A Three-Year Demographic Study of Harper's Beauty (Harperocallis Java Mcdaniel), an Endangered Florida Endemic Joan L

Total Page:16

File Type:pdf, Size:1020Kb

A Three-Year Demographic Study of Harper's Beauty (Harperocallis Java Mcdaniel), an Endangered Florida Endemic Joan L ~~urnnlof the Torrey Botanical Sociery 132(4), 2005, pp. 55 1-560 A three-year demographic study of Harper's Beauty (Harperocallis Java McDaniel), an endangered Florida endemic Joan L. Walker2.3and Andrea M. Silletti USDA Forest Service, Southern Research Station 233 Lehotsky Hall, Clemson University, Clemson, SC 29634 WALKER.J. L. AND A. M. SILLETTI(USDA Forest Service, Southern Research Station. 233 Lehotsky Hall, Clemson University. Clernson, SC 29634). A three-year demographic study of Harper's Beauty (Harperocallis McDaniel), an endangered Florida endemic. J. Torrey Bot. Soc. 132: 551-560. 200.5.-Harperocallisflava is a federally listed endangered plant narrowly endemic to the Florida panhandle. A lack of knowledge about Hurperocaffispopulation dynamics currently hinders conservation planning. Our objectives included describing ramet size. reproductive status, and mortality and recruitment rates in natural populations of H. flava. In 1998, we established permanent plots and marked individual ramets at six sites representing two habitat types in Apalachicola National Forest. At each site, we established 2 3 plots of varying size (0.12-1.8 m2) to include -300 ramets 1 site. In the first year we tagged, recorded reproductive status of, and measured individual ramets (# of leaves, longest leaf length). In 1999 and 2000, new ramets were tagged and all tagged ramets were re- measured. Analysis of variance methods were used to detect site, year, and habitat effects on response variables. Total number of rarnets sampled varied between sites and declined from year to year. The proportion of ramets bearing reproductive structures was low (0.01 to 0.10) and varied with site and year. Logistic regression indicated that larger ramets were more likely to produce reproductive structures, and that smaller ramets suffered higher mortality. There were significant habitat and year effects on mortality; recruitment differed between years. The relatively short duration of this study precluded examination of potentially important fire effects. A rhizomatous habit and unexpected levels of crayfish-induced mortality suggest that knowledge of population structure and processes at larger scales is needed to develop effective monitoring and management strategies for H. fluva. Key words: demography, endangered species, Florida, Harperocalli.s$ava, Harper's beauty, longleaf pine, seep- age bogs. The longleaf pine ecosystem has high plant Conservancy or are given special conservation species richness, especially at small scales status by various state governments (Nature- (Walker and Peet 1983, Peet and Allard 1993), Serve 2005). Conservation efforts have focused and is characterized by a large number of nar- on habitat management with particular emphasis rowly endemic (Estill and Cruzan 2001, Le- on prescribed burning during the growing sea- Blonde 2001, Sorrie and Weakley 2001) and rare son, because such burning results in reduced species (Hardin and White 1989, Peet and Allard woody plant cover and abundant flowering of 1993, Walker 1993). Because of habitat loss and herbaceous ground-layer species at many sites changes, especially those produced by fire ex- (Platt et al. 1991, Robbins and Myers 1992, clusion, dozens of longleaf pine associated Glitzenstein et al. 1995, Glitzenstein et al. 2003). plants are listed as threatened or endangered un-' However, species in these habitats vary consid- der the Endangered Species Act. Many others erably in life history, growth form, and phenol- are ranked as GI-G3 species by The Nature ogy (Hardin and White 1989, Walker 1993), and thus are likely to respond in different ways to ' Funding was pmvided by the USDA Forest Ser- management actions. Although a few of these vice Southern Research Station, Clemson, SC. species have been studied intensively (e.g., 'This study would not have been possible without the help of Louise Kirn and other personnel at the Kirkman et al. 1998), remarkably little is known Apalachicola National