FIV Diversity: Fivple Subtype Composition May Influence Disease

Total Page:16

File Type:pdf, Size:1020Kb

FIV Diversity: Fivple Subtype Composition May Influence Disease Veterinary Immunology and Immunopathology 143 (2011) 338–346 Contents lists available at ScienceDirect Veterinary Immunology and Immunopathology j ournal homepage: www.elsevier.com/locate/vetimm Research paper FIV diversity: FIVPle subtype composition may influence disease outcome in African lions a,∗ a b b,1 Jennifer L. Troyer , Melody E. Roelke , Jillian M. Jespersen , Natalie Baggett , b c,2 c,3 c Valerie Buckley-Beason , Dan MacNulty , Meggan Craft , Craig Packer , b b Jill Pecon-Slattery , Stephen J. O’Brien a Laboratory of Genomic Diversity, SAIC-Frederick, National Cancer Institute, Frederick, MD, United States b Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD, United States c Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States a r t i c l e i n f o a b s t r a c t Keywords: Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species FIVPle of non-domestic felids throughout the world. Strains specific to domestic cat (FIVFca) pro- Lions duce AIDS-like disease progression, sequelae and pathology providing an informative model CDV for HIV infection in humans. Less is known about the immunological and pathological influ- Babesia ence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIVPle) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIVPle subtypes, the data suggest that FIVPle subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations. © 2011 Elsevier B.V. All rights reserved. 1. Introduction et al., 1998, 2010; Henriksen et al., 1995; Stump and VandeWoude, 2007). As with HIV and SIV models, there Feline immunodeficiency virus (FIV) is a lentivirus is considerable variation in transmission, course of infec- closely related to HIV and SIV. In domestic cats (Felis catus), tion, and outcome of FIV infections in domestic cats. Some FIV infection results in immune pathology, secondary infec- variation likely results from host genetic restriction factors tions, and death. The parallels between human and feline that influence the viral life cycle, similar to those described AIDS (FAIDS) have been explored for further understand- in humans (Lochelt et al., 2005; Munk et al., 2008, 2007; ing of HIV/AIDS transmission, infection, and pathology Troyer et al., 2008; VandeWoude et al., 2010). However, (Bendinelli et al., 1995; Burkhard and Dean, 2003; Elder differences in pathogenicity have also been demonstrated among genetically distinct subtypes of FIV that circulate in domestic cats (de Monte et al., 2002; Elder et al., 2010; ∗ Corresponding author. Tel.: +1 301 486 7478; fax: +1 301 846 6100. Pedersen et al., 2001; Weaver, 2010). E-mail address: [email protected] (J.L. Troyer). Most experimental viruses representing FIVFca subtypes 1 Current address: Department of Biology, Rider University, are cell-line adapted but nonetheless retain recognized Lawrenceville, NJ, United States. differences in pathogenicity. For example, FIV-CPG derived 2 Current address: Utah State University, Department of Wildland strains generally result in high initial viral loads and a faster Resources, Logan, UT, United States. 3 progression to disease, especially in young cats (de Rozieres Current address: College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. et al., 2004a,b, 2008). In contrast, cats infected with FIV-A 0165-2427/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.vetimm.2011.06.013 J.L. Troyer et al. / Veterinary Immunology and Immunopathology 143 (2011) 338–346 339 strains often remain asymptomatic for longer periods of outcomes, in part because of the same geographic and envi- time, with lower initial viral loads, though viral growth ronmental co-factors mentioned above. kinetics are similar in adult cats once the acute stage of Several lines of evidence suggest that FIVPle subtypes infection has passed (de Rozieres et al., 2008; Pedersen may be substantially different from each other. Two FIVPle et al., 2001; Sparger et al., 1994). FIV subtype A strains are strains, FIVPle subtype E and FIVPle subtype A, circulate in often neurotrophic and neurotoxic, producing CNS symp- Botswana while three, FIVPle subtypes A, B, and C, occur in toms similar to those seen in HIV-1 infection (Gruol et al., the Serengeti National Park (Antunes et al., 2007; Brown 1998; Henriksen et al., 1995; Johnston et al., 2000; Meeker, et al., 1994; O’Brien et al., 2006; Troyer et al., 2004, 2005). 