Globally Important Ingenious Agricultural Heritage Systems (GIAHS): Extent, Significance, and Implications for Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
40 Pelatihan Teknologi Akuaponik Sebagai Solusi
ISSN 2088-2637 Jurnal Pengabdian Dinamika, Edisi 6 Volume1_November 2019 PELATIHAN TEKNOLOGI AKUAPONIK SEBAGAI SOLUSI PENDUKUNG KETAHANAN PANGAN DESA BABADSARI, KABUPATEN PANDEGLANG, BANTEN Rida Oktorida Khastini1) , Aris Munandar2) 1)Jurusan Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa 2)Jurusan Perikanan, Fakultas Pertanian, Universitas Sultan Ageng Tirtayasa e-mail : [email protected] Abstrak Salah satu cara untuk meningkatkan kesejahteraan masyarakat di Desa Babadsari, adalah dengan memberdayakan masyarakatnya dengan mengoptimalkan potensi daerahnya. Lahan pekarangan yang luas dapat dimanfaatkan sebagai sumber yang dapat menunjang ketahanan pangan dalam aspek sosial, ekologi, dan ekonomi bagi rumah tangga maupun masyarakat lokal secara berkelanjutan melalui implementasi teknologi akuaponik. Tujuan program ini adalah dalam rangka meningkatkan pengetahuan masyarakat melalui pelatihan teknologi akuaponik sebagai solusi pendukung ketahanan pangan, serta mengembangkan kegiatan ekonomi produktif masyarakat sebagai bentuk pemberdayaan masyarakat desa. Metode pelaksanaan pelatihan teknologi akuaponik dilakukan dengan 5 tahapan, yaitu tahap persiapan, sosialisasi, pelatihan, pendampingan dan evaluasi. Hasil kegiatan pelatihan teknologi akuaponik di desa Babadsari mendapat respon yang positif dan antusiasme kelompok sasaran. Seluruh peserta merasakan banyak manfaat dari segi estetika dan ekonomi Kegiatan ini memotivasi warga lainnya yang mulai tertarik untuk ikut serta menerapkan teknologi akuaponik di pekarangan rumah mereka sendiri. Warga yang telah menerapkan program tidak lagi membeli beberapa jenis sayur dan ikan ke pasar. Kata kunci: Akuaponik, Babadsari, Ikan, Sayuran Abstract [Aquaponics Technology Training as a solution to support Food Security in Babadsari Village, Pandeglang Regency, Banten]. One way to improve the welfare of the community in Babadsari Village is by empowering the community through optimizing the potential of the area. -
To Check out Katie's Project Regarding Smallholder Organic Farmers in Cusco, Peru
Executive Summary This paper will explore the topic of connecting smallholder organic farmers in the Cusco region of Peru to local markets, with a focus on tourist restaurants and hotels. Research was conducted in the summer of 2018, which included interviews with local smallholder farmers (referred to as Ricardo, Hugo, Veronica, Juanita, and Cynthia in the following sections) and restaurant and hotel owners, in addition to a survey of over 200 tourists. This research, in addition to a thorough literature review, revealed many challenges that smallholder farmers are facing in the region, as well as opportunities to address these challenges. It will review topics including food sovereignty, the economic context of agriculture in Peru, environmental issues, public health, the valuation of traditional knowledge in agriculture, stigmas of farmers, and rural to urban migration. It will discuss the role that EcoHuella, the demonstration agroecology farm of the local NGO Andean Alliance, is playing to address these issues. The vision of EcoHuella, in accordance with many of the others farmers interviewed, is the liberation of smallholder farmers. One avenue to achieving this liberation, which calls for more autonomy, agency, and self-esteem for these farmers, is through local market access. The following sections will explain how market access can address these challenges in order to achieve farmer liberation. Introduction Smallholder farmers in Peru in the Sacred Valley and surrounding highland communities, owning farms with 5 hectares of land or less, have seen radical changes to their practices and livelihoods in the past several decades, including environmental, public health, economic, agricultural, and sociocultural shifts. -
How Trees and People Can Co-Adapt to Climate Change Reducing Vulnerability in Multifunctional Landscapes