Forest in Bristol. FL. We also abqut individual rare species in the longleaf pine thank Dana Madsen Schulze, Molly Middlebrook, and eccsystem, and there is a clear need for species- Tina Kessler for data collection. Stanley J. Zarnoch of specific data on more of these populations to en- the Southern Research Station assisted with statistical analysis. Mary Carrington, Joseph O'Brien, Peter S. hance conservation and management. White, and two anonymous reviewers provided re- Like many rare longleaf pine associates, Har- views that markedly improved this manuscript. perocallis Java McDaniel (Tofieldiaceae) is an ' Author for correspondence. E-mail: joanwnlker@ fs.fed.us herbaceous perennial typically found in wetter Received for publication September 24, 2004, and habitats such as depressions, ditches, and seep- in revised form August 5, 2005. age bogs (Walker 1993). Harperocallis Java 552 JOURNAL OF THE TORREY BOTANICAL SOCIETY [VOL.132 was first described by McDaniel in 1968 and cinity. As described by McDanicl (1968), each was listed as endangered under the Endangered ramet has 2-5 basal, linear leaves that range Species Act in 1979 (U. S. Fish and Wildlife from 5-21 crn long and from 2-3 mm wide. The Service 1983). This species is known only from stems are short and usually sheathed at the base Franklin, Liberty, and Bay Counties in the Flor- with fibrous old leaf bases. The plant increases ida panhandle, with most known populations oc- vegetatively by shallow rhizomes that produce curring inside the Apalachicola National Forest. new ramets at their tips, and forms srnall-to- McDaniel described the species from a bog ad- large dense clumps (< 5 to > 100 rarnets). A jacent to a state highway, and early surveys sug- rarnet of Harper's Beauty can produce a single gested that the species was restricted to roadside yellow flower bome on a scape much longer locations and a few isolated "natural" off-road than the leaves, up to 55 cm tall. A three-carpel sites. With subsequent increases in prescribed capsule encloses many fusiform seeds 2-3 mrn burning and intensified survey activities in the long. Flowering occurs in mid-April through 1990s, additional off-road sites were located (L. early May; fruits develop through July; and old Kim, personal communication). Although there fruits can persist on the scape for more than one are preliminary studies of H. JSava's insect pol- growing season. linators (Pitts-Singer et al. 2002), breeding sys- STUDYAREA. This study was conducted on tem, seed viability and germination (Wagner and the Apalachicola Ranger District of the Apa- Spira 1996), and genetic diversity (which is ex- lachicola National Forest near Sumatra and Wil- traordinarily low; Godt et al. 1997), there is very ma, Florida. Previous observations indicated that little information on population structure and dy- H. java grows in two types .of habitat differen- namics of this species. Demographic studies tiated here by the plant community. Populations have been very useful in anticipating trends in of H. fIava are most commonly found in open plant population size and detecting response to seepage bogs dominated by herbaceous species disturbance in rare species (Menges and Gordon (including small Dichanthelium spp., Rhynchos- 1996, Byers and Meagher 1997), and, therefore, pora spp., Drosera spp., Pinguicula spp., Bige- may be an important tool for increasing under- lowii nudata, and Carphephorus pseudoliatris) standing of H. Java. and generally lacking cover by woody species. Ultimately, we would like to understand the Less commonly, H. Java is found growing at the population dynamics of H. JSava and use this base of evergreen shrubs (Clzfronia monophylla, knowledge to determine how this species should Myrica inodora) in areas with much less her- be protected and managed. As a first step, we baceous cover. Both habitats are located in the examined the spatial and temporal variation in ecotone between upland pine communities and selected populations to determine whether the Taxodium ascendens or evergreen shrub com- populations were stable and reproducing. We did munities. this by monitoring individual rarnets of H. Java We chose four study sites from bog habitats in six sites in the Apalachicola National Forest. (Sites 1-4) and two from shrub habitats (Sites 5 Specifically, we addressed the following ques- and 6). All six sites were burned in prescribed tions: 1) How do ramet size and flowering vary fires within six months prior to plot establish- among sites, habitat types, and years? 