2007; Phillips et al., 1994, 1996; Power et al., 1998). Strains representing the predominant subtype in each of Species-specific FIV viruses infect other felids and are these populations, FIVPle-B from the Serengeti and FIVPle- distributed throughout the world, yet little is known about E from Botswana, have been fully sequenced revealing their immunological and pathological effects in wild popu- remarkable differences between these subtypes (Pecon- lations (Brown et al., 2010; Carpenter et al., 1996; Franklin Slattery et al., 2008a). While these two strains form a et al., 2008, 2007; Olmsted et al., 1992; Troyer et al., 2005). lion-specific clade when full length viruses are aligned, Long term surveillance of non-domestic felids infected the envelope (env) sequence by itself displays a different with FIV, as well as evidence from free-ranging popula- phylogenetic relationship that suggests an historic recom- tions of pumas (Puma concolor) and lions (Panthera leo), bination event between distantly related viruses, making suggest that these viruses are ancient, host-adapted, and FIVPle-E env seemingly more similar to domestic cat FIV have little to no negative impact on life-history param- than to FIVPle-B. In contrast, FIVPle-B env groups with eters such as longevity (Biek et al., 2006; Carpenter and other non-domestic cat env gene sequences (Carpenter and O’Brien, 1995; Packer et al., 1999). However, a few clin- O’Brien, 1995; Pecon-Slattery et al., 2008a; Smirnova et al., ical studies have revealed that individuals of these same 2005). The env gene is responsible for several aspects of species may demonstrate FIV-associated immune deple- lentiviral pathogenicity; changes in these sequences can tion and, in some cases, AIDS-like complications and death affect receptor binding, antibody affinity, and target cell (Brennan et al., 2006; Brown et al., 2010; Bull et al., 2002, specificity. Therefore, these differences have been hypoth- 2003; Roelke et al., 2006, 2009). Data on life history and esised to influence disease outcomes (Barlough et al., 1993; clinical parameters are rare, and seldom collected in the Burkhard and Dean, 2003; Elder et al., 2010; Patrick et al., same population. 2002; VandeWoude and Apetrei, 2006). At least six genetically distinct strains of lion FIV (FIVPle) The FIVPle subtypes circulating in Serengeti lions are circulate in wild populations of African lions (Panthera more divergent then the FIVPle found in other African lion leo) (Fig. 1; Antunes et al., 2008; O’Brien et al., 2006; populations. Specifically, FIVPle-C pol is as different from Pecon-Slattery et al., 2008b; Troyer et al., 2005). FIVPle sub- the other two Serengeti subtypes as from FIV strains that types demonstrate distinct phylogeographic distributions, infect other felid species (Troyer et al., 2005). Further, suggesting prolonged host association, perhaps predating within-subtype diversity is much higher for FIVPle-B than the Late-Pleistocene expansions of lions (Antunes et al., for the other two subtypes. Phylogenetic reconstruction of 2008). Probably as a result of the highly social nature of the three Serengeti FIVPle subtypes suggest different ances- lions, FIVPle-infected populations have high prevalence of tral evolutionary trajectories and/or selection pressures seropositive individuals, often approaching 100% in adults, (Troyer et al., 2004). For example, FIVPle-B is representa- while other populations remain completely uninfected tive of a widely distributed East African clade found across (Antunes et al., 2008; Brown et al., 1994; Troyer et al., 2005). Tanzania, Uganda, and Kenya. FIVPle-A appears to have This “all or nothing” distribution of FIV in lion population spread from Southern Africa as the most closely related lion makes appropriate comparisons of infected vs. uninfected viruses are found in South Africa and Botswana. Unique to lions a challenge. Differences in FIVPle status may be con- the Serengeti, FIVPle-C is distantly related to other FIVPle founded by important environmental parameters affecting viral subtypes (Antunes et al., 2008; O’Brien et al., 2006) lion health including other infectious agents, prey abun- and exhibits relatively low within strain diversity consis- dance, and water availability. tent with either recent introduction or stronger selective Epidemiological and life history vs. clinical and pressure from the host immune system. This pattern likely immunological studies on FIVPle-infected lions have been arose from three separate introductions of FIVPle to this collected in different populations
