Nth Term of Arithmetic Sequence Calculator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Untouchable Numbers and Related Problems
ON UNTOUCHABLE NUMBERS AND RELATED PROBLEMS CARL POMERANCE AND HEE-SUNG YANG Abstract. In 1973, Erd˝os proved that a positive proportion of numbers are untouchable, that is, not of the form σ(n) n, the sum of the proper divisors of n. We investigate the analogous question where σ is− replaced with the sum-of-unitary-divisors function σ∗ (which sums divisors d of n such that (d, n/d) = 1), thus solving a problem of te Riele from 1976. We also describe a fast algorithm for enumerating untouchable numbers and their kin. 1. Introduction If f(n) is an arithmetic function with nonnegative integral values it is interesting to con- sider Vf (x), the number of integers 0 m x for which f(n) = m has a solution. That is, one might consider the distribution≤ of the≤ range of f within the nonnegative integers. For some functions f(n) this is easy, such as the function f(n) = n, where Vf (x) = x , or 2 ⌊ ⌋ f(n) = n , where Vf (x) = √x . For f(n) = ϕ(n), Euler’s ϕ-function, it was proved by ⌊ ⌋ 1+o(1) Erd˝os [Erd35] in 1935 that Vϕ(x) = x/(log x) as x . Actually, the same is true for a number of multiplicative functions f, such as f = σ,→ the ∞ sum-of-divisors function, and f = σ∗, the sum-of-unitary-divisors function, where we say d is a unitary divisor of n if d n, | d > 0, and gcd(d,n/d) = 1. In fact, a more precise estimation of Vf (x) is known in these cases; see Ford [For98]. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
On Generalized Hypergeometric Equations and Mirror Maps
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 3153–3167 S 0002-9939(2014)12161-7 Article electronically published on May 28, 2014 ON GENERALIZED HYPERGEOMETRIC EQUATIONS AND MIRROR MAPS JULIEN ROQUES (Communicated by Matthew A. Papanikolas) Abstract. This paper deals with generalized hypergeometric differential equations of order n ≥ 3 having maximal unipotent monodromy at 0. We show that among these equations those leading to mirror maps with inte- gral Taylor coefficients at 0 (up to simple rescaling) have special parameters, namely R-partitioned parameters. This result yields the classification of all generalized hypergeometric differential equations of order n ≥ 3havingmax- imal unipotent monodromy at 0 such that the associated mirror map has the above integrality property. 1. Introduction n Let α =(α1,...,αn) be an element of (Q∩]0, 1[) for some integer n ≥ 3. We consider the generalized hypergeometric differential operator given by n n Lα = δ − z (δ + αk), k=1 d where δ = z dz . It has maximal unipotent monodromy at 0. Frobenius’ method yields a basis of solutions yα;1(z),...,yα;n(z)ofLαy(z) = 0 such that × (1) yα;1(z) ∈ C({z}) , × (2) yα;2(z) ∈ C({z})+C({z}) log(z), . n−2 k × n−1 (3) yα;n(z) ∈ C({z})log(z) + C({z}) log(z) , k=0 where C({z}) denotes the field of germs of meromorphic functions at 0 ∈ C.One can assume that yα;1 is the generalized hypergeometric series ∞ + (α) y (z):=F (z):= k zk ∈ C({z}), α;1 α k!n k=0 where the Pochhammer symbols (α)k := (α1)k ···(αn)k are defined by (αi)0 =1 ∗ and, for k ∈ N ,(αi)k = αi(αi +1)···(αi + k − 1). -
Integral Points in Arithmetic Progression on Y2=X(X2&N2)
Journal of Number Theory 80, 187208 (2000) Article ID jnth.1999.2430, available online at http:ÂÂwww.idealibrary.com on Integral Points in Arithmetic Progression on y2=x(x2&n2) A. Bremner Department of Mathematics, Arizona State University, Tempe, Arizona 85287 E-mail: bremnerÄasu.edu J. H. Silverman Department of Mathematics, Brown University, Providence, Rhode Island 02912 E-mail: jhsÄmath.brown.edu and N. Tzanakis Department of Mathematics, University of Crete, Iraklion, Greece E-mail: tzanakisÄitia.cc.uch.gr Communicated by A. Granville Received July 27, 1998 1. INTRODUCTION Let n1 be an integer, and let E be the elliptic curve E: y2=x(x2&n2). (1) In this paper we consider the problem of finding three integral points P1 , P2 , P3 whose x-coordinates xi=x(Pi) form an arithmetic progression with x1<x2<x3 . Let T1=(&n,0), T2=(0, 0), and T3=(n, 0) denote the two-torsion points of E. As is well known [Si1, Proposition X.6.1(a)], the full torsion subgroup of E(Q)isE(Q)tors=[O, T1 , T2 , T3]. One obvious solution to our problem is (P1 , P2 , P3)=(T1 , T2 , T3). It is natural to ask whether there are further obvious solutions, say of the form (T1 , Q, T2)or(T2 , T3 , Q$) or (T1 , T3 , Q"). (2) 187 0022-314XÂ00 35.00 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. 188 BREMNER, SILVERMAN, AND TZANAKIS This is equivalent to asking whether there exist integral points having x-coordinates equal to &nÂ2or2n or 3n, respectively. -
