Using Maine's Renewable Resources Through Appropriate Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cooling Performance of a New Designed Trombe Wall Integrated with Solar Chimney, Water Spraying System, and Rectangular Thermal Fin Arrays: an Experimental Approach
International Journal of Design & Nature and Ecodynamics Vol. 15, No. 3, June, 2020, pp. 373-391 Journal homepage: http://iieta.org/journals/ijdne Cooling Performance of a New Designed Trombe Wall Integrated with Solar Chimney, Water Spraying System, and Rectangular Thermal Fin Arrays: An Experimental Approach Mehran Rabani1*, Vali Kalantar2, Mehrdad Rabani3, Ramin Rabani4 1 Department of Mechanical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran 2 Department of Mechanical Engineering, Faculty of Engineering, Yazd University, P.O. Box 741, Yazd, Iran 3 Department of Civil Engineering and Energy Technology, OsloMet – Oslo Metropolitan University, P.O. Box 0670, Oslo, Norway 4 University of Liège, Thermodynamics of Irreversible Phenomena, Allée du 6-Août, 19, P.O. Box 4000, Liège, Belgium Corresponding Author Email: [email protected] https://doi.org/10.18280/ijdne.150311 ABSTRACT Received: 5 February 2020 With the shortage of the energy and the improvement of people's environmental Accepted: 21 April 2020 requirements, it has received more and more attention to realize building energy efficiency through new energy sources. Trombe wall is a technology that uses solar Keywords: energy and wind energy to enhance indoor natural ventilation, thereby achieving indoor Trombe wall, solar chimney, water spraying temperature and humidity reduction and improving air quality. In this paper, the impact system, thermal fin of rectangular fin arrays on the cooling performance of a combined solar system, consisted of Trombe wall, Solar chimney, and water spraying system (WSS), was experimentally investigated. Different fin types including copper, aluminum and brass fins were considered. The experimental room measuring 3m×2m×3m was located in Yazd, Iran, characterized with hot and dry climate. -
Dli'igs a Parametric Study of Trombe Walls for Passive Cooling Of
AIVC 11443 ' ' .. .., """" · .. ' aUJ! Dli'IGS ELSEVIER Energy and Buildings 27 ( 1998) 37-43 A parametric study of Trombe walls for passive cooling of buildings Guohui Gan lnstiJuteof Building Technology, Department ofArchitecture and Building Technology, University of Nortingham, Universiry Park, Norringhan� UK Received 18 March 1997; accepted 2 April 1997 Abstract Air movement in a naturally-ventilated room can be induced through the use of a solar chimney or Trombe wall. In this work Trombe walls were studied for summer cooling of buildings. Ventilation rates resulting from natural cooling were predicted using the CFD (computational fluiddynamics) technique. The renoramlization group ( RNG) k-e turbulence model was used for the prediction of buoyant air flow and flow rate in enclosures with Trombe wall geometries. The CFD program was validated against experimental data fromthe literature and very good agreement between the prediction and measurement was achieved. The predicted ventilation rate increased with the wall temperature and heat gain. The effects of the distance between the wall and glazing, wall height, glazing type and wall insulation were also investigated. It was shown that in order to maximize the ventilation rate, the interior surface of a Trombe wall should be insulated for summer cooling. This would alsoprevent undesirable overheating of room air due to convection and radiation heat transfer from the wall. © 1998 Elsevier Science S.A. Keywords: Airmovement; Solar chimney; Trombe wall; Computational fluid dynamics technique; Renormalization group k-e turbulence model 1. Introduction Trombe wall or solar chimney. Passive solar heating has been widely studied but veryfew studies have been carriedout for Passive solar heating has increasingly been used interna passive solar cooling. -
XP Convection Heater