Recommended publications
  • Common Modular Structure of Lentivirus Ltrs
    VIROLOGY 224, 256–267 (1996) ARTICLE NO. 0527 Common Modular Structure of Lentivirus LTRs View metadata, citation and similar papers at core.ac.uk brought to you by CORE KORNELIE FRECH,* RUTH BRACK-WERNER,*,† and THOMAS WERNER*,1 provided by Elsevier - Publisher Connector *Institut fu¨rSa¨ugetiergenetik and †Institut fu¨r Molekulare Virologie, GSF-Forschungszentrum fu¨r Umwelt und Gesundheit GmbH, Ingolsta¨dter Landstrasse 1, D-85758 Oberschleißheim, Germany Received April 17, 1996; accepted August 5, 1996 Retroviruses are expressed under the control of viral control regions designated long terminal repeats (LTRs), which contain all signals for transcriptional initiation as well as transcriptional termination. However, retroviral LTRs from different species within a common genus, such as Lentivirus, do not show significant overall sequence homology. We compiled a model of the functional organization of 20 Lentivirus LTRs which we show to recognize all known Lentivirus LTRs. To this end we combined our previously published methods for identification of transcription elements with secondary structure element analysis in a novel modular approach. We deduced descriptions for three new Lentivirus-specific sequence elements present in most of the Lentivirus LTRs but absent in LTRs of other retrovirus families (B, C, D-type, BLV-HTLV, Spuma). Four of the 10 elements defined in our study were primate-specific. We were able to deduce a phylogeny based on our model which agrees in general with the phylogeny derived from the polymerase genes of these viruses. Our model indicated that more than 100 LTRs from the databases are of Lentivirus origin and can be clearly separated from all other LTR types (B, C, D, BLV-HTLV, Spuma).
    [Show full text]
  • Emerging Viruses in the Felidae: Shifting Paradigms
    Viruses 2012, 4, 236-257; doi:10.3390/v4020236 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Emerging Viruses in the Felidae: Shifting Paradigms Stephen J. O’Brien 1,*,†, Jennifer L. Troyer 2, Meredith A. Brown 3, Warren E. Johnson 1, Agostinho Antunes 4, Melody E. Roelke 2 and Jill Pecon-Slattery 1 1 Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, MD 21702, USA; E-Mails: [email protected] (W.E.J.); [email protected] (J.P.-S.) 2 SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA; E-Mails: [email protected] (J.L.T.); [email protected] (M.E.R.) 3 Banfield Pet Hospital, 800 NE Tillamook Street, Portland, OR 97213, USA; E-Mail: [email protected] 4 CIMAR/CIIMAR, University of Porto, Rua dos Bragas, 177, Porto 4050-123, Portugal; E-Mail: [email protected] † Present Address: Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg University, St. Petersburg, 190000, Russia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-240-446-1021; Fax: +1-301-662-1413. Received: 1 December 2011; in revised form: 21 December 2011 / Accepted: 11 January 2012 / Published: 7 February 2012 Abstract: The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species.
    [Show full text]
  • Evolution of Puma Lentivirus in Bobcats (Lynx Rufus) and Mountain Lions (Puma Concolor) in North America Justin S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 2014 Evolution of Puma Lentivirus in Bobcats (Lynx rufus) and Mountain Lions (Puma concolor) in North America Justin S. Lee Colorado State University, [email protected] Sarah N. Bevins USDA National Wildlife Research Center, [email protected] Laurel E. K. Serleys University of California, Los Angeles, [email protected] Winston Vickers University of California, Davis, [email protected] Ken A. Logan Colorado Parks and Wildlife, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Lee, Justin S.; Bevins, Sarah N.; Serleys, Laurel E. K.; Vickers, Winston; Logan, Ken A.; Aldredge, Mat; Boydston, Erin E.; Lyren, Lisa M.; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L.; Riley, Seth P.; Boyce, Walter M.; Crooks, Kevin R.; and VandeWoude, Sue, "Evolution of Puma Lentivirus in Bobcats (Lynx rufus) and Mountain Lions (Puma concolor) in North America" (2014). USDA National Wildlife Research Center - Staff Publications. 1534. https://digitalcommons.unl.edu/icwdm_usdanwrc/1534 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Justin S. Lee, Sarah N.
