High-Density Lipoprotein Receptor SCARB1 Is Required for Carotenoid Coloration in Birds

Total Page:16

File Type:pdf, Size:1020Kb

High-Density Lipoprotein Receptor SCARB1 Is Required for Carotenoid Coloration in Birds High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds Matthew B. Toomeya,1, Ricardo J. Lopesb, Pedro M. Araújob,c, James D. Johnsond,Małgorzata A. Gazdab, Sandra Afonsob, Paulo G. Motab,e, Rebecca E. Kochd, Geoffrey E. Hilld, Joseph C. Corboa,1,2, and Miguel Carneirob,f,1,2 aDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; bCIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; cCentro de Ciências do Mar e do Ambiente, Departamento de Ciências da Vida, Universidade de Coimbra, 3004-517 Coimbra, Portugal; dDepartment of Biological Sciences, Auburn University, Auburn, AL 36849; eDepartamento de Ciências da Vida, Universidade de Coimbra, 3004-517 Coimbra, Portugal; and fDepartamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 13, 2017 (received for review January 13, 2017) Yellow, orange, and red coloration is a fundamental aspect of red feathers and bare parts (8, 9). In other studies, expression of avian diversity and serves as an important signal in mate choice the carotenoid-cleaving enzyme β-carotene-9′,10′-dioxygenase and aggressive interactions. This coloration is often produced (BCO2) was found to be associated with loss of yellow leg col- through the deposition of diet-derived carotenoid pigments, yet oration in chickens (10), and sequence variation around this the mechanisms of carotenoid uptake and transport are not well- same gene was associated with yellow versus white breast understood. The white recessive breed of the common canary plumage in two sister species of wood warblers (4). The discov- (Serinus canaria), which carries an autosomal recessive mutation eries of the roles that CYP2J19 and BCO2 play in the carotenoid that renders its plumage pure white, provides a unique opportu- pigmentation of birds provide important insights into the meta- nity to investigate mechanisms of carotenoid coloration. We car- bolic mechanisms that underlie carotenoid coloration. ried out detailed genomic and biochemical analyses comparing the Progress has also been made in understanding the mechanism white recessive with yellow and red breeds of canaries. Biochem- whereby carotenoids are transported via the blood to target tis- ical analysis revealed that carotenoids are absent or at very low sues. It has long been known that birds transport carotenoids in concentrations in feathers and several tissues of white recessive the circulatory and lymphatic systems via lipoproteins (11, 12), EVOLUTION canaries, consistent with a genetic defect in carotenoid uptake. and recent experimental evidence confirms a key role for lipo- Using a combination of genetic mapping approaches, we show proteins in carotenoid transport in birds. For example, the that the white recessive allele is due to a splice donor site muta- Wisconsin hypoalpha mutant chicken has a mutation in the tion in the scavenger receptor B1 (SCARB1; also known as SR-B1) ABCA1 transporter, which results in markedly reduced levels of gene. This mutation results in abnormal splicing, with the most circulating high-density lipoprotein (HDL) and a consequent abundant transcript lacking exon 4. Through functional assays, reduction in the level of carotenoids in the blood and peripheral tissues (13, 14). Despite these insights, many aspects of carot- we further demonstrate that wild-type SCARB1 promotes cellular enoid transport and delivery remain to be discovered. uptake of carotenoids but that this function is lost in the predom- Domesticated canaries (Serinus canaria) provide an ideal sys- inant mutant isoform in white recessive canaries. Our results in- tem in which to explore the mechanisms of avian carotenoid dicate that SCARB1 is an essential mediator of the expression of physiology because these birds have been selectively crossed for carotenoid-based coloration in birds, and suggest a potential link between visual displays and lipid metabolism. Significance coloration | carotenoids | lipid metabolism | Serinus canaria The yellow, orange, and red colors of birds are produced through the deposition of carotenoid pigments into feathers he yellow, orange, and red coloration of the feathers, skin, and skin, and often function as signals in aggressive interac- and beaks of birds is most commonly produced through the T tions and mate choice. These colors are hypothesized to com- deposition of carotenoid pigments (1). Carotenoid coloration of municate information about individual quality because their birds has been a focus of study in the fields of behavior, evolu- expression is linked to vital cellular processes through the tion, and physiology because it plays a key role in mate assess- mechanisms of carotenoid metabolism. To elucidate these ment in many species. In addition, it is frequently an indicator of – mechanisms, we carried out genomic and biochemical analyses individual