic, and examine some of its frequently overlooked features. Under the Commodity Futures Trading Commission’s mandatory disclosure regime, managed futures advisors are obliged to disclose as part of their capsule performance record their “worst peak-to-valley drawdown”1. As a description of an aspect of historical performance, drawdown has one key positive attribute: it refers to a physical reality, and as such it is less abstract than concepts such as volatility. It represents the amount by which you are less well off than you were; or, put differently, it measures the magnitude of the loss an investor could have incurred by investing with the manager in the past. Managers are obliged to wear their worst historical drawdown like a scarlet letter for the rest of their lives. However, this number is less straightforwardly indicative of manager quality as is often assumed. The seeming solidity of the drawdown statistic dissipates under closer examination, due to a host of limitations which are rarely explored sufficiently when assessing its significance as a guide to the future performance of an investment.
    [Show full text]
  • Picking the Right Risk-Adjusted Performance Metric
    WORKING PAPER: Picking the Right Risk-Adjusted Performance Metric HIGH LEVEL ANALYSIS QUANTIK.org Investors often rely on Risk-adjusted performance measures such as the Sharpe ratio to choose appropriate investments and understand past performances. The purpose of this paper is getting through a selection of indicators (i.e. Calmar ratio, Sortino ratio, Omega ratio, etc.) while stressing out the main weaknesses and strengths of those measures. 1. Introduction ............................................................................................................................................. 1 2. The Volatility-Based Metrics ..................................................................................................................... 2 2.1. Absolute-Risk Adjusted Metrics .................................................................................................................. 2 2.1.1. The Sharpe Ratio ............................................................................................................................................................. 2 2.1. Relative-Risk Adjusted Metrics ................................................................................................................... 2 2.1.1. The Modigliani-Modigliani Measure (“M2”) ........................................................................................................ 2 2.1.2. The Treynor Ratio .........................................................................................................................................................
    [Show full text]