Xanthoceras Sorbifolium) Considering Climate Change Predictions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Trees Identified in the Petrified Forest of Middle Miocene from Zarand, Apuseni Mountains, Romania
ACTA PALAEONTOLOGICA ROMANIAE (2017) V. 13(2), P. 37-90 NEW TREES IDENTIFIED IN THE PETRIFIED FOREST OF MIDDLE MIOCENE FROM ZARAND, APUSENI MOUNTAINS, ROMANIA. Stănilă Iamandei1* & Eugenia Iamandei1 Received: 31 December 2017 / Accepted: 13 March 2018 / Published online: 16 March 2018 Abstract The systematic study of the Mid-Miocene Petrified Forest of Zarand, Apuseni Mountains, Romania led till now to the identification of over 40 arboreal taxa, allowing a complex phytoecological, palaeoenvironmental and pal- aeoclimatic analysis during Late Badenian in Tălagiu island, of Paratethys realm, where the Zarand Basin evolved. The geological evolution of the Tălagiu caldera allowed best conditions to bury and preserve by silicification of the remains of the Mid-Miocene forest, which lived on the slopes of the volcano. From there, in the last years, species of the following genera were described: Tetraclinoxylon, Thujoxylon, Chamaecyparixylon, Cupressinoxylon, Taxodioxy- lon, Sequoioxylon, Pinuxylon, Magnolioxylon, Cinnamomoxylon, Spiroplatanoxylon, Liquidambaroxylon, Eucaryoxy- lon, Rhysocaryoxyton, Pterocaryoxylon, Fagoxylon, Quercoxylon, Alnoxylon, Populoxylon, Salicoxylon, Nyssoxylon, Paraphyllanthoxylon, Piranheoxylon, Aceroxylon, Fraxinoxylon and Rhizopalmoxylon, taking into account all the palaeoxylotomical identifications. That forest was a Mixed Mesophytic Forest with Lauraceae and Conifers altitudi- nally storeyed, and with remains of pre-Miocene sempervirent elements of paratropical or subtropical climate. Thus, the evaluated climatic -
1. XANTHOCERAS Bunge, Enum. Pl. China Bor. 11. 1833
Flora of China 12: 6–7. 2007. 1. XANTHOCERAS Bunge, Enum. Pl. China Bor. 11. 1833. 文冠果属 wen guan guo shu Shrubs or trees. Leaves imparipinnate; leaflets serrate. Bracts ovate, large; flowers polygamous, male flowers and bisexual flowers on same plant but not in same inflorescence, actinomorphic. Sepals 5, oblong, imbricate. Petals 5, broadly obovate, shortly clawed, scale absent. Disk 5-lobed, lobes alternate to petals, apex with a hornlike appendage abaxially. Stamens 8, not exserted; anthers ellipsoid, apex of connectives and base of cells with 1 globose gland. Ovary ellipsoid, 3-loculed; ovules 7 or 8 per locule, in 2 lines; style terminal, erect; stigma papillate. Capsules subglobose or broadly ellipsoid, 3-ridged, loculicidal into 3 schizocarps, 3- loculed; pericarp thick, rigid, containing fiber bundles. Seeds several per locule, compressed-globose, pericarp thickly leathery, arillode absent; hilum semilunar, large; embryo arched, cotyledons one large and one small. 2n = 30. One species: N and NE China, Korea. There is some support based primarily on DNA sequence data to place Xanthoceras as sister to all other members of Sapindaceae s.l. including Aceraceae and Hippocastanaceae (see Harrington et al., Syst. Bot. 30: 366. 2005). Xanthoceras enkianthiflorum H. Léveillé (Repert. Spec. Nov. Regni Veg. 12: 534. 1913, “enkianthiflora”), described from Guizhou, is a syno- nym of Staphylea holocarpa Hemsley in the Staphyleaceae (see Fl. China 11). 1. Xanthoceras sorbifolium Bunge, Enum. Pl. China Bor. 11. sharply serrate; terminal leaflet usually deeply 3-lobed. Inflo- 1833 [“sorbifolia”]. rescences terminal, male ones axillary, erect, 12–20 cm; pedun- cle short, often with rudimentary scales at base. -
