The World's Most Advanced Building

Total Page:16

File Type:pdf, Size:1020Kb

The World's Most Advanced Building THE WORLD’S MOST ADVANCED BUILDING MATERIAL IS... WOOD AND IT’S GOING TO REMAKE THE SKYLINE By Clay Risen Posted February 6, 2014 Dan Bracaglia A Wooden Skyline On a cloudy day in early October, the architect Andrew Waugh circles the base of a nondescript apartment tower in Shoreditch, a neighborhood in East London. Shoreditch suffered heavily during the blitz of World War II—“urban renewal, compliments of the Luftwaffe,” Waugh says—and then spent decades in neglected decay. Recently, though, the neighborhood has come roaring back. Nightclubs and tech start-ups arrived first on the promise of cheap rent, and residents followed. Along with them came architects, urban planners, and engineers, many of whom make a pilgrimage to the same tower that Waugh now circumambulates. From the outside, there is nothing particularly flashy about the nine- story building, called Stadthaus, that Waugh designed with his partner, Anthony Thistleton. Its gray and white facade blends almost seamlessly into the overcast London skies. It’s what’s inside that makes Stadthaus stand out. Instead of steel and concrete, the floors, ceilings, elevator shafts, and stairwells are made entirely of wood. But not just any wood. The tower’s strength and mass rely on a highly engineered material called cross-laminated timber (CLT). The enormous panels are up to half a foot thick. They’re made by placing layers of parallel beams atop one another perpendicularly, then gluing them together to create material with steel-like strength. “This construction has more in common with precast concrete than traditional timber frame design,” Thistleton says. Many engineers like to call it “plywood on steroids.” When it opened in 2009, Stadthaus was by far the world’s tallest modern timber building. Since then, CLT towers have sprouted up everywhere. Waugh Thistleton built a seven-story apartment tower near Stadthaus in 2011, and construction is under way on a 90-foot-tall wood building in Prince George, British Columbia. In 2012, Stadthaus lost the height record to a 10-story apartment building in Melbourne called Forté. Wood is both renewable and a carbon sink. There are plans to go even higher. Swedish authorities have approved a 34-story wood tower in Stockholm, while Michael Green, a Vancouver architect, is seeking approval for a 30-story tower in his city. And the Chicago architecture mega-firm Skidmore, Owings & Merrill recently published a feasibility study for a 42-story tower made predominantly of CLT. It’s become a competition among architects to see who can build the next tallest wood high-rise, says Frank Lam, a professor of wood building design and construction at the University of British Columbia. Why the sudden interest in wood? Compared with steel or concrete, CLT, also known as mass timber, is cheaper, easier to assemble, and more fire resistant, thanks to the way wood chars. It’s also more sustainable. Wood is renewable like any crop, and it’s a carbon sink, sequestering the carbon dioxide it absorbed during growth even after it’s been turned into lumber. Waugh Thistleton estimates that the wood in Stadthaus stores 186 tons of carbon while the steel and concrete for a similar, conventionally built tower would have generated 137 tons of carbon dioxide during production. Wood nets a savings of 323 tons. Demographers predict that the planet’s urban citizenry will double in 36 years, increasing the demand for ever-taller structures in ever-denser cities. Whether architects and construction firms build those towers from unsustainable materials like steel and concrete or employ new materials like CLT could make a huge difference in the Earth’s health. Put differently, the world’s urban future may just lie in its oldest building material. KLH UK Cut & Assemble Cross-laminated timber (CLT) panels are cut to spec in a factory and assembled at the construction site. When most people think of wood architecture, they imagine a balloon— or, rather, a balloon frame, the lightweight but sturdy residential- building system of thin wood beams introduced during the mid–19th century (so light, people said, that it might just float away). The frames, also known as “Chicago construction,” for the city where they first became popular, are cheap and easy to build. But while they are strong enough for a few floors of residential construction, balloon frames buckle quickly under more weight. That became a problem in the late 19th century, as cities began to grow up as well as out. Fortunately, at around the same time, engineers and architects discovered how to use steel and concrete to build high-rise structures that could climb far above the tallest balloon frames. Chicago’s 138-foot Home Insurance Building, which opened in 1885, was the first to employ a steel