2) How ment, one (site 1) in December 1997 and five in do recruitment and mortality vary across sites, February 1998. Although unplanned, site 1 was habitat types, and years? Because the number of burned again in February 2000. ramets sampled in a fixed area declined mark- edly in most of our locations over the course of SAMPLINGMETHODS. The overall sampling the study, which we think may have been due goal was to mark and measure approximately to precipitation patterns, we present data on pre- 300 ramets at each site. Because the within-site cipitation during the study period. distribution was patchy and the ramets were very difficult to locate, it was not feasible to Methods. STUDYSPECIES. Harperocallis ja- select individual ramets randomly. Instead, we va represents a monotypic genus recently trans- established the following sampling strategy. ferred from the Liliaceae to the Tofieldiaceae Within each site, marked ramets were to be dis- (Zomlefer 1997). Harperocallis is most closely tributed in at least 3 discrete patches, each with related to Narthecium, Pleea, and Tofeldia, the about 100 rarnets. Patches to be sampled were latter two of which are morphologically similar chosen non-randomly from among areas where to Harperocallis and are often found in its vi- the H. Java density appeared to be the highest 20051 WALKER AND SILLElTI: DEMOGRAPHY OF A RARE FLORIDA ENDEMIC 553 Table 1. Number of Harperocallis flava ramets tagged in the first year of the study, the number of sample units, and the total area sampled at each of six sites in the Apalachicola National Forest.
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • 1Lecture Notes 2013
    5/24/13 Week 8; Monday Lecture: Monocots Part I: Some animal pollinated monocots Monocots are monophyletic! Traditional primary division is between Dicots and Monocots Trait “Dicots” Monocots # cotyledons 2 cotyledons 1 cotyledon stem ring of vascular bundles scattered vascular bundles vascular cambium often present no vascular cambium habit woody or herbaceous primarily herbaceous (no true wood) leaves simple or compound usually simple venation net veined: pinnate, palmate parallel (or striate) leaf narrow usually broad, often sheathing insertion (wrapping around the stem) roots primary --> secondary primary roots abort; adventitious roots, too adventitious roots only taproot or fibrous usually fibrous flower parts parts in 4’s, 5’s, or ∞ (rarely 3) parts in 3’s pollen monosulcate or tricolpate monosulcate Today we will look at some of the more important families of animal pollinated monocots found in the temperate zone Overhead of monocot phylogeny based on rbcL - distribution of monocot groups. Chase et al. 2000, overhead Page 57 5/24/13 Lab only; limited discussion here. Show: “Plants are Cool, Too” video Araceae - Arum family (109 gen/2830 spp) 1) herbs (some epiphytes) 2) lvs simple or compound; broad and having an apparent petiole (‘pseudo-lamina’) development not same as in a dicot leaf blade 3) calcium oxalate crystals usually present – physical deterrent to herbivory 4) Inflorescence consisting of - spathe - bract (often colorful) surrounding the flowers - spadix - axis on which the flowers are borne (male above; female below,
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Fort Benning Training Areas
    FINAL REPORT Impacts of Military Training and Land Management on Threatened and Endangered Species in the Southeastern Fall Line Sandhills Communities SERDP Project SI-1302 MAY 2009 Dr. Rebecca R. Sharitz Dr. Donald W. Imm Ms. Kathryn R. Madden Dr. Beverly S. Collins Savannah River Ecology Laboratory, University of Georgia This document has been approved for public release. This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. i Table of Contents Acronyms and Abbreviations …………………………………………………… iv List of Figures……………………………………………………………………...v List of Tables……………………………………………………………………...vii Acknowledgments……………………………………………………………….viii 1. Executive Summary………..………………………………………………… 1 2. Objectives……………………………………………………………………. 