XP Convection Heater Heat Sync The Norseman™ XP Series convection heater is designed Length for freeze protection of control enclosures or other confined areas characterized by poor natural circulation and where explosive substances are present. As a precaution against excessive convector temperatures the unit comes standard with two thermostats. One thermostat is factory preset to limit the convector temperature to the maximum allowed for the temperature code classification. The second thermostat is also L nonadjustable and is set to control the space temperature Figure 18 Norseman™ XP between 0°C to 16°C (32°F to 60°F). (Refer to TABLE 13 and TABLE 14) Units are available from 50 watts to 600 watts. Applications 5.5” (139.7 mm) The heaters are designed for space heating where potentially explosive substances are or may be present. Typical applications include: • control cabinets and small enclosures • storage rooms for paints and cleaners 2.625” • grain elevators (66.7 mm) • flour mills 5.25” (133.35 mm) • spray booths • gas plants Figure 19 Norseman™ Figure 20 Norseman™ XP Side View XP1-1007T3B Shown • pump houses • marine and offshore Construction and Installation • oil platforms • cleaning and dyeing plants The Norseman™ XP explosion-proof convection heaters utilize unique copper free aluminum extruded ® Selection of Temperature Code convector and the patented x-Max terminal housing. Large convector surface area and high mass fins ensure Refer to the atmospheric condition table (TABLE 2) at the safe and efficient low temperature heat transfer to the beginning of this catalog for detailed selection data for the environment. Convectors are black anodized to resist temperature code. -
PCM Thermal Storage in Buildings: a State of Art
ARTICLE IN PRESS Renewable and Sustainable Energy Reviews 11 (2007) 1146–1166 www.elsevier.com/locate/rser PCM thermal storage in buildings: A state of art Vineet Veer Tyagi, D. Buddhià Thermal Energy Storage Laboratory, School of Energy & Environmental Studies, Faculty of Engineering Science, Devi Ahilya University, Indore 452017, India Received 13 August 2005; accepted 13 August 2005 Abstract A comprehensive review of various possible methods for heating and cooling in buildings are discussed in this paper. The thermal performance of various types of systems like PCM trombe wall, PCM wallboards, PCM shutters, PCM building blocks, air-based heating systems, floor heating, ceiling boards, etc., is presented in this paper. All systems have good potential for heating and cooling in building through phase change materials and also very beneficial to reduce the energy demand of the buildings. r 2005 Elsevier Ltd. All rights reserved. Keywords: Solar energy; Phase change materials; Heating; Cooling; Building Contents 1. Introduction . 1147 2. Passive building concepts . 1148 2.1. Heating . 1148 2.1.1. Increase of solar heat gain . 1148 2.1.2. Reduction of heat loss . 1148 2.1.3. Increase of internal heat gain . 1148 2.1.4. Heat storage . 1148 2.2. Cooling . 1148 2.2.1. Reduction of solar and convective heat input . 1148 2.2.2. Reduction of heat transmission . 1148 ÃCorresponding author. Tel.: +91 731 2460309; fax: +91 731 2467378. E-mail addresses: [email protected] (V.V. Tyagi), [email protected] (D. Buddhi). 1364-0321/$ - see front matter r 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.rser.2005.10.002 ARTICLE IN PRESS V.V. -
High Performance House Best Practices Guide
New York State Energy Research & Development Authority High Performance House Best Practices Guide Design Intelligence for Energy Performance in Single Family Homes TABLE OF CON T EN T S High Performance House 1.1 Initial Work................................... 3 1.2 Process.......................................... 4 1.3 Testing........................................... 4 1.3.1 Building Construction.............................. 4 1.3.2 Building Form and Siting......................... 5 1.3.3 Passive Sustainable Strategies................ 6 1.3.4 Active Sustainable Strategies................... 14 1.4 Conclusions................................... 14 1.4.1 Additional Recommendations.................. 