'Yan Xia': a Novel Cultivar of Xanthoceras Sorbifolium Bunge
HORTSCIENCE 56(4):511–512. 2020. https://doi.org/10.21273/HORTSCI15481-20 surviving grafted plantlets were collected, and second-generation grafted plantlets were cultivated. A 90% survival rate was attained ‘Yan Xia’: A Novel Cultivar of in consecutive grafting experiments. All grafted plantlets flowered in 2016. ‘Yan Xanthoceras sorbifolium Bunge with Xia’ displayed the same traits as the maternal parent, indicating the traits are genetically Ornamental Value stable (Ao, 2016a). Yuxin Chen Plant Characteristics Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, ‘Yan Xia’ is expected to be propagated in North China. It can reach a mature height of 2 Beijing 100083, China; and Beijing Laboratory of Urban and Rural to 7 m. It has racemose inflorescences, and Ecological Environment, No. 35 Qinghua East Road, Haidian District, the flowers bloom before or at the same time Beijing 100083, China as leaf sprouting (Fig. 1A). Normally, each flower has 20 petals. The petals are twisted Zishuo Zhang, Kexin Wang, Lijin Ou, and Yan Ao and curled, and are of various sizes. The Key Laboratory for Silviculture and Conservation, Ministry of Education, petals near the outer edges of flowers are Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, wide and large; those near the center are Beijing 100083, China narrow and small. The pistil, stamens, and golden hornlike appendages mutate into Additional index words. cultivation technology, economic value, plant breeding, urban petals, making ‘Yan Xia’ a nonfruiting cul- afforestation, yellow-horn tivar (Fig. 2A) (Ao, 2016b). The sacs on the inner small petals are derived from yellow anthers filled with pollen. -
New Flavonoids from Seed Skin of Xanthoceras Sorbifolia
Journal of Medicinal Plants Research Vol. 5(6), pp. 1034-1036, 18 March, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Short Communication New flavonoids from seed skin of Xanthoceras sorbifolia Rashmi 1* and Akito Nagatsu 2 1Chemistry Division, Forest Research Institute, Dehradun-248006, India. 2College of Pharmacy, Kinjo Gakuin University, Oomori, Moriyama, Nagoya 463-8521, Japan. Accepted 12 January, 2011 From ethyl acetate extract of seed skin of Xanthoceras sorbifolia, one compound with other known compounds was isolated by column chromatography on acetone: water: acetic acid solvent system. Structural elucidation of these compounds was carried out on the basis of Nuclear Magnetic Resonance (NMR) studies, namely 1HNMR, 13 CNMR, HMBC, HMQC and other 2D spectroscopy. Key words: Xanthoceras sorbifolia, Sapindaceae, seed skin, flavonoids, epigallocatechin. INTRODUCTION Xanthoceras sorbifolia also named as Xanthoceras theasapogenolB, 3β,23-di hydroxy-lup-20(29)en-28- sorbifolium belongs to the family Sapindaceae. It is oicacid-23-caffeate have been isolated from fruits and commonly known as yellowhorn and a member of the husks of X. sorbifolia (Li et al., 2005; Li et al., 2006; Chan soapberry family and hence closely related to maples, et al., 2008; Li et al., 2006). horse-chestnuts and lychee (Chen et al., 1985). It is a Saponins are widely present in X. sorbifolia and have kind of woody oil bearing shrub and originated primarily been reported to possess cytotoxic activity. Its wood, at Loess plateau in North of China and Inner Mangolia bark and fruits are used to treat rheumatism, gout and with characters of drought enduring, cold resistant and enuresis of children as a folk medicine (Li et al., 2007). -
