<<

MONITORING PROTOCOL FOR BEDS

Case study - The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP/MAP-RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of UNEP/MAP-RAC/SPA.

Published by: RAC/SPA

Copyright: © 2015 - RAC/SPA

Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder.

For bibliographic purposes, this volume may be cited as: RAC/SPA - UNEP/MAP, 2014. Monitoring protocol for Posidonia oceanica beds. By Guala I, Nikolic V, Ivesa L, Di Carlo G, Rajkovic Z, Rodic P, J elic K. Ed. RAC/SPA - MedMPAnet Project, Tunis. 37 pages + annexes.

Layout: Zine El Abidine MAHJOUB and Asma KHERIJI.

Cover photo credit: Petar KRUZIC. Photos credits: State Institute for Nature Protection, Ivan GUALA, Vedran NIKOLIC, Mosor PRVAN and Renaud DUPUY DE LA GRANDRIVE.

This document has been elaborated within the framework of the Regional Project for the Development of a Mediterranean Marine and Coastal Protected Areas (MPAs) Network through the boosting of Mediterranean MPAs Creation and Management (MedMPAnet Project).

The MedMPAnet Project is implemented in the framework of the UNEP/MAP-GEF MedPartnership, with the financial support of EC, AECID and FFEM. MONITORING PROTOCOL FOR POSIDONIA OCEANICA BEDS

Regional Project for the Development of a Mediterranean Marine and Coastal Protected Areas (MPAs) Network through the boosting of MPA creation and management 2 MONITORING PROTOCOL FOR POSIDONIA OCEANICA BEDS MoU Nº01/MedMPAnet/2013 Reference : ofthestudy Katja Petra Željka RAJKOVIĆ, MedMPAnet Pilot Project Croatia -National Technical Coordinator Giuseppe Ljiljana Vedran responsibleScientists andexperts ofthestudy: Ivan Chief scientist: : responsible ofthestudy andexperts Scientists Atef LIMAM, MedMPAnet Project, RAC/SPA Souha ELASMI,MedMPAnet Project, RAC/SPA : ofthestudy In charge 1080 Tunis- TunisiaCedex B.P. 337 Boulevard duLeader Yasser Arafat Regional Activity Centre forSpecially Protected Areas (RAC/SPA) Study required andfinanced by: GUALA RODIĆ JELIĆ NIKOLIĆ IVEŠA DI CARLO , State Institute forNature Protection , Fondazione IMC-International Marine Centre (Italy) , State Institute forNature Protection , Rudjer Boskovic Insitute -CenterforMarine Research , Institute ofOceanography andFisheries , WWF MedPO (Italy) (Croatia) (Croatia) (Croatia) (Croatia) (Croatia) features ateachsamplingstation Annex II.Field sheetfordetectingthepercent coverage of each samplingstation Annex I.Field sheetfordetectingthenumberofleafshoots 2. Monitoring programme for 1. Monitoring schemefor CONTENT ...... Posidonia oceanica Posidonia oceanica ...... beds beds ...... Posidonia oceanica Posidonia oceanica , substratesandotherspecies andadditionalinformation at 41 39 13 5

MONITORING PROTOCOL FOR POSIDONIA OCEANICA BEDS 3 4 Mosor PRVAN © 1. • • *1120 •

Author(s) Meadows playseveral ecologicalroles ofrelevance for al. (Benacchio, 1938;Zavodnik N.,1983;Zavodnik they have beenrecorded inseveral areas inthenorth and south Adriatic (Gamulin-Brida, 1967); however general, Croatian coast (Bakran-Petricioli, 2007; 2011). In Posidonia oceanica density. al. Mediterranean (Boudouresque regression has been documented in many areas of the Duarte, 2008;Marbà &Duarte, 2010)andmeadow al. Cancemi (Zavodnik &Jaklin, 1990;Francour environment causedby anthropogenic disturbances Posidonia oceanica et al. only typical species of the habitat type 1120 (Giaccone 2011); & Arvela, complex trophic net(Boudouresque highlevelsseveral ofbiodiversity species,support anda areasassociations; theyare for spawningandnursery Mediterranean coastalecosystemsandincludedistinct and rhizomes (Buia growth ratesanddifferent persistencyofleafshoots their structure andfunctionsare affected by different morphology ofsubstrate,exposition,hydrodynamics); according toenvironmental conditions(nature and developed withdifferent morphologies(ecomorphosis) al. coralligenous formations)upto40mdepth(Buia types ofsubstrates(coarseandmediumsands,rocks, habitat type 1120Posidonia beds) able to cover several P staff andlogistics. together takingintoaccountthepotentiallyinvolved Very briefdescriptionofbasiccharacteristics List of similar habitat types that can be grouped MONITORING SCHEMEFOR BEDS osidonia oceanica , 2011)asreduction inthemeadow cover andshoot , 2004;Boudouresque , 2004;Relini &Giaccone, 2009).Meadows are , 2005). Description andecology English name(s)+code(s) Group types ofhabitat , 1994;Evans 2011). &Arvela, Posidonia oceanica Posidonia et al. , 2003; Borum , 2003;Borum issensitive tochangesinthemarine bedsare betterdeveloped inmid forms extensive meadows (priority Posidonia oceanica meadows are commonalongthe et al. beds(priorityhabitattype) , 2004; VV.AA., 2008). et al. , 2006;Díaz-Almela & et al. et al. , 2006;Di Carloe , 2004;Milazzo et al. isconsidered the , 2006;Evans et al. , 1999; et et et t