    [Show full text]
  • Aging Traits and Sustainable Trophy Hunting of African Lions
    Aging traits and sustainable trophy hunting of African lions Authors: Jennifer R.B. Miller, Guy Balme, Peter A. Lindsey a,b, Andrew J. Loveridge, Matthew S. Becker,Colleen Begg, Henry Brink, Stephanie Dolrenry, Jane E. Hunt,Ingela Janssoni, David W. Macdonald,Roseline L. Mandisodza-Chikerema, Alayne Oriol Cotterill, Craig Packer,DanielRosengren, Ken Stratford, Martina Trinkel, Paula A. White, Christiaan Winterbach, Hanlie E.K. Winterbach, and Paul J. Funston NOTICE: this is the author’s version of a work that was accepted for publication in Biological Conservation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biological Conservation, [VOL# 201, (September 2016)]. DOI# 10.1016/j.biocon.2016.07.003 Miller, Jennifer R.B., Guy Balme, Peter A. Lindsey, Andrew J. Loveridge, Matthew S. Becker, Colleen Begg, Henry Brink, Stephanie Dolrenry, Jane E. Hunt, Ingela Jansson, David W. Macdonald, Roseline L. Mandisodza-Chikerema, Alayne Oriol Cotterill, Craig Packer, Daniel Rosengren, Ken Stratford, Martina Trinkel, Paula A. White, Christiaan Winterbach, Hanlie E.K. Winterbach, and Paul J. Funston. "Aging traits and sustainable trophy hunting of African lions." Biological Conservation 201 (September 2106): 160-168. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Aging traits and sustainable trophy hunting of African lions Jennifer R.B. Miller a,⁎, Guy Balme a, Peter A. Lindsey a,b, Andrew J. Loveridge c, Matthew S. Becker d,e, Colleen Begg f, Henry Brink g, Stephanie Dolrenry h, Jane E.
    [Show full text]
  • Prevalence of Antibodies to Feline Parvovirus, Calicivirus, Herpesvirus
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 9-1996 Prevalence of Antibodies to Feline Parvovirus, Calicivirus, Herpesvirus, Coronavirus, and Immunodeficiency Virus and of Feline Leukemia Virus Antigen and the Interrelationship of These Viral Infections in Free-Ranging Lions in East Africa Regina Hofmann-Lehmann University of Zurich Daniela Fehr University of Zurich Markus Grob Veterinaria AG - Zurich Muhamed Elgizoli Veterinaria AG - Zurich Craig Packer University of Minnesota - St. Paul NSUWorks Citation Hofmann-Lehmann, Regina; Daniela Fehr; Markus Grob; Muhamed Elgizoli; Craig Packer; Janice S. Martenson; Stephen J. O'Brien; and Hans Lutz. 1996. "Prevalence of Antibodies to Feline Parvovirus, Calicivirus, Herpesvirus, Coronavirus, and Immunodeficiency Virus and of Feline Leukemia Virus Antigen and the Interrelationship of These Viral Infections in Free-Ranging Lions in East Africa." Clinical and Diagnostic Laboratory Immunology 3, (5): 554-562. https://nsuworks.nova.edu/cnso_bio_facarticles/800 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Veterinary Medicine Commons Authors Regina Hofmann-Lehmann, Daniela Fehr, Markus Grob, Muhamed Elgizoli, Craig Packer, Janice S. Martenson, Stephen J. O'Brien, and Hans Lutz This article is available at NSUWorks: https://nsuworks.nova.edu/cnso_bio_facarticles/800 CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, Sept. 1996, p. 554–562 Vol.
    [Show full text]
  • Animal Models for HIV AIDS: a Comparative Review
    Comparative Medicine Vol 57, No 1 Copyright 2007 February 2007 by the American Association for Laboratory Animal Science Pages 33-43 Animal Models for HIV AIDS: A Comparative Review Debora S Stump and Sue VandeWoude* Human immunodeficiency virus (HIV), the causative agent for acquired immune deficiency syndrome, was described over 25 y ago. Since that time, much progress has been made in characterizing the pathogenesis, etiology, transmission, and disease syndromes resulting from this devastating pathogen. However, despite decades of study by many investigators, basic questions about HIV biology still remain, and an effective prophylactic vaccine has not been developed. This review provides an overview of the viruses related to HIV that have been used in experimental animal models to improve our knowledge of lentiviral disease. Viruses discussed are grouped as causing (1) nonlentiviral immunodeficiency-inducing diseases, (2) naturally occurring pathogenic infections, (3) experimentally induced lentiviral infections, and (4) nonpathogenic lentiviral infections. Each of these model types has provided unique contributions to our understanding of HIV disease; further, a comparative overview of these models both reinforces the unique attributes of each agent and provides a basis for describing elements of lentiviral disease that are similar across mammalian species. Abbreviations: AIDS, acquired immune deficiency syndrome; BIV, bovine immunodeficiency virus; CAEV, caprine arthritis-encephalitis virus; CRPRC, California Regional Primate Research
    [Show full text]
  • Prior Puma Lentivirus Infection Modifies Early Immune
