Atmospheric Study of Unusual Cloud & Rainfall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Professor Bradford S. Barrett, Oceanography Department, Advisor: CAPT Elizabeth R
Exploring the Propagation of the Madden-Julian Oscillation across the Maritime Continent Midshipman 1/C Casey R. Densmore Advisor: Professor Bradford S. Barrett, Oceanography Department, Advisor: CAPT Elizabeth R. Sanabia, Oceanography Department External Collaborator: Assistant Professor Pallav Ray, Florida Institute of Technology Trident Research Objective: Better understand atmospheric conditions which favor MJO eastward propagation through the Maritime Continent Introduction Data and Methods Result: Background Atmospheric States Classifying MJO Events Primary Result 1: Increased moisture and lower pressures are potential precursors for MJO propagation regardless of initial strength. A more intense lower The Madden-Julian Oscillation (MJO, Madden and Julian 1971) is the tropospheric moisture foot east of the active envelope also indicates likely MJO propagation for initially active events. These atmospheric anomalies may provide a • The RMM Index was used to categorize MJO events based leading intraseasonal mode of atmospheric variability. The MJO predictive capability to detect changes in the MJO prior to those changes projecting on the RMM index. consists of a broad circulation cell approximately 10,000 km in on location and strength • Categorized as one of four cases based on MJO horizontal extent (Fig. 1; Madden and Julian 1994) that propagates Specific Humidity activity on entrance to and exit from the Maritime eastward along the equator circumnavigating the globe in the • AA MJO events are significantly more moist throughout the troposphere in the active tropics (Zhang 2005) over a period of approximately 30 to 60 days. Continent (Fig. 4, matching Fig. 2). • Eastward propagation required for 65% of days over envelope than AI events from days -8 to +8 (Figs. -
Statistical Approach Towards Subseasonal Prediction Over the Maritime Continent
RESEARCH PUBLICATION NO. 2/2018 Statistical Approach Towards Subseasonal Prediction over the Maritime Continent By Norlaila Ismail and Changhyun Yoo All rights reserved. No part of this publication may be reproduced in any form, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in Publication Data Published and printed by Malaysian Meteorological Department Jalan Sultan 46667 Petaling Jaya Selangor Darul Ehsan MALAYSIA Contents No. Subject Page Abstract iv 1. Introduction 1 – 7 2. Objective 8 – 9 3. Methodology 9 – 14 4. Results and Discussions 14 – 25 5. Conclusions 26 – 27 References 28 - 30 STATISTICAL APPROACH TOWARDS SUBSEASONAL PREDICTION OVER THE MARITIME CONTINENT Norlaila Ismail and Changhyun Yoo Abstract Weather and climate prediction over the Maritime Continent (MC) remains as a challenge due to its complex mix of islands and seas as well as its mountainous topography. In general, the weather and climate of the region are contributed by climates in various temporal and spatial scales. Among which are the interannual variability associated with the El-Niño Southern Oscillation (ENSO) and the stratospheric Quasi-Biennial Oscillation (QBO). The Madden-Julian Oscillation (MJO) also has the capability of modulating intraseasonal convection activity over the MC region. Previous studies have shown successes in generating a future prediction using statistical methods. Some of these works employed climate variability as the source of predictability in their models. Motivated by this, we construct simple and multiple linear least-square regression models using climate indices mentioned above to forecast the outgoing longwave radiation (OLR) and surface air temperature (T2m) anomalies over the MC region. -
Years of the Maritime Continent July 2017-July 2019
YEARS OF THE MARITIME CONTINENT (July 2017 – July 2019) –Observing the weather-climate system of the Earth's largest archipelago to improve understanding and prediction of its local variability and global impact SCIENCE PLAN (draft) 1 TABLE OF CONTENTS EXECUTIVE SUMMARY ................................................................................................ 4 1. INTRODUCTION .......................................................................................................... 6 2. SCIENCE THEMES ....................................................................................................... 9 2.1 Atmospheric Convection .......................................................................................... 9 2.1.1 Dominant processes controlling the diurnal cycle ............................................. 9 2.1.2 Diurnal and large-scale variability ................................................................... 12 2.1.3 MJO propagation barrier .................................................................................. 14 2.1.4 Boreal winter interactions between East and Southeast Asia and MC ............ 15 2.1.5 Northward propagation/migration of MC convection ..................................... 17 2.2 Ocean and Air-Sea Interaction ................................................................................ 18 2.2.1 Upper ocean processes ..................................................................................... 19 2.2.2 Air-Sea Interaction .......................................................................................... -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Atmospheric Research 122 (2013) 486–503 Contents lists available at SciVerse ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography Jun Wang a,⁎, Cui Ge a,f, Zhifeng Yang a, Edward J. Hyer b, Jeffrey S. Reid b, Boon-Ning Chew c, Mastura Mahmud d, Yongxin Zhang e, Meigen Zhang f a Department of Earth and Atmospheric Sciences, University of Nebraska — Lincoln, NE, USA b Marine Meteorology Division, Naval Research Lab, Monterey, CA, USA c Centre for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore d Earth Observation Centre, Universiti Kebangsaan Malaysia, Selangor, Malaysia e Research Applications Laboratory, National Center for Atmospheric Research, CO, USA f State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China article info abstract Article history: The online-coupled Weather Research and Forecasting model with Chemistry (WRFchem) is Received 5 September 2011 used to simulate the transport of smoke particles over the Southeast Asian Maritime Continent Received in revised form 19 December 2011 during September–October 2006. -