15 2 1.1 INitiAL WORK 1.1 Initial Work ON cti Preliminary analysis looked purely at geometric implications on energy use. This theoretical investigation tested a variety of building forms and found two general guidelines that govern performance. Across all building manipulations, results showed that forms minimizing volume and RODU T maximizing southern exposure perform best. This lines with rational thought; increased volume N increases the volume of required conditioned space, while maximizing southern exposure allows I for greatest winter solar gains and daylighting. Following this study, energy analysis was given for three, previously conceived housing designs – “Slope House”, “Underground House” and “X House”. In all cases, formal design (siting, building form, orientation) were given, fixed parameters. This proved a challenge to the energy optimization of the house. For the “Slope House”, building volume opens to the west without the benefit of southern expo- sure on the open face. Passive solar gains were minimal, with excessive shading on south facing windows. The majority of glazing is to the north, which effectively cuts the building’s thermal resistance/storage without the offsetting solar gains received on southern exposures. -
Eb0726 1980.Pdf
Owen Osborne, Extension Energy Specialist b1!11~~~· Hi ugh J. Hansen, Extension Agricultural Engineer II I • i,. r ..... - ..... ..... ...- ... Oregon State University Fireplaces are aesthetically appealing to many peo ple. Because of nostalg'ia, or for reasons of intuitive common sense, homeowners have for years been demanding open fireplaces in their homes. Estimates indicate that over half the single family -homes in the U.S. have at least one fireplace and about one million new fireplaces are being installed annually. Home buyers express an overwhelming preference fo ~ built-in fireplaces and a brisk business ·is being done in pre fabricated units. Where wood fuel is plentiful and inex pensive, people are turning down central heating sys tem thermostats, stoking up fireplaces and learning Fireplace Heat Distribution and Efficiency through personal experience the pros and cons of Heat, by laws of physics, is transfenred by three heating with wood. methods-convection, radiation and conduction. Con A fireplace must generally be considered a luxury, vection is transferring of heat from one area to another since its primary value is enhancing the appearance by moving air. Radiation is movement of infrared and atmosphere of a room. Fireplaces are basically electromagnetic rays through air with virtually no low-efficiency home heating units (only about 10% warming of the air but warming of any objects when efficient) unless extensive modifications are made in the rays stri·ke them. Sunlight is an example of radi their design and/ or operation to reduce the amount of ant heat. Conduction is transfer of heat along a solid heat lost up the chimney. -
Heating Report
Heating Report 1475 - St Paul’s Church, Finchley Rev 3.0 / 18th March 2020 1475 – St Pauls Church Contents 1. Introduction .............................................................. 2 2. The Existing Building and Heating System ........... 3 3. Sustainability Aims ................................................. 11 4. Lean Energy Saving Options ................................. 12 5. Heating .................................................................... 16 6. Conclusion ............................................................... 25 7. Appendix A Further Heating Information ...........26 8. Appendix B – Selection of Electric Radiant Heaters ................................................................... 28 9. Appendix C – The Rejected Shortlisted Electric Radiant Heating Option ......................................... 32 Audit History Rev Date of Status Issued Checked Summary Issue By By of Changes 3.0 18/03/2020 FINAL MJS - Conclusion Updated 2.0 07/02/2020 FOR MJS - Conclusion COMMENT Added 1.0 15/01/2020 DRAFT MJS - © Skelly & Couch /1475-SAC-RPT-Heating Options Report /Rev 3.0 1 1475 – St Pauls Church 1. Introduction This report has been prepared by Skelly and Couch Ltd to inform St The sustainability goals are informed by Skelly & Couch’s knowledge of: The calculated heat losses were then used to calculate predicted energy Pauls Church, located on Long Lane, Finchley, of their heating and use and the results cross checked against actual gas consumption data • the minimum requirements set out in the current building insulation options. The church was built in 1886, reordered in 1979 and for the church to check accuracy of any assumptions. Average annual in 2008 an extension was built along the South Eastern face. The study regulations; energy usages have been calculated using ‘Degree Days’ data from considers the most efficient way to heat the original church building • the current UK construction industry best practice for CIBSE A Guide, for average temperatures in London (Heathrow) 1982- only. -