    viruses Article Prior Puma Lentivirus Infection Modifies Early Immune Responses and Attenuates Feline Immunodeficiency Virus Infection in Cats Wendy S. Sprague 1,2,*, Ryan M. Troyer 1,3, Xin Zheng 1, Britta A. Wood 1,4, Martha Macmillian 1, Scott Carver 1,5 ID and Susan VandeWoude 1 1 Department of Molecular Biology, Immunology and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO 80523, USA; [email protected] (R.M.T.); [email protected] (X.Z.); [email protected] (B.A.W.); [email protected] (M.M.); [email protected] (S.C.); [email protected] (S.V.) 2 Sprague Medical and Scientific Communications, LLC, Fort Collins, CO 80528, USA 3 Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A5C1, Canada 4 The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK 5 School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia * Correspondence: [email protected]; Tel.: +1-970-223-0333 Received: 22 March 2018; Accepted: 12 April 2018; Published: 20 April 2018 Abstract: We previously showed that cats that were infected with non-pathogenic Puma lentivirus (PLV) and then infected with pathogenic feline immunodeficiency virus (FIV) (co-infection with the host adapted/pathogenic virus) had delayed FIV proviral and RNA viral loads in blood, with viral set-points that were lower than cats infected solely with FIV. This difference was associated with global CD4+ T cell preservation, greater interferon gamma (IFN-γ) mRNA expression, and no cytotoxic T lymphocyte responses in co-infected cats relative to cats with a single FIV infection.
    [Show full text]
  • Structural Determinants of Murine Leukemia Virus Reverse Transcriptase That Are Important for Template Switching, Fidelity, and Drug Resistance
    Graduate Theses, Dissertations, and Problem Reports 2000 Structural determinants of murine leukemia virus reverse transcriptase that are important for template switching, fidelity, and drug resistance Evguenia S. Svarovskaia West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Svarovskaia, Evguenia S., "Structural determinants of murine leukemia virus reverse transcriptase that are important for template switching, fidelity, and drug resistance" (2000). Graduate Theses, Dissertations, and Problem Reports. 1239. https://researchrepository.wvu.edu/etd/1239 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. STRUCTURAL DETERMINANTS OF MURINE LEUKEMIA VIRUS REVERSE TRANSCRIPTASE THAT ARE IMPORTANT FOR TEMPLATE SWITCHING, FIDELITY, AND DRUG-RESISTANCE DISSERTATION Submitted to the School of Medicine, Department of Biochemistry of West Virginia University In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy In Biochemistry By Evguenia S. Svarovskaia Morgantown West Virginia 2000 Committee Members: Dr. Nyles Charon Dr.
    [Show full text]
  • In Presenting This Thesis Or Dissertation As a Partial Fulfillment
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: ____________________________________ _________________ Jung Hwa Kirschman Date The Role of Host Factors in HIV-1 Entry and Assembly By Jung Hwa Kirschman Doctor of Philosophy Graduate Division of Biological and Biomedical Science Immunology and Molecular Pathogenesis ________________________________ ________________________________ Gregory Melikian, Ph.D. Eric Hunter, Ph.D Advisor Committee Member ________________________________ ________________________________ Daniel Kalman, Ph.D. Baek Kim, Ph.D Committee Member Committee Member ________________________________ Anice Lowen, Ph.D. Committee Member Accepted: __________________________________________ Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate Studies ___________________ Date The Role of Host Factors in HIV-1 Entry and Assembly By Jung Hwa
    [Show full text]
  • Wildlife Conservation Award Recipients
    WILDLIFE CONSERVATION AWARD RECIPIENTS World’s Leading Conservationists Honored By Cincinnati Zoo & Botanical Garden Each year, the Zoo has invited several of the world’s leading conservationists to participate in this series and has presented Martha, its annual Wildlife Conservation the Last Passenger Pigeon Award to one of the speakers. The list of internationally known This sculpture depicts Martha, the last conservationists who have been passenger pigeon, sitting on an American honored with this award is chestnut stump staring up into an empty sky impressive. Beginning with the first where her ancestors, the most numerous bird in North America, once flew. recipient, Jane Goodall, in 1993 and including this year’s honoree, The chestnut tree, once called the redwood Dr. Craig Packer, the Zoo has of the east, was all but wiped out by blight recognized many of the most in the early part of the 20th century. The outstanding conservationists Cincinnati Zoo & Botanical Garden is of our time. working to bring back this tree from near extinction. “There is no greater legacy to leave than to inspire future generations to continue the preservation and conservation of the plants and animals with which we share this planet. It is my honor to sculpt the American passenger pigeon on an American chestnut tree to be awarded as an acknowledgement of exceptional contribution to the mission of the Cincinnati Zoo & Botanical Garden by those true heroes of this generation.” - Gary Denzler, Sculptor & Founder of the Cincinnati Zoo’s ‘Wings Of Wonder’ Bird Show. Photo by Craig Packer Those receiving the Cincinnati Zoo Wildlife Conservation Award include: 1993 - Dame Jane Goodall – the world’s foremost authority on chimpanzees, who has spent the past half century in the jungles of the Gombe Game Reserve in Africa observing their behavior.