How trees and people can co-adapt to climate change Reducing vulnerability in multifunctional landscapes EDITORS MEINE VAN NOORDWIJK MINH HA HOANG HENRY NEUFELDT INGRID ÖBORN THOMAS YATICH WORLD AGROFORESTRY CENTRE How trees and people can co-adapt to climate change Reducing vulnerability in multifunctional landscapes EDITORS MEINE VAN NOORDWIJK MINH HA HOANG HENRY NEUFELDT INGRID ÖBORN THOMAS YATICH Citation Van Noordwijk M, Hoang MH, Neufeldt H, Öborn I, Yatich T, eds. 2011. How trees and people can co-adapt to climate change: reducing vulnerability through multifunctional agroforestry landscapes. Nairobi: World Agroforestry Centre (ICRAF). Disclaimer and copyright The World Agroforestry Centre (ICRAF) holds the copyright to its publications and web pages but encourages duplication, without alteration, of these materials for non- commercial purposes. Proper citation is required in all instances. Information owned by others that requires permission is marked as such. The information provided by the Centre is, to the best of our knowledge, accurate although we do not guarantee the information nor are we liable for any damages arising from use of the information. Website links provided by our site will have their own policies that must be honoured. The Centre maintains a database of users although this information is not distributed and is used only to measure the usefulness of our information. Without restriction, please add a link to our website www.worldagroforestrycentre.org on your website or publication. ISBN 978-979-3198-56-9 World Agroforestry Centre United Nations Avenue, Gigiri PO Box 30677, Nairobi 00100, Kenya Tel: +(254) 20 722 4000 Fax: +(254) 20 722 4001 Email: [email protected] www.worldagroforestry.org Southeast Asia Regional Office Jl. -
Homestead Farming in Kerala: a Multi-Faceted Land-Use System Jacob John*
RESEARCH ARTICLE Homestead Farming in Kerala: A Multi-Faceted Land-Use System Jacob John* Abstract: Homestead farming, prevalent in different parts of the world, presents an excellent example of the many systems and practices of agroforestry. The homestead is an operational farm unit in which a number of crops (including tree crops) are grown, along with rearing of livestock, poultry or fish, mainly for the purpose of meeting the farmer’s basic needs. Homesteads or home gardens, with special reference to Kerala, have been enumerated and their key characteristics summarised in this paper. Homestead farming satisfies the requirements of sustainability by being productive, ecologically sound, stable, economically viable, and socially acceptable. However, land- use changes, availability of agricultural labour, and falling commodity prices are major constraints in homestead farming in Kerala. Future strategies to improve homestead farming should aim at watershed-based development with focus on a whole-farm or systems approach; restructuring and refining existing home gardens, and developing sustainable models through a farmer-participatory approach for each agro-ecological zone; forming homestead clusters; creating germplasm registers; bridging the yield gap by improving crop productivity; developing post-harvest technology of home garden products; generating non-farm employment opportunities; promoting and improving rural financial networks; providing essential rural infrastructure; creating coalitions to address policy concerns at all levels; and broadening consumer perspectives. Keywords: Agroforestry, homestead farming, home gardens, Kerala, sustainable agriculture, home gardens in Indian States, home gardens of Kerala, home gardens for sustainable development, constraints in homestead farming, homestead clusters, land-use system. Introduction Homestead farming or home gardening is a historical tradition that has evolved in many tropical countries over a long period of time. -
Research and Education for the Development of Integrated Crop-Livestock-Fishfarming Systems in the Tropics DEC 2 1
S'H ICLARM STUDIESAND REVIEWS16 I. 207 I SR76 #.16 C.t 1 Research and Education for the Development of , r Integrated Crop-livestock-Fish Farming t \ Systems in the Tropics P. Edwards R.S.V. Pullin J.A. Gartner I If - I:' '!Io, .. .... \D ',- .'. , r . ~ _frl~TERNATIONAL C~NTER FOR LIVING AQUATIC RESOURCES MANAG.EMENT , " i ' :1 i I .I earch and Education for the Development of Integrated Crop-Livestock-Fish Farming Systems in the Tropics J.A. Gartner INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES Research and education for the development of integrated crop-livestock-fishfarming systems in the tropics DEC 2 1 P. EDWARDS R.S.V. hum J. A. GARTNER Published by the International Center for Living Aauatic Reswrces Mana~ement.MC P.O. Box 1501. ~hcati,Metm Manila, Pklippiis with fmancid assistance from the United Nations Development Programme New York. USA Printed in Manila. Philippines Edwards. P.. R.S.V. Pullin and J.A. Gamer. 