Species Association in Xanthoceras Sorbifolium Bunge Communities and Selection for Agroforestry Establishment
Agroforest Syst https://doi.org/10.1007/s10457-018-0265-z Species association in Xanthoceras sorbifolium Bunge communities and selection for agroforestry establishment Qing Wang . Renbin Zhu . Jimin Cheng . Zhixiong Deng . Wenbin Guan . Yousry A. El-Kassaby Received: 24 August 2017 / Accepted: 15 June 2018 Ó The Author(s) 2018 Abstract We embraced the ‘‘learning from nature scaling ordination to assess community structure and and back to nature’’ paradigm to develop viable composition, and the climatic variables that most agroforestry scenarios through studying species asso- likely influenced existing species distributions. Next, ciation in 12 wild yellowhorn (Xanthoceras sorb- pairwise and multiple species associations were eval- ifolium: a Chinese endemic oil woody plants) uated using several multiple species association communities. We identified 18 species combinations indices (e.g., v2, Jaccard, Ochiai, Dice). Generally, for their suitability as agroforestry mixes where all species association indices were in agreement and positive associations were detected and thus economic were helpful in identifying several high valued benefits are anticipated. In each wild yellowhorn medicinal species that showed positive and significant community, we use nonmetric multidimensional associations with yellowhorn. Finally, we proposed several agroforestry species mixes suitable for yellowhorn. Qing Wang and Renbin Zhu have contributed equally to this work. Keywords Xanthoceras sorbifolium Á Species Electronic supplementary material The online version of association and selection Á Agroforestry mixes Á this article (https://doi.org/10.1007/s10457-018-0265-z) con- Nonmetric multidimensional scaling ordination tains supplementary material, which is available to authorized users. (NMDS) Q. Wang Á Z. Deng Á W. Guan (&) R. Zhu School of Nature Conservation, Beijing Forestry Xishuangbanna Tropical Botanical Garden, Chinese University, Beijing 100083, People’s Republic of China Academy of Sciences, Menglun 666303, Yunnan, e-mail: [email protected] People’s Republic of China Q. -
Plastid and Nuclear DNA Markers.Pdf
Molecular Phylogenetics and Evolution 51 (2009) 238–258 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, Johan A.A. Nylander f, Mark Harrington g, Isabel Sanmartín h, Philippe Küpfer a, Nadir Alvarez a a Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Department of Botany, Smithsonian Institution, National Museum of Natural History, NHB-166, Washington, DC 20560, USA d Missouri Botanical Garden, PO Box 299, 63166-0299, St. Louis, MO, USA e Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland f Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden g School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia h Department of Biodiversity and Conservation, Real Jardin Botanico – CSIC, Plaza de Murillo 2, 28014 Madrid, Spain article info abstract Article history: The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found Received 21 May 2008 in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf- Revised 27 November 2008 rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip- Accepted 23 January 2009 pocastanaceae – which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Available online 30 January 2009 Hippocastanoideae) – have been debated for decades. -
Peter Buck Fellowship Program 2014 - 2015 Progress Report