quality, and can signal species identity (2 4). Birds of the white recessive canary breed, which carries a heritable cannot synthesize carotenoids de novo and must acquire them defect in carotenoid uptake. We identified a mutation in the through their diet (1), potentially linking coloration to the ac- SCARB1 gene in this breed that disrupts carotenoid transport quisition of pigments from the environment (3). Thus, key hy- function. Our study implicates SCARB1 as a key mediator of potheses related to honest signaling and sexual selection have carotenoid-based coloration and suggests a link between ca- been shaped by and are currently being tested in carotenoid- rotenoid coloration and lipid metabolism. ornament systems (5, 6). Ultimately, the information content and evolutionary trajectories of carotenoid ornaments are a Author contributions: M.B.T., J.C.C., and M.C. designed research; M.B.T., R.J.L., P.M.A., M.A.G., function of the physiological mechanisms underlying color ex- S.A., P.G.M., R.E.K., and M.C. performed research; M.B.T., R.J.L., P.M.A., J.D.J., M.A.G., S.A., P.G.M., pression, yet our understanding of these mechanisms is limited. and M.C. analyzed data; and M.B.T., G.E.H., J.C.C., and M.C. wrote the paper. The expression of carotenoid coloration in birds involves four The authors declare no conflict of interest. distinct physiological steps: uptake in the gut, transport in cir- This article is a PNAS Direct Submission. culatory and lymphatic systems, metabolism either at the site of Data deposition: The sequences reported in this paper have been deposited in the deposition or in the liver, and deposition in the integument (7). GenBank (BioProject PRJNA300534)andDryad(doi:10.5061/dryad.bt816) databases. Recent progress has been made in understanding how caroten- 1To whom correspondence may be addressed. Email: [email protected], jcorbo@ oids are metabolized to novel forms. In 2016, two studies in- pathology.wustl.edu, or [email protected]. dependently identified a key carotenoid metabolism enzyme, 2J.C.C. and M.C. contributed equally to this work. CYP2J19, that mediates the oxidation of yellow carotenoids into This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. red ketocarotenoids and is used by many bird species to produce 1073/pnas.1700751114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1700751114 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 − centuries to produce breeds with fixed expression of distinct wild-type: 13.39 ± 1.70 μg·g 1 protein; t = −6.26, df = 3.89, P = carotenoid-based plumage color phenotypes (15, 16). Wild ca- 0.0036; Fig. 1C and SI Appendix, Table S1). Carotenoids were not naries and typical domesticated varieties pigment their feathers detectable in the retinas of white recessive canaries but were with yellow carotenoids (Fig. 1A) (17, 18). The white recessive present at very high concentrations in the retinas of typical yellow − canary has entirely white plumage (Fig. 1B) as well as congenital birds (622.57 ± 131.73 μg·g 1 protein; Fig. 1C and SI Appendix, vitamin A deficiency that is inherited as an autosomal recessive Table S1). Together, these results indicate that the levels of trait (19, 20). It is hypothesized that the white recessive pheno- carotenoids are greatly reduced across multiple tissues in white type is the result of a mutation affecting carotenoid uptake (19, recessive canaries. 20), but the specific gene(s) involved remains unknown. Thus, the white recessive canary presents an opportunity to discover Identification of the Genomic Region Associated with White Recessive mechanisms of carotenoid uptake that are necessary for carot- Coloration. The white recessive breed was created through fixa- enoid coloration in birds. tion of a spontaneous mutation by artificial selection (19, 22, 23). In crosses with typical yellow canaries, this white phenotype is Results transmitted in a manner consistent with the existence of a single Carotenoids Are Absent or at Very Low Concentrations in the Tissues recessive allele. It is thus expected that the genomic region un- of White Recessive Canaries. The white recessive canary is char- derlying white feather coloration will show elevated differentia- acterized by completely white plumage that appears to lack the tion in allele frequency between white and colored canaries yellow carotenoid pigmentation typical of wild-type canaries compared with the remainder of the genome. To search for such (Fig. 1 A and B). To better understand the carotenoid physiology regions in the white recessive genome, we used whole-genome se- of the white recessive canary breed, we used high-performance quencing data of pooled DNA samples (detailed in SI Appendix, liquid chromatography (HPLC) to identify and quantify caroten- Table S2). We compared white recessive canaries with other oids in the feathers, skin, liver, and retina, tissues that are im- domestic breeds and one wild population, all characterized by portant sites of carotenoid accumulation in birds (1, 7, 21) (Fig.