skeleton, and thousands followed in quick succession. It didn’t help wood’s case that in the late-19th and early-20th centuries a series of horrible urban fires swept through square mile after square mile of wooden houses and apartment blocks in cities such as Baltimore, Chicago, and San Francisco. These disasters led to strict local construction codes that limited the height of residential wood buildings to as low as five floors. The rest is architectural history. The great forests of skyscrapers that grew across the world’s cities in the 20th century were made almost entirely of steel and concrete. “There was a long period where people forgot how to use wood,” says Alex de Rijke, a partner in the London architecture firm of dRMM, which has worked extensively with mass- timber design. But over the last two decades, architects and engineers have begun to rethink the possibilities of wood as a structural building material. First came the technology itself. In the mid-1990s, the Austrian government funded a joint industry-academic research program to develop new, stronger forms of “engineered” wood to soak up the country’s oversupply of timber. The result was CLT—a lightweight, extremely robust material that could be prefabricated and custom cut. The simple beauty of CLT is its orthotropic quality. Normal wood is strong in the direction of the grain but weak in the cross direction. CLT’s perpendicular layers make it strong in two directions. And because it relies on layers of smaller beams, it can reduce waste by using odd- shaped, knotty timber that lumber mills would otherwise reject. CLT came about just as architecture was going through its own technological revolution. In the past, an architect would draft schematics by hand and send them to an engineer, who would convert the documents into specifications for each wood beam or steel plate. The components would then be cut at a mill and assembled, piece by piece, on-site—an expensive, time-consuming and often imprecise process. Today, that’s all done by computer. An architect designs a building using 3-D AutoCAD software, and the program generates the material specs and sends them to robotic wood or steel routers, which shape panels with millimeter precision. The result is a set of building blocks that a small crew of workers can screw together in a matter of weeks. It took just 27 days for four men, working three days a week, to erect the timber portion of Stadthaus, about 30 percent faster than a comparable steel-and-concrete structure. Instead of building the tower from scratch on-site, Waugh said, it was more like assembling a piece of furniture. “The instructions are like Ikea but a little more straightforward, and the names are more pleasant,” he says. Courtesy SOM Redesign For all its benefits, CLT has been a tough sell until recently. After employing the material to build a small arts club in 2003, Waugh and Thistleton spent years trying—and failing—to convince more clients to use it. “Whatever client came in, timber came on the table,” says Waugh, “and after an hour, timber all too often came off.” The resistance arose from assumptions about wood as a material: Clients believed that any wood structure would behave like a balloon frame, with its structural weaknesses and vulnerability to fire. “We found the journey at times frustrating,” Thistleton says. “One thing we found was the inability of anyone to distinguish between mass timber and a timber frame.” Fire is, of course, the first concern that comes to mind with wood construction. And yet, mass timber is actually safer in a fire than steel. A thick plank of wood will char on the outside, sealing the wood inside from damage. Metal, on the other hand, begins to melt. “Steel, when it burns, it’s like spaghetti,” says B.J. Yeh, the technical services director for APA—the Engineered Wood Association. Slowly, though, developers are coming around, particularly those that grasp the economic benefits of building with CLT. When the Australian arm of Lend Lease, a global project management and construction company, began to design Forté, a 10-story apartment building in the docklands neighborhood of Melbourne, its engineers were not considering mass timber. “We originally looked for a lightweight construction solution that could work on relatively poor soil conditions,” says Andrew Nieland, who oversees timber construction projects for the company. CLT, they found, made the most sense financially. “We did our due diligence and came across engineered timber,” Neiland says. Generally speaking, CLT construction is about 15 percent cheaper than conventional steel and concrete, according to research by Waugh Thistleton. Tenants are getting on board too. Despite fears that some may be turned off by safety concerns surrounding life in a wood tower, Forté proved to be a huge commercial success, with all the units sold out.