PROPANE CONSTRUCTION CONVECTION HEATER OWNER’S MANUAL for More Information, Visit
PROPANE CONSTRUCTION CONVECTION HEATER OWNER’S MANUAL For more information, visit www.desatech.com Variable 40-60-80,000 Btu/Hr Model OFF LO HI MED IMPORTANT: Read and understand this manual before assembling, starting, or servicing heater. Improper use of heater can cause serious injury. Keep this manual for future reference. GENERAL HAZARD WARNING: FAILURE TO COMPLY WITH THE PRECAUTIONS AND INSTRUCTIONS PROVIDED WITH THIS HEATER, CAN RESULT IN DEATH, SERIOUS BODILY INJURY AND PROPERTY LOSS OR DAMAGE FROM HAZARDS OF FIRE, EXPLOSION, BURN, ASPHYXIATION, CARBON MONOX- IDE POISONING, AND/OR ELECTRICAL SHOCK. ONLY PERSONS WHO CAN UNDERSTAND AND FOLLOW THE INSTRUCTIONS SHOULD USE OR SERVICE THIS HEATER. IF YOU NEED ASSISTANCE OR HEATER INFORMATION SUCH AS AN INSTRUCTIONS MANUAL, LABELS, ETC. CONTACT THE MANUFACTURER. TABLE OF CONTENTS SAFETY INFORMATION ............................................................ 2 STORAGE................................................................................... 5 PRODUCT IDENTIFICATION ..................................................... 3 MAINTENANCE .......................................................................... 6 UNPACKING ............................................................................... 3 SPECIFICATIONS ...................................................................... 6 THEORY OF OPERATION ......................................................... 3 REPLACEMENT PARTS ............................................................ 6 PROPANE SUPPLY ................................................................... -
Norseman 2014
Product Guide Forced Air Unit Heaters Convection Heaters Thermostats Thermostat Installation Kits Convection Heaters XB Explosion-Proof Natural Convection Heaters • Designed for heating spaces where explosive substances may be present, such as storage rooms for paints and cleaners, grain elevators, gas plants, and more. • Offers a state of the art design, featuring CCI Thermal's unique copper-free aluminum extruded convecter and patented x-Max® terminal housing. • Models offered in 50 to 5130W and from 120 to 600V. • CCSAUS approved for Class 1, Division 1 & 2, Groups A, B, C & D; Class II, Division 1 & 2, Groups E, F, G; Class III, Division 1 & 2 at a temperature code of T2D, T3B, T4A or T6. • CE/ATEX for II 2 G, Ex d IIC T3 or T4 Gb. XPA Explosion-Proof Natural Convection Panel Heaters • Designed specifically for freeze protection of control enclosures and other confined areas characterized by poor natural circulation where potentially explosive substances may be present, such as control cabinets, small enclosures and more. • Comes factory-wired to a explosion-proof junction box and includes a mounting bracket and hardware. • Models offered in 50 to 700 W and from 120 to 240V. • CCSAUS approved for Class 1, Divisions 1 & 2, Groups A, B, C & D at a temperature code of T2D, T3, T3B or T4. • Available in three different size extrusions. Forced Air Unit Heaters XGB Explosion-Proof Forced Air Unit Heaters • Designed for heating industrial spaces where potentially explosive substances may be present, such as water and sewage treatment plants, oil refineries, compressor stations and more. -
Performance Studies on Automated Solar Powered Air Cooler/ Air Heater
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 01, JANUARY 2020 ISSN 2277-8616 Performance Studies On Automated Solar Powered Air Cooler/ Air Heater Manish Nayak, Manjunath H N, Madhusudhan M Abstract: So many types of air cooler cum air heating system available in the market which is working on AC and DC power. Here we design a model which is automated using micro controller arduino nano and temperature sensor. Which is maintains the temperature automatic. In this paper we collect power from sun light and stored in lead acid battery during a day times and also we save the energy by using controller. Whenever we required this power is used to operate the air collar/air