1988. Research and education for the development of integrated cmp-livestock-fish farming systems in the tropics. ICLARM Studies and Reviews 16.53 p. International Center for Living Aquatic Resources Management, Manila, Philippines. ISSN 01 15-4389 ISBN 97 1-1022-46-X Cover: Small-scale integrated crop-livestock-fish farming in a rainfed area of Northeast ?hailand. ?his ria farm has a small fishpond that provides fish. pennits dry season cultivation of vegetables on rhe dikes and suppliis drinking water for livestock. ICLARM Contribution No. 470 Contents Preface ................................................. Introduction .............................................. The Concept of Integrated Farming Systems A Definition of Integrated Farming ........................... -
Sundials for Urban Farming in an Early Inca City
Universal Journal of Agricultural Research 2(3): 107-114, 2014 http://www.hrpub.org DOI: 10.13189/ujar.2014.020305 Sundials for Urban Farming in an Early Inca City Uwe Christian Plachetka University of Natural Resources and Life Sciences (BOKU), Vienna, Austria *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract Information systems are essential for farming the methods of these indigenous farmers promote “response agriculture”. The famous IntiWatanas, the Inca an increase in crop diversity to avoid adverse effects of sundials were a technological detail of “response agriculture” inbreeding (Brush 2004). The Andean highlands and their as the development of the Inca Empire was a matter of traditional farmers harbor the genetic reserves for potatoes coping with the challenges of the Medieval Climatic (solanum tuberosum spp.), Quinoa (Chenopodia quinoa) Anomaly in the Central Andean Highlands. Such archaic and a wide range of other nutritive crops. Consequently the but smart techniques can be understood only when intervention of the last pre-European government of Peru, considered in their original socio-ecologic context. that of the Incas in agricultural systems and food production is palpable, which does matter for a proper understanding of Keywords Urban Farming, Inca, Sundial, Ecologic diversity-promoting agricultural systems and response Management agriculture because the Incas had to face the challenges of the Medieval Climatic Anomaly(MCA) (Haberle S.G., Chepstow-Lusty -
Permaculture – Food Garden to Maximize Research Multiple Vegetable Yield – a Farmer Success Story
Success Story Journal Home: www.bioticainternational.com Article: RT0402 Biotica How to cite this article? Bharathi, Permaculture – Food Garden to Maximize Research Multiple Vegetable Yield – A Farmer Success Story. Today [Biotica Research Today 2(11): 1137-1139. [ 1137 Abstract Vol 2:11 egetable cultivation is considered to be a high returned 1139 agri-business. The present case was documented for a 2020 VPermaculture technique adopted by a farmer under the technical guidance of KVK, Namakkal at Palapatti village of Namakkal Permaculture – Food District, Tamil Nadu, India. The observations revealed that sale of multi vegetables at a time and get a gross income of Rs. 1,500.00 Garden to Maximize per day than sole vegetable (Rs. 300.00 – 500.00). The permaculture farmer considers that there is a need to diversify the mono cropping Multiple Vegetable Yield – to multiple cropping in a piece of land for secure and sustainable A Farmer Success Story future. Background Information Sharmila Bharathi C. hri K. K. Velusamy is doing agriculture since 2007 and ICAR - Krishi Vigyan Kendra, Veterinary College and practiced vegetable cultivation in conventional pattern. Research Institute Campus, TANUVAS, Namakkal, Tamil He cultivated each type of vegetable in a single field as Nadu (637 002), India S a monoculture in an area of 50 cent to 1 acre. He observed that the plants of the similar species compete for the same nutrients and become an attractive habitat for pests of that plant and in turn poor yield and return. He also noticed soil Open Access nutrient depletion in that cultivation system. Apart from these, he faced poor returns due to market fluctuation and huge Corresponding Author arrival of the same type of vegetable at that time (Rs. -
Pork Production System and Its Development in Mainland China