Recommended publications
  • Building Wood Towers
    construction materials AIA CONTINUING EDUCATION building wood towers HOW HIGH IS UP FOR TIMBER STRUCTURES? COURTESY AART ARCHITECTS The Waterfront, a 128-unit wood-based residential development in Stavanger, Norway, designed by AART architects and Kraftvaerk for client Kruse- Smith. This first phase was completed last July; a second phase is under construction. More than 80 firms competed for the project. BY C.C. SULLIVAN, CONTRIBUTING EDITOR LEARNING OBJECTIVES After reading this article, you should be able to: he recent push for larger and taller wood structures may seem + DESCRIBE the primary approaches to large-scale like an architectural fad—plenty of hype, but only a few dozen structural wood construction, including hybrid light Tcompleted projects globally. Concrete and steel still rule the framing and engineered mass timber. world of mid- and high-rise construction. + DISCUSS the benefits and drawbacks of structural wood Still, Building Teams around the world are starting to use more systems, in particular their contribution to sustainable large-scale structural wood systems, including heavy timbers, design and green building. engineered framing systems, and other modern wood products. The + LIST current certifications, codes, and standards that number of new buildings of this kind has been trending modestly up- affect the use of large-scale modern wood structures. ward, spurred by such benefits as sustainability, cost effectiveness, + COMPARE wood systems to concrete and steel in and reduced construction impact. Leading the way: podium-type terms of availability, suitability for building types, and concrete and light-framed hybrids in the U.S., and heavier “mass performance for such factors as acoustics and fire safety.
    [Show full text]
  • Cross Laminated Timber – the Product
    CROSS-LAMINATED TIMBER A REVOLUTION IN TIMBER CONSTRUCTION ‘The best friend on earth of man is the tree. When we use the tree respectfully and economically, we have on of the greatest resources on earth.’ Frank Lloyd Wright CROSS LAMINATED TIMBER – THE PRODUCT . crosswise glued lamellas mainly in spruce . large sized structural elements for walls, ceilings and roofs . maximum dimensions 55 feet by 10 feet up to 20 inches thick . non-visible, industrial visible and domestic visible quality . 3, 5, 7 or even more layers, according to structural requirements . production made to order CROSS LAMINATED TIMBER – THE ADVANTAGES . sustainable, environmentally friendly building material . light-weight construction . short erection time due to prefabrication . extremely accurate shapes and openings . compatable with many different materials . allows for maximum architectural freedom . active climate protection – 1 m³ timber stores approx. 1 ton of CO2 BUILDING WITH TIMBER . Timber is the only renewable structural building material . Timber has the lowest energy consumption of any building material across its lifecycle . Using solid timber will reduce CO2 emissions when used in place of traditional construction materials i.e. concrete, steel, brick & block etc. Forests act as a carbon ‘sink’ removing CO2 from the atmosphere, releasing oxygen and sequestering/storing carbon BUILDING WITH TIMBER CO2 Absorbed 2,000kg 1,500kg 1,000kg 800kg 500kg Sequestered Carbon – 250kg 500kg 870kg Cross-laminated 1,700kg Timber 1,000kg Cement 1,500kg 2,000kg Steel CO2 Emitted BUILDING WITH TIMBER . Growing timber / trees removes CO2 from the atmosphere 3 3 . 1m (480-500kg/m ) of KLH panels will remove approximately 800kg of CO2 .
    [Show full text]
  • Fire Safety Challenges of Tall Wood Buildings (2013)
    Fire Safety Challenges of Tall Wood Buildings Final Report Prepared by: Robert Gerard and David Barber Arup North America Ltd San Francisco, CA Armin Wolski San Francisco, CA © December 2013 Fire Protection Research Foundation THE FIRE PROTECTION RESEARCH FOUNDATION ONE BATTERYMARCH PARK QUINCY, MASSACHUSETTS, U.S.A. 02169-7471 E-MAIL: [email protected] WEB: www.nfpa.org/Foundation —— Page ii —— FOREWORD Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). Construction is currently underway on a 10-story apartment building in Melbourne, Australia, with taller structures up to 30 stories under design in Norway, Austria and Vancouver. These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Claims have been made that they are designed to be safer than buildings fabricated using structural steel due to the formation of an insulating char layer that forms on the perimeter of a laminated wood beam when exposed to a fire. The Fire Protection Research Foundation initiated this project to gain an understanding of the performance of these buildings under credible fire scenarios to ensure the safety of the occupants to emissions and thermal hazards, as well as the property protection of the building and nearby structures. The goals of this first phase project was to gather information and data from relevant studies and analyze the knowledge gaps. In addition, a framework prioritization of research needs was produced.