Recommended publications
  • The SCARB1 Rs5888 SNP and Serum Lipid Levels in the Guangxi Mulao and Han Populations
    Int. J. Med. Sci. 2012, 9 715 Ivyspring International Publisher International Journal of Medical Sciences 2012; 9(8):715-724. doi: 10.7150/ijms.4815 Research Paper The SCARB1 rs5888 SNP and Serum Lipid Levels in the Guangxi Mulao and Han Populations Dong-Feng Wu1, Rui-Xing Yin1, Ting-Ting Yan1, Lynn Htet Htet Aung1, Xiao-Li Cao1, Lin Miao1, Qing Li1, Xi-Jiang Hu1, Jin-Zhen Wu1, Cheng-Wu Liu2 1. Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical Univer- sity, 22 Shuangyong Road, Nanning 530021, Guangxi, People’s Republic of China 2. Department of Pathophysiology, School of Premedical Sciences, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China Corresponding author: Prof. Rui-Xing Yin, Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People’s Republic of China. Tel: +86-771-5326125; Fax: +86-771-5353342; e-mail: [email protected]. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2012.07.04; Accepted: 2012.09.10; Published: 2012.10.13 Abstract Backgroud: The associations of scavenger receptor class B type 1 (SCARB1) rs5888 single nucleotide polymorphism (SNP) and serum lipid levels are inconsistant among diverse ethnic populations. The present study was undertaken to detect the association of rs5888 SNP and serum lipid levels in the Guangxi Mulao and Han populations.
    [Show full text]
  • Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis Kaylyn D
    Published OnlineFirst February 26, 2019; DOI: 10.1158/1541-7786.MCR-18-1147 Metabolism Molecular Cancer Research Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis Kaylyn D. Tousignant1, Anja Rockstroh1, Atefeh Taherian Fard1, Melanie L. Lehman1, Chenwei Wang1, Stephen J. McPherson1, Lisa K. Philp1, Nenad Bartonicek2,3, Marcel E. Dinger2,3, Colleen C. Nelson1, and Martin C. Sadowski1 Abstract De novo lipogenesis is a well-described androgen receptor delineates the lipid transporter landscape in prostate cancer (AR)–regulated metabolic pathway that supports prostate cell lines and patient samples by analysis of transcriptomics cancer tumor growth by providing fuel, membrane material, and proteomics data, including the plasma membrane prote- and steroid hormone precursor. In contrast, our current under- ome. We show that androgen exposure or deprivation regu- standing of lipid supply from uptake of exogenous lipids and lates the expression of multiple lipid transporters in prostate its regulation by AR is limited, and exogenous lipids may play a cancer cell lines and tumor xenografts and that mRNA and much more significant role in prostate cancer and disease protein expression of lipid transporters is enhanced in bone progression than previously thought. By applying advanced metastatic disease when compared with primary, localized automated quantitative fluorescence microscopy, we provide prostate cancer. Our findings provide a strong rationale to the most comprehensive functional analysis of lipid uptake in investigate lipid uptake as a therapeutic cotarget in the fight cancer cells to date and demonstrate that treatment of AR- against advanced prostate cancer in combination with inhi- positive prostate cancer cell lines with androgens results in bitors of lipogenesis to delay disease progression and significantly increased cellular uptake of fatty acids, cholester- metastasis.