International Journal of Fisheries and Aquaculture Vol. 3(5), pp. 166-174, May 2011 Available online at http://www.academicjournals.org/IJFA ISSN 2006-9839 ©2011 Academic Journals Review Pork production system and its development in mainland China Heng-wei Cheng 1*, You-ming Wang 2, Qing-ping Meng 2, Jia Guo 2 and Yi-zheng Wang 2 1Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47906, USA. 2Institute of Feed Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310029, P. R. China. Accepted 11 April, 2011 Livestock production and marketing have been driven by the growing consumer demand for high quality and low cost animal protein. As a result, intensive livestock industries have been rapidly developing globally. International trade, especially with China, creates new opportunities and challenges for the emerging international agriculture market. China provides an enormous market for international trade by stimulating its import and export activities. Pigs are the primary farm animals raised for human consumption in China, and the development of pork production systems in China will affect its trade globally. To meet the need for developing international animal agriculture and trade, this article describes the current status of the swine industry, its production in China and the factors that may affect its development. Urbanization, available farmland, grain production, water resources and management practices encompass some of these factors. In addition, the effects of the culture, religion and education of the populations on the development of swine sector in China are also discussed. Understanding the development of the swine production system and its associated factors is critical to assessing China’s impact and implication in the emerging international agricultural market. -
Annual Report 2009
Annual Report 2009 Focus on Partnerships: Enriching the science, expanding the reach, enhancing the impact International Potato Center The International Potato Center (known by its Spanish acronym CIP) is a research-for-development organization with a focus on potato, sweetpotato, and Andean roots and tubers. CIP is dedicated to delivering sustainable science-based solutions to the pressing world issues of hunger, poverty, gender equity, climate change and the preservation of our Earth’s fragile biodiversity and natural resources. Our vision is roots and tubers improving the lives of the poor. Our mission is to work with partners to achieve food security, well-being, and gender equity for poor people in root and tuber farming and food systems in the developing world. We do this through research and innovation in science, technology, and capacity strengthening. 2 International Potato Center • Annual Report 2009 From the Board Chair 4 Foreword Director General 6 Introduction 9 Enriching the science 13 Measuring soil carbon as a tool for mitigating climate change 14 Sequencing the potato genome 16 Expanding the reach 19 Sweetening lives in Sub-Saharan Africa: 20 Sweetpotato for profi t and health initiative Linking farmers to potato value chains in Indonesia 22 Making seed big business in Kenya 24 From partners to proto-institution: The CONDESAN story 26 Enhancing the impact 29 Working with partners to invest in women 30 Spearheading a global initiative to combat late blight disease 32 New label adds value to native Andean potatoes and boosts 34 livelihoods of those who grow them CIP in China: Where impacts measure in the millions 36 CIP outputs and outcomes 2009 39 Publications 42 Outputs 69 Outcomes 89 CIP in 2009 97 Financial report 98 Donor contributions 100 CIP locations of proyects, offi ces and activities 101 Global contact points 102 CIP’s internal structure 107 CIP staff list 108 CGIAR centers 114 International Potato Center • Annual Report 2009 3 From the board chair From left to right: Dr. -
Trop. Agr. Develop. P.113-124 64
Trop. Agr. Develop. 64(3): 113 - 124,2020 Indonesian Permaculture: Factors Shaping Permaculture Farm Systems in Humid Tropical Indonesia Radityo Haryo PUTRO1, 2 and Rie MIYAURA1, * 1 Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan 2 Present affiliation: Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan Abstract Permaculture-based farming systems are relatively unexplored in the humid tropics. A few studies have shown that permaculture in such areas has diverse roles and contributions, but these are poorly understood. We hypothesized that the unique social needs of local people or the natural environment in the humid tropics influence how permaculture systems are shaped to operate and have roles that fit