Physical Climatology of Indonesian Maritime Continent: an Observational Overview
Physical Climatology of Indonesian Maritime Continent: An Observational Overview Manabu D. Yamanaka (JAMSTEC / Kobe-U) (Photo by Y. Kashino, near Timor) Dawn of scientific description of monsoon and Hadley circulations (Discovery/utilization of monsoon: Greek /Arabian sailors >2,400/1,400 years ago; Trade wind recognition/utilization: Polynesian/European >2,000/600 years ago) (Hadley, 1735; (Halley, 1686) reproduced by Lorenz, 1967) (Coffin, 1876; Copied by Yoshino, 1989) Hadley and (“astronomical”) monsoon circulations Axi-Symmetric Meridional Circulation due to Differential Solar Heating Earth has an Thermodynamics (Adiabatic change Summer Equator almost circular orbit! Winter Annual Mean (Symmetric to Eq) Annual Osci. (Eq. Anti-Symmetric) ⇒ Hadley Circulation ⇒ Monsoon Circulation H L Geostrophic equilibrium -1 = (f u = -ρ ∂ p/∂y) Heating) → Tropical Easterly L (“Trade Wind”) H H (cf. Mesosphere, Mars) Ekman flow (Zonal mom. eq:-f v = -αu) → ITCZ Seasonal/interannual variation of rainfall distribution (Matsumoto and Murakami, 1992) (Murakami and Matsumoto, 1994) intraseasonal variation (ISV) or Madden-Julian oscillation (MJO) or super cloud cluster (SCC) or Matsuno-Gill pattern observed during HARIMAU2011 IOP EQ L EQ L “Hot spot” (aligned or isolated) L EQ L (Recalculated from Gill, 1980) Diurnal cycle (clear land after midnight) Boreal winter monsoon (so‐called cold surge) ConvectionEarth produces and “Aqua-Planet” uneven earth MTSAT-IR (August 2010) “Eath Simulator”(by IFREE/JAMSTEC) (M.Sato et al., NICAM) Without lands almost zonal circulations (such as in Jupiter, in circum-Antarctic, in the stratosphere) Surface (wind-driven) & deep (thermohaline) Ocean Circulation (Bigg 2005, 2003; Brocker, 1996; Harvey & Oliver 2005) Indian Ocean - Indonesia - Pacific Ocean Dipole mode − La Niña AF IMC SA Dipole mode + La Niña AF IMC SA Dipole mode − El Niño AF IMC SA Dipole mode + El Niño AF IMC SA Jakarta (9 stations) in the dry season (ASO) Jakarta rainfall vs. -
Physical Climatology of Indonesian Maritime Continent: an Outline to Com- Prehend Observational Studies
ÔØ ÅÒÙ×Ö ÔØ Physical climatology of Indonesian maritime continent: An outline to com- prehend observational studies Manabu D. Yamanaka PII: S0169-8095(16)30067-9 DOI: doi: 10.1016/j.atmosres.2016.03.017 Reference: ATMOS 3649 To appear in: Atmospheric Research Received date: 7 September 2015 Revised date: 16 March 2016 Accepted date: 16 March 2016 Please cite this article as: Yamanaka, Manabu D., Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies, Atmospheric Re- search (2016), doi: 10.1016/j.atmosres.2016.03.017 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies 1,2 Manabu D. Yamanaka , 1Department of Coupled Ocean-Atmosphere-Land Processes Research (DCOP), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan; 2Department of Planetology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Kobe 657-8501, Japan Abstract The Indonesian maritime continent (IMC) is a miniature of our land-sea coexisting planet Earth. Firstly, without interior activity, the Earth becomes an even-surfaced “aqua-planet” with both atmosphere and ocean flowing almost zonally, and solar differential heating generates (global thermal tides and) Hadley‟s meridional circulations with the inter-tropical convergence zone (ITCZ) along the equator as observed actually over the open (Indian and Pacific) oceans on the both sides of the IMC. -
Women in Oceanography: a Decade Later Autobiographical Sketches
OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy Women in Oceanography: A Decade Later Autobiographical Sketches COPYRIGHT These pages have been published in Women in Oceanography, a supplement to Oceanography, Volume 27, Number 4. Oceanography is the quarterly journal of The Oceanography Society. Copyright 2014 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY List of Autobiographies Natsue Abe Carlota Escutia Elizabeth Kujawinski Anastasia Romanou Fatima Abrantes Marta Estrada Kara Lavender Law Leslie Rosenfeld Diane K. Adams Kelly Kenison Falkner Sonya Legg Carolyn Ruppel Miho Asada Kristina Faul Erika Lentz Ann D. Russell Amanda Babson Helena L. Filipsson Frances Lightsom Grace Saba Johanna Baehr Rana A. Fine Susan Lozier Claudia Schmid Barbara Balestra Jessica Fitzsimmons Allison Luengen Astrid Schnetzer Sibel Bargu Kathryn H. Ford Amy Maas Magali Schweizer Lisa Beal Eleanor Frajka-Williams Jennifer MacKinnon Tiziana Sgroi Janet M. Becker Marga García Maria Beatrice Magnani Evelyn B. Sherr Claudia Benitez-Nelson Carmen García-Comas Briony Mamo Amelia E. Shevenell Kelly Benoit-Bird Marisol García-Reyes Clara Manno Ingunn Skjelvan Heather Benway Joan M. Gardner Nancy Marcus Caroline Slomp Elisa Berdalet Silvia L. Garzoli Irina Marinov Deborah K. Smith Kim S. Bernard Deidre M. Gibson Marinna Martini Heidi M.