    [Show full text]
  • RISK ASSESSMENT and DIAGNOSIS for EARLY ATHEROSCLEROSIS
    RISK ASSESSMENT and DIAGNOSIS for 84 EARLY ATHEROSCLEROSIS/DYSLIPIDEMIAS [Genes ] AtheroGxOne™ is a genetic test to detect mutations responsible for monogenic diseases of early atherosclerosis. • Panel genes affect plasma levels of lipids (total cholesterol, LDL, HDL, triglycerides) and blood sugar. • Targeted diseases have a high impact on cardiovascular risk since they appear at an early age and indicate poor prognosis without aggressive medical intervention. • The probability of identifying the responsible mutation in patients who meet clinical criteria of familial hypercholesterolemia ranges from 60% to 80%.1,2,3 Panel Designed For Patients Who Have Or May Have: AtheroGxOneTM Gene List • Premature coronary artery disease (men < 50 years old; women < 60 years old) ABCA1 CIDEC KLF11 PDX1 • Suspected Familial Hypercholesterolemia ABCB1 COQ2 LCAT PLIN1 • Suspected Familial Hypertriglyceridemia ABCG1 CPT2 LDLR PLTP • Mixed Hyperlipidemias ABCG5 CYP2D6 LDLRAP1 PNPLA2 • Abnormally high LDL levels or low HDL ABCG8 CYP3A4 LEP PPARA • Maturity-Onset Diabetes of the Young (MODY) AGPAT2 CYP3A5 LIPA PPARG AKT2 EIF2AK3 LIPC PTF1A AMPD1 FOXP3 LMF1 PTRF ANGPTL3 GATA6 LMNA PYGM APOA1 GCK LPA RFX6 APOA5 GLIS3 LPL RYR1 APOB GPD1 LRP6 SAR1B APOC2 GPIHBP1 MEF2A SCARB1 APOC3 HNF1A MTTP SLC22A8 APOE HNF1B MYLIP SLC25A40 BLK HNF4A NEUROD1 SLC2A2 BSCL2 IER3IP1 NEUROG3 SLCO1B1 CAV1 INS NPC1L1 TBC1D4 CEL INSIG2 PAX4 TRIB1 CETP INSR PCDH15 WFS1 Atherosclerosis is defined as the buildup of plaque within arteries CH25H KCNJ11 PCSK9 ZMPSTE24 that can lead to heart attack, stroke, or even death. Approximately, 5% of cardiac arrests in individuals younger than 60 years old can be attributed to genetic mutations included in this panel; this number rises up to 20% in individuals younger than 45 years old.4,5 1.
    [Show full text]
  • Adiponectin Regulates Expression of Hepatic Genes Critical for Glucose and Lipid Metabolism
    Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism Qingqing Liua, Bingbing Yuana, Kinyui Alice Loa,b, Heide Christine Pattersona,c,d, Yutong Sune, and Harvey F. Lodisha,b,1 aWhitehead Institute for Biomedical Research, Cambridge, MA 02142; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cDepartment of Pathology, Brigham and Women’s Hospital, Boston, MA 02115; dInstitut für Klinische Chemie und Pathobiochemie, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany; and eDepartment of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 Contributed by Harvey F. Lodish, July 23, 2012 (sent for review May 30, 2012) The effects of adiponectin on hepatic glucose and lipid metabolism mediated by a master regulator of hepatic gene expression, the at transcriptional level are largely unknown. We profiled hepatic transcription factor (TF) Hnf4a. gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO Results mice fed a chow diet exhibited decreased mRNA expression of rate- Rate-limiting enzymes catalyze the slowest or irreversible steps limiting enzymes in several important glucose and lipid metabolic in metabolic pathways, which makes them the targets of tran- pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid scriptional regulation and/or posttranslational modifications activation and synthesis, triglyceride synthesis, and cholesterol such as phosphorylation in the regulation of metabolism (7). synthesis. In addition, binding of the transcription factor Hnf4a to Because adiponectin plays an important role in energy metabo- DNAs encoding several key metabolic enzymes was reduced in KO lism, our analysis on hepatic gene expression in adiponectin KO mice, suggesting that adiponectin might regulate hepatic gene and WT mice was specifically focused on the expression levels of expression via Hnf4a.