Arithmetic and Geometric Progressions
Arithmetic and geometric progressions mcTY-apgp-2009-1 This unit introduces sequences and series, and gives some simple examples of each. It also explores particular types of sequence known as arithmetic progressions (APs) and geometric progressions (GPs), and the corresponding series. In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. After reading this text, and/or viewing the video tutorial on this topic, you should be able to: • recognise the difference between a sequence and a series; • recognise an arithmetic progression; • find the n-th term of an arithmetic progression; • find the sum of an arithmetic series; • recognise a geometric progression; • find the n-th term of a geometric progression; • find the sum of a geometric series; • find the sum to infinity of a geometric series with common ratio r < 1. | | Contents 1. Sequences 2 2. Series 3 3. Arithmetic progressions 4 4. The sum of an arithmetic series 5 5. Geometric progressions 8 6. The sum of a geometric series 9 7. Convergence of geometric series 12 www.mathcentre.ac.uk 1 c mathcentre 2009 1. Sequences What is a sequence? It is a set of numbers which are written in some particular order. For example, take the numbers 1, 3, 5, 7, 9, .... Here, we seem to have a rule. We have a sequence of odd numbers. To put this another way, we start with the number 1, which is an odd number, and then each successive number is obtained by adding 2 to give the next odd number. -
Section 6-3 Arithmetic and Geometric Sequences
466 6 SEQUENCES, SERIES, AND PROBABILITY Section 6-3 Arithmetic and Geometric Sequences Arithmetic and Geometric Sequences nth-Term Formulas Sum Formulas for Finite Arithmetic Series Sum Formulas for Finite Geometric Series Sum Formula for Infinite Geometric Series For most sequences it is difficult to sum an arbitrary number of terms of the sequence without adding term by term. But particular types of sequences, arith- metic sequences and geometric sequences, have certain properties that lead to con- venient and useful formulas for the sums of the corresponding arithmetic series and geometric series. Arithmetic and Geometric Sequences The sequence 5, 7, 9, 11, 13,..., 5 ϩ 2(n Ϫ 1),..., where each term after the first is obtained by adding 2 to the preceding term, is an example of an arithmetic sequence. The sequence 5, 10, 20, 40, 80,..., 5 (2)nϪ1,..., where each term after the first is obtained by multiplying the preceding term by 2, is an example of a geometric sequence. ARITHMETIC SEQUENCE DEFINITION A sequence a , a , a ,..., a ,... 1 1 2 3 n is called an arithmetic sequence, or arithmetic progression, if there exists a constant d, called the common difference, such that Ϫ ϭ an anϪ1 d That is, ϭ ϩ Ͼ an anϪ1 d for every n 1 GEOMETRIC SEQUENCE DEFINITION A sequence a , a , a ,..., a ,... 2 1 2 3 n is called a geometric sequence, or geometric progression, if there exists a nonzero constant r, called the common ratio, such that 6-3 Arithmetic and Geometric Sequences 467 a n ϭ r DEFINITION anϪ1 2 That is, continued ϭ Ͼ an ranϪ1 for every n 1 Explore/Discuss (A) Graph the arithmetic sequence 5, 7, 9, ... -
Rapid Arithmetic