The Peter Buck Fellowship Program 2014 - 2015 Progress Report Overview This year, the National Museum of Natural History’s Peter Buck Fellowship Program welcomes its fifth class of participants. Reaching this milestone offers a unique perspective, both for reflecting on the Buck Program’s past success and for envisioning the course of its future. Through contributions to research, publications, and educational outreach across all of the Museum’s scientific departments, each class further defines the scope and impact of what it means to be a Peter Buck Fellow. Throughout the Smithsonian and scientific communities, their work is advancing learning about nature and culture—knowledge that ultimately drives solutions for the global challenges we face. For the 67 predoctoral and postdoctoral fellows admitted since the Program began, the experience is a pivotal step in advancing their science careers. The Peter Buck Fellowship Program currently includes a robust group of 34 fellows in residence or anticipated in the next few months. The most recent 14 awardees, selected as the Class of 2015, hail from a variety of academic institutions throughout the United States and beyond. A growing alumni base—currently made up of 27 individuals who have since completed their tenure at the Museum—provides yet another lens for understanding the far-reaching effects of the fellowship experience as they pursue the next phase of their careers. This year also welcomes the first recipients of Buck Fellowships contributing specifically to the goals of two major Museum initiatives. Deep Time fellowship opportunities are aimed at increasing the research, education, and outreach productivity of the Initiative during the period leading up to the opening of the permanent Fossil Hall in 2019. -
California Buckeye (Aesculus Californica (Spach) Nutt.) Frank Callahan PO Box 5531, Central Point, OR 97502
PLANT OF THE YEAR California Buckeye (Aesculus californica (Spach) Nutt.) Frank Callahan PO Box 5531, Central Point, OR 97502 California buckeye (Aesculus californica) bears multi-flowered spikes that measure 2½ inches across and 6 to 9 inches in length. Photo by Cindy Roché. alifornia buckeye (Aesculus californica) is apparently quite seven species in North America, one in southeastern Europe, and rare in Oregon, known only in the hills near Gold Hill five in India and eastern Asia. The genus Billia (an evergreen Cin Jackson County. The largest population is on Hidden buckeye) has two species that range from southern Mexico to Valley Ranch where a proposed subdivision development threatens tropical South America (Mabberley 1993). California buckeye is its habitat (Mann 2005). one of two species of buckeye in western North America. The California buckeye was discovered in the early 1800s in other is Parry buckeye (A. parryi), which grows in Baja California California and described by Edouard Spach in 1834 (Little 1979, Norte in Mexico. Hickman 1993). He named it Calothyrsus californica (calo = beautiful, A small tree, California buckeye is recognized by its smooth, thyrse = cluster), and indeed it has a strikingly beautiful flower light gray bark, palmately compound leaves, and showy spikes of cluster, not to be confused with any other Western native species. pinkish white flowers. It is one of the earliest trees to flush vibrant However, four years later, Harvard botanist and ornithologist green leaves in spring, but tardily reluctant to flower, perhaps to Thomas Nuttall reclassified the species, placing it in the genus miss late frosts. -