    [Show full text]
  • Genetic Contribution of SCARB1 Variants to Lipid Traits in African Blacks: a Candidate Gene Association Study Vipavee Niemsiri1, Xingbin Wang1, Dilek Pirim1, Zaheda H
    Niemsiri et al. BMC Medical Genetics (2015) 16:106 DOI 10.1186/s12881-015-0250-6 RESEARCH ARTICLE Open Access Genetic contribution of SCARB1 variants to lipid traits in African Blacks: a candidate gene association study Vipavee Niemsiri1, Xingbin Wang1, Dilek Pirim1, Zaheda H. Radwan1, Clareann H. Bunker2, M. Michael Barmada1, M. Ilyas Kamboh1*† and F. Yesim Demirci1*† Abstract Background: High-density lipoprotein cholesterol (HDL-C) exerts many anti-atherogenic properties including its role in reverse cholesterol transport (RCT). Scavenger receptor class B member 1 (SCARB1) plays a key role in RCT by selective uptake of HDL cholesteryl esters. We aimed to explore the genetic contribution of SCARB1 to affecting lipid levels in African Blacks from Nigeria. Methods: We resequenced 13 exons and exon-intron boundaries of SCARB1 in 95 individuals with extreme HDL-C levels using Sanger method. Then, we genotyped 147 selected variants (78 sequence variants, 69 HapMap tagSNPs, and 2 previously reported relevant variants) in the entire sample of 788 African Blacks using either the iPLEX Gold or TaqMan methods. A total of 137 successfully genotyped variants were further evaluated for association with major lipid traits. Results: The initial gene-based analysis demonstrated evidence of association with HDL-C and apolipoprotein A-I (ApoA-I). The follow-up single-site analysis revealed nominal evidence of novel associations of nine common variants with HDL-C and/or ApoA-I (P < 0.05). The strongest association was between rs11057851 and HDL-C (P = 0.0043), which remained significant after controlling for multiple testing using false discovery rate. Rare variant association testing revealed a group of 23 rare variants (frequencies ≤1%)associatedwithHDL-C(P = 0.0478).
    [Show full text]
  • High-Density Lipoprotein-Targeted Therapies for Heart Failure
    Review High‐Density Lipoprotein‐Targeted Therapies for Heart Failure Mudit Mishra and Bart De Geest * Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32‐16‐372059 Received: 31 October 2020; Accepted: 15 December 2020; Published: 16 December 2020 Abstract: The main and common constituents of high‐density lipoproteins (HDLs) are apolipoprotein A‐I, cholesterol, and phospholipids. Biochemical heterogeneity of HDL particles is based on the variable presence of one or more representatives of at least 180 proteins, 200 lipid species, and 20 micro RNAs. HDLs are circulating multimolecular platforms that perform divergent functions whereby the potential of HDL‐targeted interventions for treatment of heart failure can be postulated based on its pleiotropic effects. Several murine studies have shown that HDLs exert effects on the myocardium, which are completely independent of any impact on coronary arteries. Overall, HDL‐targeted therapies exert a direct positive lusitropic effect on the myocardium, inhibit the development of cardiac hypertrophy, suppress interstitial and perivascular myocardial fibrosis, increase capillary density in the myocardium, and prevent the occurrence of heart failure. In four distinct murine models, HDL‐targeted interventions were shown to be a successful treatment for both pre‐existing heart failure with reduced ejection fraction (HFrEF) and pre‐existing heart failure with preserved ejection fraction (HFrEF). Until now, the effect of HDL‐targeted interventions has not been evaluated in randomized clinical trials in heart failure patients. As HFpEF represents an important unmet therapeutic need, this is likely the preferred therapeutic domain for clinical translation.
    [Show full text]
  • Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer
    Author Manuscript Published OnlineFirst on February 26, 2019; DOI: 10.1158/1541-7786.MCR-18-1147 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer 2 disease progression and bone metastasis 3 4 Kaylyn D Tousignant1, Anja Rockstroh1, Atefeh Taherian Fard1, Melanie L Lehman1, 5 Chenwei Wang1, Stephen J McPherson1, Lisa K Philp1, Nenad Bartonicek2,3, Marcel E 6 Dinger2,3, Colleen C Nelson1, Martin C Sadowski1 7 1Australian Prostate Cancer Research Centre - Queensland, Institute of Health and 8 Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland 9 University of Technology, Princess Alexandra Hospital, Translational Research Institute 10 2 Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, 11 Australia 12 3 St Vincent’s Clinical School, UNSW Sydney, Sydney, Australia 13 14 15 16 Keywords: lipid uptake, androgen signaling, low-density lipoprotein receptor (LDLR), 17 scavenger receptor class B type 1 (SCARB1), prostate cancer 18 19 Disclosure of Potential Conflicts of Interest 20 No potential conflicts of interest were disclosed. 21 1 Downloaded from mcr.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on February 26, 2019; DOI: 10.1158/1541-7786.MCR-18-1147 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 22 Abstract 23 De novo lipogenesis is a well-described AR-regulated metabolic pathway that supports 24 prostate cancer tumor growth by providing fuel, membrane material and steroid hormone 25 precursor.