RAPID ARITHMETIC QUICK AND SPE CIAL METHO DS IN ARITH METICAL CALCULATION TO GETHE R WITH A CO LLE CTION OF PUZZLES AND CURI OSITIES OF NUMBERS ’ D D . T . O CONOR SLOAN E , PH . LL . “ ’ " “ A or o Anda o Ele ri i ta da rd le i a Di ion uth f mfic f ct c ty, S n E ctr c l ct " a Eleme a a i s r n r Elec r a l C lcul on etc . etc y, tp y t ic t , , . NE W Y ORK D VA N NOS D O M N . TRAN C PA Y E mu? WAuw Sum 5 PRINTED IN THE UNITED STATES OF AMERICA which receive little c n in ne or but s a t treatment text books . If o o o f doin i e meth d g an operat on is giv n , it is considered n e ough. But it is certainly interesting to know that there e o f a t are a doz n or more methods adding, th there are a of number of ways applying the other three primary rules , and to find that it is quite within the reach of anyo ne to io add up two columns simultaneously . The multiplicat n table for some reason stops abruptly at twelve times ; it is not to a on or hard c rry it to at least towards twenty times . n e n o too Taking up the questio of xpone ts , it is not g ing far to assert that many college graduates do not under i a nd stand the meaning o a fractional exponent , as few can tell why any number great or small raised to the zero power is equa l to one when it seems a s if it ought to be equal to zero . -
Variant of a Theorem of Erdős on The
MATHEMATICS OF COMPUTATION Volume 83, Number 288, July 2014, Pages 1903–1913 S 0025-5718(2013)02775-5 Article electronically published on October 29, 2013 VARIANT OF A THEOREM OF ERDOS˝ ON THE SUM-OF-PROPER-DIVISORS FUNCTION CARL POMERANCE AND HEE-SUNG YANG Abstract. In 1973, Erd˝os proved that a positive proportion of numbers are not of the form σ(n) − n, the sum of the proper divisors of n.Weprovethe analogous result where σ is replaced with the sum-of-unitary-divisors function σ∗ (which sums divisors d of n such that (d, n/d) = 1), thus solving a problem of te Riele from 1976. We also describe a fast algorithm for enumerating numbers not in the form σ(n) − n, σ∗(n) − n,andn − ϕ(n), where ϕ is Euler’s function. 1. Introduction If f(n) is an arithmetic function with nonnegative integral values it is interesting to consider Vf (x), the number of integers 0 ≤ m ≤ x for which f(n)=m has a solution. That is, one might consider the distribution of the image of f within the nonnegative integers. For some functions f(n) this is easy, such√ as the function 2 f(n)=n,whereVf (x)=x,orf(n)=n ,whereVf (x)= x.Forf(n)= ϕ(n), Euler’s ϕ-function, it was proved by Erd˝os [Erd35] in 1935 that Vϕ(x)= x/(log x)1+o(1) as x →∞. Actually, the same is true for a number of multiplicative functions f,suchasf = σ, the sum-of-divisors function, and f = σ∗,thesum-of- unitary-divisors function, where we say d is a unitary divisor of n if d | n, d>0, and gcd(d, n/d) = 1. -
Sines and Cosines of Angles in Arithmetic Progression
VOL. 82, NO. 5, DECEMBER 2009 371 Sines and Cosines of Angles in Arithmetic Progression MICHAEL P. KNAPP Loyola University Maryland Baltimore, MD 21210-2699 [email protected] doi:10.4169/002557009X478436 In a recent Math Bite in this MAGAZINE [2], Judy Holdener gives a physical argument for the relations N 2πk N 2πk cos = 0and sin = 0, k=1 N k=1 N and comments that “It seems that one must enter the realm of complex numbers to prove this result.” In fact, these relations follow from more general formulas, which can be proved without using complex numbers. We state these formulas as a theorem. THEOREM. If a, d ∈ R,d= 0, and n is a positive integer, then − n 1 sin(nd/2) (n − 1)d (a + kd) = a + sin ( / ) sin k=0 sin d 2 2 and − n 1 sin(nd/2) (n − 1)d (a + kd) = a + . cos ( / ) cos k=0 sin d 2 2 We first encountered these formulas, and also the proof given below, in the journal Arbelos, edited (and we believe almost entirely written) by Samuel Greitzer. This jour- nal was intended to be read by talented high school students, and was published from 1982 to 1987. It appears to be somewhat difficult to obtain copies of this journal, as only a small fraction of libraries seem to hold them. Before proving the theorem, we point out that, though interesting in isolation, these ( ) = 1 + formulas are more than mere curiosities. For example, the function Dm t 2 m ( ) k=1 cos kt is well known in the study of Fourier series [3] as the Dirichlet kernel. -
Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions
1 2 Journal of Integer Sequences, Vol. 20 (2017), 3 Article 17.3.4 47 6 23 11 Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions Maxie D. Schmidt University of Washington Department of Mathematics Padelford Hall Seattle, WA 98195 USA [email protected] Abstract The article studies a class of generalized factorial functions and symbolic product se- quences through Jacobi-type continued fractions (J-fractions) that formally enumerate the typically divergent ordinary generating functions of these sequences. The rational convergents of these generalized J-fractions provide formal power series approximations to the ordinary generating functions that enumerate many specific classes of factorial- related integer product sequences. The article also provides applications to a number of specific factorial sum and product identities, new integer congruence relations sat- isfied by generalized factorial-related product sequences, the Stirling numbers of the first kind, and the r-order harmonic numbers, as well as new generating functions for the sequences of binomials, mp 1, among several other notable motivating examples − given as applications of the new results proved in the article. 1 Notation and other conventions in the article 1.1 Notation and special sequences Most of the conventions in the article are consistent with the notation employed within the Concrete Mathematics reference, and the conventions defined in the introduction to the first 1 article [20]. These conventions include the following particular notational variants: ◮ Extraction of formal power series coefficients. The special notation for formal power series coefficient extraction, [zn] f zk : f ; k k 7→ n ◮ Iverson’s convention. -
The Project Gutenberg Ebook #40624: a Scrap-Book Of
The Project Gutenberg EBook of A Scrap-Book of Elementary Mathematics, by William F. White This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: A Scrap-Book of Elementary Mathematics Notes, Recreations, Essays Author: William F. White Release Date: August 30, 2012 [EBook #40624] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK A SCRAP-BOOK *** Produced by Andrew D. Hwang, Joshua Hutchinson, and the Online Distributed Proofreading Team at http://www.pgdp.net (This file was produced from images from the Cornell University Library: Historical Mathematics Monographs collection.) Transcriber’s Note Minor typographical corrections, presentational changes, and no- tational modernizations have been made without comment. In- ternal references to page numbers may be off by one. All changes are detailed in the LATEX source file, which may be downloaded from www.gutenberg.org/ebooks/40624. This PDF file is optimized for screen viewing, but may easily be recompiled for printing. Please consult the preamble of the LATEX source file for instructions. NUMERALS OR COUNTERS? From the Margarita Philosophica. (See page 48.) A Scrap-Book of Elementary Mathematics Notes, Recreations, Essays By William F. White, Ph.D. State Normal School, New Paltz, New York Chicago The Open Court Publishing Company London Agents Kegan Paul, Trench, Trübner & Co., Ltd. 1908 Copyright by The Open Court Publishing Co. -
MATHEMATICAL INDUCTION SEQUENCES and SERIES
MISS MATHEMATICAL INDUCTION SEQUENCES and SERIES John J O'Connor 2009/10 Contents This booklet contains eleven lectures on the topics: Mathematical Induction 2 Sequences 9 Series 13 Power Series 22 Taylor Series 24 Summary 29 Mathematician's pictures 30 Exercises on these topics are on the following pages: Mathematical Induction 8 Sequences 13 Series 21 Power Series 24 Taylor Series 28 Solutions to the exercises in this booklet are available at the Web-site: www-history.mcs.st-andrews.ac.uk/~john/MISS_solns/ 1 Mathematical induction This is a method of "pulling oneself up by one's bootstraps" and is regarded with suspicion by non-mathematicians. Example Suppose we want to sum an Arithmetic Progression: 1+ 2 + 3 +...+ n = 1 n(n +1). 2 Engineers' induction € Check it for (say) the first few values and then for one larger value — if it works for those it's bound to be OK. Mathematicians are scornful of an argument like this — though notice that if it fails for some value there is no point in going any further. Doing it more carefully: We define a sequence of "propositions" P(1), P(2), ... where P(n) is "1+ 2 + 3 +...+ n = 1 n(n +1)" 2 First we'll prove P(1); this is called "anchoring the induction". Then we will prove that if P(k) is true for some value of k, then so is P(k + 1) ; this is€ c alled "the inductive step". Proof of the method If P(1) is OK, then we can use this to deduce that P(2) is true and then use this to show that P(3) is true and so on.