5 3. Background………………………………………………....………………... 6 4. Materials and Methods……..………………………………………………… 8 4.1. Characterize sandhills and related xeric woodlands and discriminate from adjacent forests………………………………………………… 8 4.2. Spatial analyses and mapping of sandhills and related xeric woodland communities and comparison with spatial information on forest management and military activities………………………… 9 4.3. Effects of forest understory control practices used to maintain RCW habitat on sandhills plant communities………………………... 9 4.4. Habitat characterization of selected TES plant species……………… 10 4.5. Development of habitat models for TES plants and identification of potential additional suitable habitat……………………………….. 11 4.6.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Chinquapin the Newsletter of the Southern Appalachian Botanical Society
    chinquapin The Newsletter of the Southern Appalachian Botanical Society Volume 16, No. 4 Winter 2008 Happy Holidays from SABS Red spruce “hunkering down” for winter in the Great Smoky Mountains Photo by Scott Ranger 2 Chinquapin 16 (4) The Newsletter of the Southern Appalachian Botanical Society SABS Officers & Editors Conley K. McMullen, President Department of Biology, MSC 7801 Field Notes by Scott Ranger James Madison University Harrisonburg, VA 22807 3) Do weather conditions control flowering? (540) 568-3805 · fax (540) 568-3333 Three-birds Orchid Update I made a careful comparison of weather [email protected] conditions in 2007 (very hot with 14 days Howard S. Neufeld, Past President With another season of observing this > 90°F and 5 >100°F and dry with ~20% of Department of Biology ephemeral orchid at Pickett’s Mill Battlefield normal rainfall) and 2008 (nearly normal). 572 Rivers Street State Historic Site, I’ve come up with some The same flowering pattern occurred both Appalachian State University observations and questions. The photograph years. It seems weather, at least in these two Boone, NC 28608 below is illustrative for both. If anyone has years, didn’t have an effect on flowering. We (828) 262-2683 · fax (828) 262-2127 any answers, I’d love to hear them. counted a total of 460 stems in 2008, up [email protected] 61.5% from 2007. Weather probably had Charles N. Horn, Treasurer Observations: something to do with this. Biology Department • Even the smallest stems (>2 mm diameter 2100 College Street and >3 cm tall) have at least one well- 4) Is synchronicity overemphasized? I think Newberry College developed flower bud.
    [Show full text]
  • Tofieldia Ulleungensis (Tofieldiaceae): a New Species, Endemic to Ulleungdo Island, Korea
    Korean J. Pl. Taxon. 50(3): 343−350 (2020) pISSN 1225-8318 eISSN 2466-1546 https://doi.org/10.11110/kjpt.2020.50.3.343 Korean Journal of RESEARCH ARTICLE Plant Taxonomy Tofieldia ulleungensis (Tofieldiaceae): A new species, endemic to Ulleungdo Island, Korea Hyeryun JO, Balkrishna GHIMIRE, Young-Ho HA, Kang-Hyup LEE and Dong Chan SON* Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon 11186, Korea (Received 19 August 2020; Revised 5 September 2020; Accepted 18 September 2020) ABSTRACT: Tofieldia ulleungensis, a new species of the genus Tofieldia from the Nari Basin on Ulleungdo Island, Korea, is described and illustrated. The new species is similar to T. yoshiiana var. koreana in terms of the plant height and in that it has having a long raceme, whitish tepals, and whitish stigma, but can be readily dis- tinguished from the latter by the presence of 1–2 linear cauline leaves, a slightly bent leaf apex, basal leaves which are twice as wide, a shorter pedicel, a revolute style, and crescent-shaped seeds. Keywords: Tofieldiaceae, Tofieldia ulleungensis, endemic, Ulleungdo Island, Korea The genus Tofieldia Huds. (Tofieldiaceae) comprised about recognized by Nakai (1911), but later he (Nakai, 1914) 12 species distributed in the subarctic, temperate, and transferred T. taquetii to T. fauriei. In 1916, Nakai reported a subtropical regions of the Northern Hemisphere (Chen and new species, T. nutans Willd. ex Schult.f., from Rhobong, Tamura, 2000; Yamazaki, 2002; Tamura et al., 2004, 2010, Pyeonganbuk-do, North Korea, and Chung (1957) recognized 2011). The species are morphologically characterized by 2- two species T.