    [Show full text]
  • Integration of the Energy and Building Technologies
    Journal of Civil Engineering and Architecture 10 (2016) 1403-1415 doi: 10.17265/1934-7359/2016.12.010 D DAVID PUBLISHING Integration of the Energy and Building Technologies Consiglia Mocerino Already contract professor in the Faculty of Architecture, Sapienza University of Rome-Miur, Rome, Italy Abstract: The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and product, according to the new energy and building technologies too. The main objective is the social and environmental sustainability with the reduction of fossil fuels and the greenhouse gas effect, pushing the use of renewable energies, in a new trend of land regeneration with sustainable buildings and settlement recovery. The energy crisis, mainly generated by the climate change, the air pollution, with consequent extinction of the species, reduction of the land and the work, the degradation and the environmental and seismic risk, focuses on the security and quality of construction systems, integrated use of clean resources. The methodologies aimed at integrating of energy-efficient and innovative building technologies in architecture, from design to management, to produce electric and thermal energy with active and passive properties, for a high-performance habitat. Therefore, the use of solar photovoltaic in the buildings, BIPV (Building Integrated Photovoltaic) with high-performance glass vision, efficient systems, intelligent materials, is integrated in architectures with the use of innovative construction systems, finally, technology of OPV (Organic Photovoltaic), multi-junction cells, the dye sensitized solar cells in the solid state, etc., and adoption of storage systems.
    [Show full text]
  • Urban Sustainability Transitions in the Building Sector Insights from Contrasting Contexts: Freiburg and Brisbane
    Urban Sustainability Transitions in the Building Sector Insights from contrasting contexts: Freiburg and Brisbane Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Dipl.-Geogr. Sebastian Fastenrath aus Remscheid Köln 2018 Berichterstatter: Prof. Dr. Boris Braun (Universität zu Köln) Prof. Dr. Javier Revilla Diez (Universität zu Köln) Prof. Dr. Christian Schulz (Université du Luxembourg) Tag der mündlichen Prüfung: 19.07.2018 Acknowledgements The pathway of my PhD project was an exciting and valuable time period of my life. The work during the last four years shaped me both as a scientist and as a person. I am grateful to my supervisor Prof. Dr. Boris Braun for giving me the opportunity to conduct the PhD project at the Institute of Geography in Cologne. His scientific advice, fruitful discussions and continual support were essential for the success of this PhD thesis. I would also like to thank my other two co‐supervisors Prof. Dr. Javier Revilla Diez and Prof. Dr. Christian Schulz who guided me with valuable advice over the last few years. I would like to thank the ‘German Research Foundation’ DFG and the ‘Fond National de la Recherche Luxembourg’ which funded the empirical data collection for this dissertation through the CORE‐INTER research project ‘GreenRegio’. GreenRegio was hosted by the Université du Luxembourg and the University of Cologne. Special thanks to Dr. Julia Affolderbach for the excellent project organisation but also for supporting and encouraging me during the whole project time. Thanks also to Bérénice Preller for the fruitful research phases conducted together in Freiburg.
    [Show full text]
  • Open House™ London
    Publication design: www.badrockdesign.co.uk design: Publication Open Open House™ — City London 2015 Open House™ London Revealing great architecture for free 19–20 September Your essential guide to the capital’s greatest architecture festival Culture Crawl Come with us as we head out into the night, discovering cultural, architectural Friday 18 September 2015 and artistic delights in London, whilst raising as much as we can for Maggie’s to support people with cancer and their family and friends. www.maggiescentres.org/culturecrawl In partnership with Sponsored by Maggie Keswick Jencks Cancer Caring Centres Trust (Maggie’s) is a registered charity, no.SC024414 this is civil engineering transport flood risk management • St Pancras • Thames Barrier International (pictured) (pictured) • King George V Crossrail • Pumping Station • London Overground (East London Line) See Camden section See Greenwich section structures water/ waste water • Queen Elizabeth • Old Ford Water Olympic Park Recycling Plant (Velodrome pictured) (pictured) • Coca-Cola London Eye • Walthamstow Wetlands See Newham section See Newham section waste energy Water Recycling Centre – ©Thames Old Ford - © ODA Velodrome The Culture Crawl • Southwark • Bunhill Heat & Integrated Waste Power Energy Centre Come with us as we head out into the night, discovering cultural, architectural Friday 18 September 2015 Management (pictured) and artistic delights in London, whilst raising as much as we can for Maggie’s www.maggiescentres.org/culturecrawl Facility (pictured) • The Crystal to support people with cancer and their family and friends. • Abbey Mills Pumping Station In partnership with Sponsored by See Southwark section See Islington section Bunhill Heat and Energy – ©Islington Council IWMF – ©Veolia Southwark International – ©OAG Pancras St.