    [Show full text]
  • Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma
    International Journal of Molecular Sciences Article Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma Katharina Kinslechner 1 , Birgit Schütz 1, Martina Pistek 1, Philipp Rapolter 1, Hans P. Weitzenböck 2, Harald Hundsberger 2, Wolfgang Mikulits 3 , Johannes Grillari 4, Clemens Röhrl 1, Markus Hengstschläger 1, Herbert Stangl 1 and Mario Mikula 1,* 1 Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (K.K.); [email protected] (B.S.); [email protected] (M.P.); [email protected] (P.R.); [email protected] (C.R.); [email protected] (M.H.); [email protected] (H.S.) 2 Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; [email protected] (H.P.W.); [email protected] (H.H.) 3 Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; [email protected] 4 Department of Biotechnology, BOKU -University of Natural Resources and Life Sciences, 1190 Vienna, Austria; [email protected] * Correspondence: [email protected]; Tel.: +43-1-40160-56540; Fax: +43-1-40160-956501 Received: 13 February 2019; Accepted: 26 February 2019; Published: 1 March 2019 Abstract: Melanoma is a skin tumor with a high tendency for metastasis and thus is one of the deadliest cancers worldwide. Here, we investigated the expression of the scavenger receptor class B type 1 (SR-BI), a high-density lipoprotein (HDL) receptor, and tested for its role in melanoma pigmentation as well as extracellular vesicle release.
    [Show full text]
  • SR-B1 Uptake of HDL Promotes Prostate Cancer Proliferation and Tumor Progression
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.963454; this version posted February 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. HDL uptake by SR-B1 drives prostate cancer proilferation SR-B1 uptake of HDL promotes prostate cancer proliferation and tumor progression C. Alicia Traughber1,2, Emmanuel Opoku1, Gregory Brubaker1, Jennifer Major1#, Hanxu Lu1, Shuhui Wang Lorkowski1, Chase Neumann1,2, Aimalie Hardaway3, Yoon-Mi Chung3, Kailash Gulshan1, Nima Sharifi3, J. Mark Brown1,2,4,5, and Jonathan D. Smith1,2* 1Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, 44195, USA; 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, 44195, USA; 3Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; 4Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA; 5Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio, 44195, USA Running title: HDL uptake by SR-B1 drives prostate cancer proliferation #Present address: Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH, 44106-4960, USA *To whom correspondence should
    [Show full text]
  • The High-Density Lipoprotein Receptor Scarb1 Is Required for Normal Bone Differentiation in Vivo and in Vitro
    Laboratory Investigation (2019) 99:1850–1860 https://doi.org/10.1038/s41374-019-0311-0 ARTICLE The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro 1,2 2 2 3 4 Irina L. Tourkova ● Steven F. Dobrowolski ● Cassandra Secunda ● Mone Zaidi ● Ioanna Papadimitriou-Olivgeri ● 2,4 1,2 Dionysios J. Papachristou ● Harry C. Blair Received: 23 April 2019 / Revised: 20 June 2019 / Accepted: 15 July 2019 / Published online: 29 August 2019 © United States & Canadian Academy of Pathology 2019 Abstract We examined bone formation and turnover in high-density lipoprotein (HDL) receptor, scavenger receptor type I (Scarb1), knockout animals relative to wild-type (WT) controls. Scarb1−/− animals have elevated serum adrenocorticotropic hormone (ACTH) due to the role of Scarb1 in glucocorticoid production, which might cause increased bone mass. However, this was not observed: Scarb1−/− mice, with ACTH, over 1000 pg/ml relative to wild-type ACTH ~ 25 pg/ml, bone of the knockout animals was osteopenic relative to the wild type at 16 weeks, including bone volume/total volume and trabecular thickness. Other serum parameters of WT and Scarb1−/− animals in cortisol or calcium were unaffected, although Scarb1−/− animals had fi 1234567890();,: 1234567890();,: signi cantly elevated PTH and decreased phosphate. Osteoblast and osteoclast-related mRNAs extracted from bone were greatly decreased at 8 or 16 weeks. Importantly, in normal ACTH, osteogenic differentiation in vitro from mesenchymal stem cells showed reduced alkaline phosphatase and mineralization. In Scarb1−/− cells relative to WT, mRNAs for RunX2, alkaline phosphatase, type I collagen, and osteocalcin were reduced 40–90%, all p < 0.01, indicating a role of Scarb1 in osteoblast differentiation independent of ACTH.