under local context. The present study sought to identify and validate these influences toward three different aspects of the permaculture farm: 1) operations, 2) management, and 3) crop diversity. Field surveys were conducted in Indonesia between 2016–2019. A total of six permaculture farms were found across the country, and four farms (one in Yogyakarta and three in Bali) were able to cooperate for the present study. Analysis of quantitative data, such as for determining crop diversity, involved using the Shannon and Simpson diversity indices. We identified that the surveyed permaculture farms’ operations, farm management, and crop diversity were shaped by fundamental permaculture principles, socioeconomic factors such as operational needs and profit-related managerial decisions, and socio-cultural factors such as the beliefs of owners and local societal needs. -
PEKARANGAN”) on HOUSEHOLD PROSPERITY: an ANALYSIS of AGRO-ECOLOGICAL ZONES of JAVA, Indonesiai
THE ROLE AND IMPACTS OF SMALL-SCALE, HOMESTEAD AGRO-FORESTRY SYSTEMS (“PEKARANGAN”) ON HOUSEHOLD PROSPERITY: AN ANALYSIS OF AGRO-ECOLOGICAL ZONES OF JAVA, INDONESIAi The role and impacts of small-scale, homestead agro-forestry systems (“pekarangan”) on household prosperity: an analysis of agro-ecological zones of Java, Indonesiaii Hadi Susilo Arifina, Aris Munandara, Gerhardus Schultinkb and Regan L. Kaswantoa a Bogor Agricultural University, Bogor 16680, Indonesia b Michigan State University, East Lansing, MI. 48824. USA Abstract1 A survey of very small-scale homestead gardens in three Javanese provinces was conducted to analyze the potential beneficial effects on household’s quality of life. Aspects included: (1) diet and nutrition, (2) income, (3) level of goods and material assets, (4) family status, (5) credit access, and (6) the role of women in managing production and marketing. The survey encompassed sites on West, Central and East Java, representing a range of agro-ecological zones, watersheds (6), elevations, socio-cultural conditions and development stages. The plot sizes evaluated ranged from < 120 m2 with no other agricultural land (OAL) to 120-400 m2 with < 1,000 m2 OAL. The average household plot size was about 240 m2 (with open space of at least 140 m2) and OAL of 500 m2. Around 5.7% of the sample villages were, by national standards, considered to be at an advanced development state, with 82.9% at a medium state, and with the rest least developed. On average, very small homestead plots reduced food expenses by 9.9%. Nutritional benefits are primarily in the form of vitamin A and C – providing 2.4% and 23.6% of recommended dietary allowance (RDA), respectively and only 1.9% of either carbohydrates or protein. -
Home Garden of Sasak People in Sajang Village, Sembalun, East Lombok, Indonesia
International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume 2, Issue 1, January 2016, PP 32-40 ISSN 2454-6224 http://dx.doi.org/10.20431/2454-6224.0201005 www.arcjournals.org Home garden of Sasak people in Sajang Village, Sembalun, East Lombok, Indonesia Rosalina Edy Swandayani1, Luchman Hakim2, Serafinah Indriyani 3 Department of Biology, Faculty of Mathematics and Natural Sciences Brawijaya University Veteran Street, Malang 65145, East Java, Indonesia [email protected], [email protected], 3 [email protected] Abstract: The aim of the study is to assess the local people’s knowledge in using home garden’s plants in Sajang Villagein Sembalun District, East Lombok. Floristic data was done in 105 home gardens along villages corridors to the Mt. Rinjani. Plant species usage among local people was measured using Use Value and Cultural Significant Index. The results showed that there were 279 species of 85 families grows and used by local people. Based on data analysis, Persea americana has the highest UVs (UVs = 1.35). It was followed by Curcuma longa (UVs = 1.28), Carica papaya (UVs = 1.21), Aloe vera (UVs = 1.01), Kaempferia galanga (UVs = 0.96), Syzygium aromaticum (UVs = 0.95). Plants with the highest CSI value is Aloe vera (CSI = 17.04). It was followed by Curcuma longa (CSI = 12.00), Persea americana (CSI = 9.04), Carica papaya (CSI = 8.87), Manihot esculenta (CSI = 8.17). Plants in home gardens plays an important role in human daily life, including plans as food, traditional medical material, economical and ornamental. The conservation of home garden in Sajang is crucial to maintain biodiversity in rural area and local economic development.