    [Show full text]
  • November 2020
    November 19, 2020 crevice Alaska Rock Garden Society November Meeting: Alpines of the Pinnell Mountain National Recreation Trail By Marilyn Barker Saturday, November 21, 10 AM on Zoom [Zoom details to follow in separate email] Dear Members- I am looking forward to seeing all of you on our Zoom Meeting on Saturday. I think Marilyn’s program will be wonderful and informative. This will be the last meeting until next year! We will get information out to you about that meeting the first part of the month. Have a wonderful Holiday Season. Be safe and healthy, Florene Carney President Alaska Rock Garden Society (Zoom continued on page 2) Crevice is an occasional publication of the Alaska Rock Garden Society for small items. The masthead is an except from Eriophorum scheuchzeri by Rhonda Williams, used with permission. © Alaska Rock Garden Society 2020 PO Box 244136, Anchorage, AK 99524-4136 2 ARGS Crevice November 19, 2020 Alaska Rock Garden Society Membership Meeting November 21, 2020 ZOOM AGENDA Welcome Treasurer’s Report Approval of Minutes Seed Exchange Program – Marilyn Barker “Alpines of the Pinnell Mountain National Recreation Trail” Member Comments Adjourn Alaska Rock Garden Society Membership Meeting October 17, 2020 ZOOM 10:00 A.M. MINUTES Florene Carney called the meeting to order at 10:10 A.M. with a welcome to everyone joining our first ZOOM Membership Meeting. Jamie Smith, Secretary, gave a brief overview of the Oct 9, 2020 Exec Board minutes. Two important points: At that meeting, the current Executive Board UNANIMOUSLY agreed to remain in their current positions thru the 2020-2021 year to maintain continuity thru the COVID-19 Pandemic.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Pineland Chaffhead (Carphephorus Carnosus Aka Litrisa Carnosa)
    Pineland chaffhead (Carphephorus carnosus aka Litrisa carnosa) For definitions of botanical terms, visit en.wikipedia.org/wiki/Glossary_of_botanical_terms. Pineland chaffhead is a short-lived perennial wildflower that occurs naturally in wet pine flatwoods, savannas and seepage slopes. It typically blooms in late summer through early fall and attracts butterflies, moths and other pollinators. It is endemic to only 13 Central and South Florida counties. The plant’s many purple rayless flowers are borne in broad terminal corymbs. Each flower is held by several hairy, spine-tipped bracts. The flower stalk emerges from a basal rosette of narrow, pointed leaves with entire margins. Stem leaves are significantly reduced. Stems are finely pubescent. Fruits are whitish pubescent achenes. Some botanists have separated most species of the genus Carphephorus into the genera Litrisa and Trilisa. Both genera names are anagrams of the genus Liatris, whose flowers have a similar appearance toCarphephorus Photo by Mary Keim flowers. Pineland chaffhead is the only species in the genus Litrisa. Family: Asteraceae (Aster, composite or daisy family) Native range: Central peninsula, Charlotte, Lee and Martin counties To see where natural populations of Pineland chaffhead have been vouchered, visit www.florida.plantatlas.usf.edu. Hardiness: Zones 8–9 Soil: Wet to moderately dry sandy soils Exposure: Full sun Growth habit: 1–2’ tall Propagation: Seed Garden tips: Pineland chaffhead is drought tolerant in winter and spring, but needs plenty of water to survive the hot summer months. Pineland chaffhead plants are occasionally available from nurseries that specialize in Florida native plants. Visit www.PlantRealFlorida.org to find a nursery in your area.
    [Show full text]