    [Show full text]
  • Genetic Factors Involved in the Bioavailability of Tomato Carotenoids. Charles Desmarchelier, Jean-Francois Landrier, Patrick Borel
    Genetic factors involved in the bioavailability of tomato carotenoids. Charles Desmarchelier, Jean-Francois Landrier, Patrick Borel To cite this version: Charles Desmarchelier, Jean-Francois Landrier, Patrick Borel. Genetic factors involved in the bioavail- ability of tomato carotenoids.. Current Opinion in Clinical Nutrition and Metabolic Care, Lippincott, Williams & Wilkins, 2018, 21 (6), pp.489-497. 10.1097/MCO.0000000000000515. hal-01988648 HAL Id: hal-01988648 https://hal.archives-ouvertes.fr/hal-01988648 Submitted on 31 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript (Inc. Abstract and Key Words) Genetic factors involved in the bioavailability of tomato carotenoids Charles Desmarchelier,1* Jean-François Landrier,1 Patrick Borel1* 1C2VN, Aix Marseille Univ, INRA, INSERM, Marseille, France *Correspondence: [email protected], Tel.: +33 4 91 32 42 82; [email protected], Tel.: +33 4 91 32 42 77 Abbreviations: ABCA1 (ATP binding cassette subfamily A member 1); ABCB1 [ATP- binding cassette, sub-family B (MDR/TAP), member 1]; APOB (apolipoprotein B); BCO1 (β- carotene oxygenase 1); BCO2 (β-carotene oxygenase 2); CD36 (CD36 molecule); ELOVL2 (ELOVL fatty acid elongase 2); ISX (intestine specific homeobox); LIPC (lipase C, hepatic type); MTTP (microsomal triglyceride transfer protein); SCARB1 (gene)/SR-BI (protein) (scavenger receptor class B, member 1); SNP (single nucleotide polymorphism).
    [Show full text]
  • Association Between APOE, SCARB1, Pparα Polymorphisms and Serum Lipids in a Population of Lithuanian Adults
    Smalinskiene et al. Lipids in Health and Disease 2013, 12:120 http://www.lipidworld.com/content/12/1/120 RESEARCH Open Access Association between APOE, SCARB1, PPARα polymorphisms and serum lipids in a population of Lithuanian adults Alina Smalinskiene1, Janina Petkeviciene3*, Dalia Luksiene2, Kristina Jureniene2, Jurate Klumbiene3 and Vaiva Lesauskaite1 Abstract Background: Dyslipidemia is one of several known risk factors for coronary heart disease, a leading cause of death in Lithuania. Blood lipid levels are influenced by multiple genetic and environmental factors. Epidemiological studies demonstrated the impact of nutrition on lipid levels within the Lithuanian population although the role of genetic factors for dyslipidemias has not yet been studied. The objective of this study was to assess the distribution of the APOE, SCARB1, PPARα genotypes in the Lithuanian adult population and to determine the relationship of these genotypes with dyslipidemia. Methods: A cross-sectional health survey was carried out in a representative random sample of the Lithuanian population aged 25–64 (n=1030). A variety of single-nucleotide polymorphisms (SNPs) of the APOE (rs429358 and rs7412), SCARB1 (rs5888) and PPARα (rs1800206) genes were assessed using real-time polymerase chain reaction. Serum lipids were determined using enzymatic methods. Results/Principal findings: Men and women with the APOE2 genotype had the lowest level of total and low- density lipoprotein cholesterol (LDL-C). Men with the APOE2 genotype had significantly higher levels of triglycerides (TG) than those with the APOE3 genotype. In men, the carriers of the APOE4 genotype had higher odds ratios (OR) of reduced (<1.0 mmol/L) high density lipoprotein cholesterol (HDL-C) levels versus APOE3 carriers (OR=1.98; 95% CI=1.05-3.74).
    [Show full text]