    [Show full text]
  • Isolation of a Highly Cytopathic Lentivirus from a Nondomestic Cat MARGARET C
    JOURNAL OF VIROLOGY, Nov. 1995, p. 7371–7374 Vol. 69, No. 11 0022-538X/95/$04.0010 Copyright q 1995, American Society for Microbiology Isolation of a Highly Cytopathic Lentivirus from a Nondomestic Cat MARGARET C. BARR,1* LILY ZOU,1 DONALD L. HOLZSCHU,1 LINDSAY PHILLIPS,2† 1,3 1 1 FRED W. SCOTT, JAMES W. CASEY, AND ROGER J. AVERY Department of Microbiology and Immunology1 and Cornell Feline Health Center,3 College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and Chicago Zoological Park, Brookfield, Illinois 605132 Received 10 April 1995/Accepted 28 July 1995 A feline immunodeficiency virus-like virus (FIV-Oma) isolated from a Pallas’ cat (Otocolobus manul) is highly cytopathic in CrFK cells, in contrast to the chronic, noncytolytic infection established by an FIV isolate from a domestic cat (FIV-Fca). The virions have typical lentivirus morphology, density, and magnesium-dependent reverse transcriptase activity. The major core protein is antigenically cross-reactive with that of FIV-Fca; however, FIV-Oma transcripts do not cross-hybridize with FIV-Fca. A conserved region of the FIV-Oma pol gene has 76 to 80% nucleic acid identity with the corresponding pol regions of other feline lentiviruses and 64 to 69% identity with those of human, ovine, and equine lentiviruses. Feline immunodeficiency virus (FIV) infection in domestic species and Hepatozoon canis (5). In addition, the FIV-positive cats is emerging as a useful laboratory model for human AIDS Pallas’ cat’s CD41/CD81 T-cell ratio (0.34) was substantially (2, 10, 33, 34). Under natural conditions, cats experience an lower than those of the three seronegative Pallas’ cats (mean 5 asymptomatic carrier state for years following initial FIV in- 2.12) (17a).
    [Show full text]
  • Humans, Livestock, and Lions in Northwest Namibia
    Humans, Livestock, and Lions in northwest Namibia A Dissertation SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY John Moore Heydinger IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Professor Susan Jones, DVM PhD December 2019 Copyright 2019 John Moore Heydinger M a p o f n o r t h w e s t N a m i b i a s h o w i n g i F Figure 1: Rivers, relevant historical and contemporary boundaries, towns, settlements, and places of interest mentioned in the text. Created by author. i DEDICATION This dissertation is dedicated to John Steenkamp, Wandi Tsanes, Alfeus Ouseb, Jendery Tsaneb, and Leonard Steenkamp. Thank you so much for your time, friendship, and helping make Wêreldsend home. ii ACKNOWLEDGEMENTS Emily O’Gorman, my adviser at Macquarie University has read more of this dissertation, in more differing forms, than any other person. Her comments have improved it immeasurably. I thank her tireless efforts. Thanks also to Sandie Suchet-Pearson who read numerous drafts of chapters and papers and provided important feedback. Thank you to my adviser at the University of Minnesota Susan Jones for her trust, feedback, and encouragement. Thanks to Craig Packer for bringing me into the world of lions and for visiting northwest Namibia. Thanks to Nicholas Buchanan for IRB assistance. Thanks to the rest of my committee at the University of Minnesota, Mark Borrello, Jennifer Gunn, and Dominic Travis. Thanks to my external readers. Thanks to past advisers: George Vrtis and Tsegaye Nega at Carleton College.
    [Show full text]