1455189355674.Pdf
THE STORYTeller’S THESAURUS FANTASY, HISTORY, AND HORROR JAMES M. WARD AND ANNE K. BROWN Cover by: Peter Bradley LEGAL PAGE: Every effort has been made not to make use of proprietary or copyrighted materi- al. Any mention of actual commercial products in this book does not constitute an endorsement. www.trolllord.com www.chenaultandgraypublishing.com Email:[email protected] Printed in U.S.A © 2013 Chenault & Gray Publishing, LLC. All Rights Reserved. Storyteller’s Thesaurus Trademark of Cheanult & Gray Publishing. All Rights Reserved. Chenault & Gray Publishing, Troll Lord Games logos are Trademark of Chenault & Gray Publishing. All Rights Reserved. TABLE OF CONTENTS THE STORYTeller’S THESAURUS 1 FANTASY, HISTORY, AND HORROR 1 JAMES M. WARD AND ANNE K. BROWN 1 INTRODUCTION 8 WHAT MAKES THIS BOOK DIFFERENT 8 THE STORYTeller’s RESPONSIBILITY: RESEARCH 9 WHAT THIS BOOK DOES NOT CONTAIN 9 A WHISPER OF ENCOURAGEMENT 10 CHAPTER 1: CHARACTER BUILDING 11 GENDER 11 AGE 11 PHYSICAL AttRIBUTES 11 SIZE AND BODY TYPE 11 FACIAL FEATURES 12 HAIR 13 SPECIES 13 PERSONALITY 14 PHOBIAS 15 OCCUPATIONS 17 ADVENTURERS 17 CIVILIANS 18 ORGANIZATIONS 21 CHAPTER 2: CLOTHING 22 STYLES OF DRESS 22 CLOTHING PIECES 22 CLOTHING CONSTRUCTION 24 CHAPTER 3: ARCHITECTURE AND PROPERTY 25 ARCHITECTURAL STYLES AND ELEMENTS 25 BUILDING MATERIALS 26 PROPERTY TYPES 26 SPECIALTY ANATOMY 29 CHAPTER 4: FURNISHINGS 30 CHAPTER 5: EQUIPMENT AND TOOLS 31 ADVENTurer’S GEAR 31 GENERAL EQUIPMENT AND TOOLS 31 2 THE STORYTeller’s Thesaurus KITCHEN EQUIPMENT 35 LINENS 36 MUSICAL INSTRUMENTS -
Frawley Poster (NHRE 2016)
A Nuclear and Chloroplast Phylogeny of Maple Trees (Acer L.) and their close relatives (Hippocastanodeae, Sapindaceae) Emma Frawley1,2, AJ Harris2, Jun Wen2 1 Department of Environmental Studies, Bucknell University 2 Department of Botany, National Museum of Natural History INTRODUCTION: RESULTS AND DISCUSSION: Section Key: Acer carpinifolium Acer elegantulum A. Map Key: -/97Acer elegantulum B. Acer saccharum subsp. grandidentatum Acer pubipalmatum The primary goal of this study is to reconstruct a molecular phylogeny of the woody Palmata Acer elegantulum Acer pubipalmatum Acer hycranum Western North America Acer wuyangense Handeliodendron (Rehder) Acer wuyangense Handeliodendron Acer psuedosieboldianum Macrantha Acer campestre 99/100 Acer psuedosieboldianum trees and shrubs in Acer (L.), Dipteronia (Oliv.), the two members of the Acereae tribe, Acer miyabei subsp. miaotaiense Acer oliverianum 99 Acer oliverianum Rehder Platanoidea Acer saccharum subsp. floridatum Eastern North America Acer sp. - Hybrid AJ Harris Acer subsp. - US National Arboretum Acer sp. - Hybrid Acer sieboldianum and Aesculus (L.), Billia (Peyr.), and Handeliodendron (Rehder) of the Hippocastaneae Acer Acer diabolicum Acer sieboldianum Acer tataricum subsp. ginnala Acer sp. - Tibet Europe Acer sp. - Tibet Lithocarpa Acer tschonskii Acer sp. - Tibet Aesculus (L.) Acer pycnanthum Acer sp. - Tibet tribe. These five taxa make up the subfamily Hippocastanoideae in the family 98/100 Billia Peyr. Acer sacharinum Acer davidiiAcer davidii Ginnala Asia 98 Acer davidii Acer rubrum Acer davidii Sapindaceae. Acereae is especially interesting as it is a large, well-known, and Acer saccharum subsp. floridatum Acer crataegifolium Section Kevin Nixon Negundo 99/100Acer crataegifolium Acer griseum 99 Acer tegmentosum Acer triflorum Acer tegmentosum Trifoliata Acer triflorum 89/100 Acer miyabei subsp. -
Plant Ana Tomy