    [Show full text]
  • Key Technologies for Prefabricated Timber Buildings
    2017 Modular and Offsite Construction Summit & the 2nd International Symposium on Industrialized Construction Technology Shanghai, China, Nov.10-12, 2017 KEY TECHNOLOGIES FOR PREFABRICATED TIMBER BUILDINGS Minjuan He*, Jing Luo*, Zheng Li* * Tongji University, Dept. Civil Engineering, China e-mails: [email protected], [email protected], [email protected] Abstract. Nowadays, Chinese government has enacted a series of regulations and policies to increase the prefabrication level in building constructions. Timber structures are featured by the characteristic of a high level of prefabrication. A lot of attention has been paid on the research and application of prefabricated timber buildings recently. This paper presents a brief introduction of the structural systems and key technologies for prefabricated timber buildings. A few case studies on multi-story timber or timber-hybrid buildings are analysed with the emphasis on introducing their structural system and the respective construction techniques. The objective is to provide selected examples to explore the possible strategies with the understanding that prefabricated construction is an organizational process based on a steady flow of stages of the whole construction process. The current knowledge gaps are identified and discussed, concerning the industrialization process and an increasing degree of assembling. Furthermore, future opportunities for prefabricated timber buildings have been put forward. Keywords: Timber structures, Multi-story buildings, Construction Technologies, Prefabrication. 1 INTRODUCTION Prefabricated timber buildings, which is featured by prefabricated components and on-site installation have been promoted in recent years [1]. It brings about the transformation and updating of the construction structure as the industrialization process comes into a certain stage.
    [Show full text]
  • Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems
    Sustainability 2012, 4, 2707-2742; doi:10.3390/su4102707 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems Steffen Lehmann The University of South Australia, GPO Box 2471, Adelaide SA 5001, Australia; E-Mail: [email protected]; Tel.: +61-8-8302-0654; Fax: +61-8-8302-0211. Received: 13 August 2012; in revised form: 1 October 2012 / Accepted: 4 October 2012; Published: 18 October 2012 Abstract: Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam) panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to build residential infill developments of 10 storeys or higher. Multi-apartment buildings of 4 to 10 storeys constructed entirely in timber, such as recently in Europe, are innovative, but their social and cultural acceptance in Australia and North America is at this stage still uncertain. Future commercial utilisation is only possible if there is a user acceptance. The author is part of a research team that aims to study two problems: first models of urban infill; then focus on how the use of the CLT systems can play an important role in facilitating a more livable city with better models of infill housing. Wood is an important contemporary building resource due to its low embodied energy and unique attributes. The potential of prefabricated engineered solid wood panel systems, such as CLT, as a sustainable building material and system is only just being realised around the globe.
    [Show full text]
  • A Review of Architectural and Structural Design Typologies of Multi-Storey Timber Buildings in Europe
    Review A Review of Architectural and Structural Design Typologies of Multi-Storey Timber Buildings in Europe Vesna Žegarac Leskovar and Miroslav Premrov * Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; [email protected] * Correspondence: [email protected] Abstract: Numerous countries across the globe have witnessed the recent decades’ trend of multi- storey timber buildings on the rise, owing to advances in engineering sciences and timber construction technologies. Despite the growth and numerous advantages of timber construction, the global scale of multi-storey timber construction is still relatively low compared to reinforced concrete and steel construction. One of the reasons for a lower share of high-rise timber buildings lies in the complexity of their design, where the architectural design, the selection of a suitable structural system, and the energy efficiency concept strongly depend on the specific features of the location, particularly climate conditions, wind exposure, and seismic hazard. The aforementioned shows the need for a comprehensive study on existing multi-storey timber buildings, which correspond to the boundary conditions in a certain environment, to determine the suitability of such a construction in view of its adjustment to local contexts. Apart from exposing the problems and advantages of such construction, the current paper provides a brief overview of high-rise timber buildings in Europe. Moreover, it addresses the complexity of the design approach to multi-storey timber buildings in general. The second part of the paper highlights the importance of synthesising the architectural, energy, and Citation: Žegarac Leskovar, V.; structural solutions through a detailed analysis of three selected case studies.