heating system. Evaporative cooling accomplished by direct contact of water with flowing air. When hot and dry air passed through the soaked pad temperature of air get diminished with increase of specific humidity, moisture content in a pad get evaporated by use of latent heat of evaporation from air and heating of air is done by convective heating. Required temperature conditions are programmed in microcontroller to accomplish the satisfying cooling/heating effect. Index Terms: DC fan, temperature sensor, water pump, solar panel and microcontroller, Coil. —————————— —————————— 1. INTRODUCTION are used to balance the room temperature and humidity to For all forms of energy the main source is solar power. The comfortable region. Cooling is done by adiabatic manner [5], existence of energy to environment is developing to promise and heating by forced convection method.it consists of fan that the standard life and healthy run of economy. -
Design, Optimisation and Construction of a Prototype for a Thermochromic Trombe Wall
DESIGN, OPTIMISATION AND CONSTRUCTION OF A PROTOTYPE FOR A THERMOCHROMIC TROMBE WALL Fernando Martín-Consuegra, Carmen Alonso, Gloria Pérez, Borja Frutos, Ana Guerrero, Ignacio Oteiza (1) (1) Instituto Eduardo Torroja de ciencias de la construcción, CSIC. Madrid (SPAIN) Abstract Most of the existing buildings in Spain lack of any thermal insulation in their envelope. They are on urgent need to be refurbished to reduce their energy consumption to meet compliance with current European Directives. The standard solution for the rehabilitation of facades incorporate thermal insulation materials to reduce heat transmission. The work presented here proposes an extension of the conventional approach: the installation of Trombe walls on sunny facades incorporating an outer layer of thermochromic mortar in the external surface. The Thermochromic Trombe Wall (TTW) is a new system optimizing the traditional Trombe wall with addition of the thermochromic coatings (TCC). This improves the energy performance of existing buildings by enhancing their solar gains. This paper describes the design and configuration of the new TTW system. While traditional solutions can be evaluated with a simple heat transfer equation, a complex energy model is needed to evaluate TTW. An energy simulation technique is used to determine parameters that influence thermal performance. The thermochromic mortar transition temperature is designed in such a way as to achieve maximum efficiency. The results obtained from the parametric study were used to determine aspects for the construction of a first prototype on a laboratory test cell. The information obtained from the experiment will be used for the calibration of the energy model that will establish the potential for the incorporation of the TTW on existing buildings. -
Constant-Heat-Flux Surfaces
hol29362_Ch07 11/3/2008 15:0 336 7-4 Free Convection from Vertical Planes and Cylinders Figure 7-6 Free-convection heat transfer from horizontal isothermal cylinders. 10000 1000 100 d Nu 10 1 0.1 10 −10 10 −7 10 −4 1 103 106 109 1012 GrdPr Constant-Heat-Flux Surfaces Extensive experiments have been reported in References 25, 26, and 39 for free convection from vertical and inclined surfaces to water under constant-heat-flux conditions. In such experiments, the results are presented in terms of a modified Grashof number, Gr∗: 4 ∗ gβq x Gr = Gr Nu = w [7-30] x x x kν2 where qw = q/A is the heat flux per unit area and is assumed constant over the entire plate surface area. The local heat-transfer coefficients were correlated by the following relation for the laminar range: = hx = ∗ 1/5 5 ∗ 11; = Nuxf 0.60(Grx Prf ) 10 < Grx Pr < 10 qw const [7-31] kf ∗ It is to be noted that the criterion for laminar flow expressed in terms of Grx is not the same as that expressed in terms of Grx. Boundary-layer transition was observed to begin between ∗ = × 12 × 13 × 13 14 Grx Pr 3 10 and 4 10 and to end between 2 10 and 10 . Fully developed ∗ = 14 ∗ turbulent flow was present by Grx Pr 10 , and the experiments were extended up to Grx Pr = 1016. For the turbulent region, the local heat-transfer coefficients are correlated with = ∗ 1/4 × 13 ∗ 16; = Nux 0.17(Grx Pr) 2 10 < Grx Pr < 10 qw const [7-32] # 101675 Cust: McGraw-Hill Au: Holman Pg.