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ PLANT ANATOMY: TRADITIONS AND PERSPECTIVES Международный симпозиум, АНАТОМИЯ РАСТЕНИЙ: посвященный 90-летию профессора PLANT ANATOMY: TRADITIONS AND PERSPECTIVES AND TRADITIONS ANATOMY: PLANT ТРАДИЦИИ И ПЕРСПЕКТИВЫ Людмилы Ивановны Лотовой 1 ЧАСТЬ 1 московский госУдАрствеННый УНиверситет имени м. в. ломоНосовА Биологический факультет АНАТОМИЯ РАСТЕНИЙ: ТРАДИЦИИ И ПЕРСПЕКТИВЫ Ìàòåðèàëû Ìåæäóíàðîäíîãî ñèìïîçèóìà, ïîñâÿùåííîãî 90-ëåòèþ ïðîôåññîðà ËÞÄÌÈËÛ ÈÂÀÍÎÂÍÛ ËÎÒÎÂÎÉ 16–22 ñåíòÿáðÿ 2019 ã.  двуõ ÷àñòÿõ ×àñòü 1 МАТЕРИАЛЫ НА АНГЛИЙСКОМ ЯЗЫКЕ PLANT ANATOMY: ТRADITIONS AND PERSPECTIVES Materials of the International Symposium dedicated to the 90th anniversary of Prof. LUDMILA IVANOVNA LOTOVA September 16–22, Moscow In two parts Part 1 CONTRIBUTIONS IN ENGLISH москва – 2019 Удк 58 DOI 10.29003/m664.conf-lotova2019_part1 ББк 28.56 A64 Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту 19-04-20097 Анатомия растений: традиции и перспективы. материалы международного A64 симпозиума, посвященного 90-летию профессора людмилы ивановны лотовой. 16–22 сентября 2019 г. в двух частях. – москва : мАкс пресс, 2019. ISBN 978-5-317-06198-2 Чaсть 1. материалы на английском языке / ред.: А. к. тимонин, д. д. соколов. – 308 с. ISBN 978-5-317-06174-6 Удк 58 ББк 28.56 Plant anatomy: traditions and perspectives. Materials of the International Symposium dedicated to the 90th anniversary of Prof. Ludmila Ivanovna Lotova. September 16–22, 2019. In two parts. – Moscow : MAKS Press, 2019. ISBN 978-5-317-06198-2 Part 1. Contributions in English / Ed. by A. C. Timonin, D. D. Sokoloff. – 308 p. ISBN 978-5-317-06174-6 Издание доступно на ресурсе E-library ISBN 978-5-317-06198-2 © Авторы статей, 2019 ISBN 978-5-317-06174-6 (Часть 1) © Биологический факультет мгУ имени м. -
Composition Comprising Xanthoceras Sorbifolia
(19) TZZ_Z__T (11) EP 1 670 491 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/704 (2006.01) A61K 36/77 (2006.01) 29.07.2015 Bulletin 2015/31 A61P 35/00 (2006.01) (21) Application number: 04809909.7 (86) International application number: PCT/US2004/033359 (22) Date of filing: 08.10.2004 (87) International publication number: WO 2005/037200 (28.04.2005 Gazette 2005/17) (54) COMPOSITION COMPRISING XANTHOCERAS SORBIFOLIA EXTRACTS, COMPOUNDS ISOLATED FROM SAME, METHODS FOR PREPARING SAME AND USES THEREOF ZUSAMMENSETZUNG MIT XANTHOCERAS SORBIFOLIA EXTRAKTEN, DARAUS ISOLIERTE VERBINDUNGEN, VERFAHREN FÜR IHRE HERSTELLUNG UND IHRE VERWENDUNGEN COMPOSITION COMPRENANT DES EXTRAITS DE XANTHOCERAS SORBIFOLIA, COMPOSES ISOLES A PARTIR DE CES DERNIERS, PROCEDES DE PREPARATION ET UTILISATIONS DE CES DERNIERS (84) Designated Contracting States: • KONOSHIMAT ETAL: "ANTITUMOR AGENTS 82. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR CYTOTOXIC SAPOGENOLS FROM AESCULUS- HU IE IT LI LU MC NL PL PT RO SE SI SK TR HIPPOCASTANUM" JOURNAL OF NATURAL PRODUCTS(LLOYDIA), vol. 49, no. 4,1986, pages (30) Priority: 09.10.2003 US 509851 P 650-656, XP002510554 ISSN: 0163-3864 23.12.2003 US 532101 P • D’ACQUARICA I ET AL: "Isolation and structure elucidation of four new triterpenoid (43) Date of publication of application: estersaponins from fruits of Pittosporum tobira 21.06.2006 Bulletin 2006/25 ait" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 58, no. 51, (73) Proprietor: Pacific Arrow Limited 16 December 2002 (2002-12-16), pages Hong Kong (CN) 10127-10136, XP004396869 ISSN: 0040-4020 • CHEN Y ET AL: "Studies on the constituents of (72) Inventors: xanthoceras sorbifolia BUNGE.