    [Show full text]
  • Creating the World's Tallest Clt Apartment Building
    FORTÉ CREATING THE WORLD’S TALLEST CLT APARTMENT BUILDING © Lend Lease 2013 DicK DUSSELDorp, LEND LEASE FouNDER 1973 “The time is not far off when companies will have to justify their worth to society, with greater emphasis being placed on environmental and societal impact than straight economics.” THER WO LD’S TALLEST TIMBER APARTMENT BUILDING – A land mark innovative project by Lend Lease – Forté is another great example showcasing Lend Lease’s integrated business model with the project being conceived, designed, developed and constructed by Lend Lease. – First CLT building in Australia – Targeting first 5 star green star residential (as built) – First Lend Lease Australia project to incorporate pods – High profile location WHAT IS CLT? WHAT IS CLT? Austrian Spruce CLT FROM A DEVELOPERS PERSPEctivEed prod 16m – Stable engineered product – Highly mechanised production process 3m – Simplicity - basic assembly concepts – Scale - large panel dimensions that suit major commercial construction – Robust KEY BENEfitS from our PERSPEctivE – Reduced high risk work (eg work SAFE at heights). Elimination of injuries associated with formwork and reinforcing – Better work environment with less dust, less vibration, noise and obstructions – Reduced impact of construction and disruption on local communities – Fewer operatives on site and for a reduced period of time KEY BENEfitS from our PERSPEctivE – Carbon neutral structural option – 1m³ of SUSTAINABLE timber stores 0.25t of carbon – Better thermal performance – Generates zero waste – Reduces fresh
    [Show full text]
  • Promoting Low Cost Energy Efficient Wooden Buildings in Turkey
    GEF Portal Promoting Low Cost Energy Efficient Wooden Buildings in Turkey Part I: Project Information GEF ID 10090 Project Type FSP Type of Trust Fund GET Project Title Promoting Low Cost Energy Efficient Wooden Buildings in Turkey Countries Turkey Agency(ies) UNDP Other Executing Partner(s): General Directorate of Forestry, Ministry of Agriculture and Forestry Executing Partner Type Government GEF Focal Area Climate Change Taxonomy Focal Areas, Climate Change, Climate Change Mitigation, Energy Efficiency, Agriculture, Forestry, and Other Land Use, United Nations Framework Convention on Climate Change, Climate Change Adaptation 0, Sustainable Urban Systems and Transport, Financing, Nationally Determined Contribution, Enabling Activities, Influencing models, Demonstrate innovative approache, Transform policy and regulatory environments, Strengthen institutional capacity and decision-making, Convene multi-stakeholder alliances, Stakeholders, Type of Engagement, Information Dissemination, Partnership, Consultation, Participation, Civil Society, Non- Governmental Organization, Academia, Trade Unions and Workers Unions, Communications, Education, Awareness Raising, Behavior change, Public Campaigns, Private Sector, Financial intermediaries and market facilitators, Capital providers, SMEs, Gender Equality, Gender results areas, Capacity Development, Knowledge Generation and Exchange, Gender Mainstreaming, Women groups, Sex-disaggregated indicators, Gender-sensitive indicators, Beneficiaries, Capacity, Knowledge and Research, Knowledge Exchange,
    [Show full text]
  • ACS, Actividades De Construcción Y Servicios, SA and Subsidiaries
    ACS, Actividades de Construcción y Servicios, S.A. and Subsidiaries Consolidated Financial Statements for the year ended 31 December 2012, prepared in accordance with International Financial Reporting Standards (IFRSs) as adopted by the European Union and Consolidated Directors' Report ACS, Actividades de Construcción y Servicios, S.A. and Subsidiaries Consolidated Financial Statements for the year ended 31 December 2012, prepared in accordance with International Financial Reporting Standards (IFRSs) as adopted by the European Union ACS, Actividades de Construcción y Servicios, S.A. and Subsidiaries – Consolidated Financial Statements INDEX Page - Consolidated Statement of Financial position 31 December 2012 ....................................................................................................................... 5 - Consolidated Income Statement for the year ended 31 December 2012 ............................................................................................................. 7 - Consolidated Statement of Comprehensive Income for the year ended 31 December 2012 .............................................................................. 8 - Consolidated Statement of Changes in Equity for the year ended 31 December 2012 ....................................................................................... 9 - Consolidated Statement of Cash flows for the year ended 31 December 2012 .................................................................................................. 10 - Notes to the Consolidated
    [Show full text]