• •

POSIDONIA OCEANICA The basichabitatmapis– Croatian habitatmap Schultz, 2010),monitoringwithinmarineprotected studies (Zavodnik statusisavailable fromaspects andconservation local 2007). Partial andpatchyinformationonecological should beconsidered (Bakran-Petricioli, aspreliminary (Zavodnik by subsequentfieldsurveys completely supported the spatialdistributionofhabitattypeare not Petricioli the spatialmodelling(Antonić beds inCroatia ismainlybasedontheapplicationof Existing information onthedistributionof distribution andstatusare 2008). poor(Kružić, investigated intheAdriatic Sea anddataon their P the year ~ 2000 is infactmore anindicative mapofmarinehabitats. produced in 2004 (OIKON for MENP, 2004.) which areas mappedinmore detail. stored. At present there are onlyseveral smaller marine different research andmappingofmarinehabitatsis simpler GIS databases on habitats where data from be finishedin2014. Until thenSINPisholdingseveral ofNaturea part Protection Information System, will current databases.Habitat database(CroHabitats), as conditions,habitatqualityorpressuressurvey isin or informationaboutstatus).No informationabout reports thatconcernstrictlymarine habitats(map few should be transferred into common database. There are et al. programmes (e.g. Water Framework Directive, Nikolić other activitiescarriedoutwithinmonitoring areas (Guala Description of activities undertaken inCroatiaDescription ofactivitiesundertaken after Existing dataare more orlessininadequateformatand • • • More detailedmarinehabitatmapsare few: osidonia oceanica

otok Island (SUNCE) eastern Istria (SHAPE project) South, SUNCE) parks Islands and Telascica (MedPAN marine habitat map of the northern part of Dugi part marine habitat map ofthenorthern map ofmarinecoastalhabitats ofsouthernand marine habitatmapsofnationalpark , nature Current surveillance Existing data , 2009;Mascarò et al. et al. et al. , 2006);however findingsofmodelling , 2005,forSenj archipelago) and they , 2012;Di Carlo meadows have been scarcely et al. et al. , 2005;Bakran-Petricioli & , 2012). et al. et al. , 2005;Bakran- , 2013)and Posidonia

MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS 5 6 MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS • O

Component of the conservation status Component oftheconservation Potential application: identification ofmonitoringstationswithinsites; detail andreliability, theycanalsobeusedforapreliminary list ofmonitoringsitesand,dependingonthedegree of earliest endof2016-beginning2017). through project withinStructural at funds(starting D Existing maps could be used for adapting/expanding the Existing maps couldbeusedforadapting/expandingthe • • • •

etailed mappingofmarinehabitatsisplanned ther databases: (still onlyinNPMljetdatabase) network in Sibenik-Knin County (PMF) of part Island (COAST project) Split- County(SUNCE,BIUS,IOR) habitat mapofPosidonia meadows inNPMljet ofsitesEcological marine habitatmapofthepart marine habitatmapsofBisevo Island andsoutheastern oftheislandsin marine habitatmapsofthepart Range Area Way ofsurveillance Mapping Mapping

• • •

Scheme of surveillance Scheme of table below: pressures. ofthebasin,duetoextensive humanimpactsand parts regression andMiddle bothinthenorthern Eastern P suggested intheprotocol). site (i.e.ifdataare collectedwiththesamecriteria case aproper designcouldbeappliedtoeachspecific statusofthemeadowsevolution of theconservation in suggested intheprotocol). site (i.e.ifdataare collectedwiththesamecriteria case aproper designcouldbeappliedtoeachspecific statusofthemeadowsevolution of theconservation in Monitoring schemeisframedby thedatafilled in the Existing data could be usedtoassess the temporal Existing data could be usedtoassess the temporal osidonia oceanica Distribution Distribution datawillbeprovided aspresence beginning of2017. through theStructural fundsendof2016– Detailed marinehabitatmappingisplanned RAC/SPA (2011). 1 to25m²assuggestedby UNEP/MAP- area minimum mappedsurface rangingfrom after mappinginhigherresolution, e.g.with change over timewouldonlybepossible of thearea covered by habitattypeandits (Evans 2011).Areal assessment &Arvela, opinionwithnoorminimalsampling expert some extrapolationand/ormodellingoron datawith be estimatedonthebasisofpartial area covered by thehabitattype1120 could (inkm thesurface from complete surveys, Because of thelackofprecise mapscoming polygons (Evans 2011). &Arvela, of 40kmbetween distributioncellsor considering therecommended gapdistance Discontinuity intherangewillbecalculated range (Evans 2011). &Arvela, over 30mdepth)shouldbeexcluded tothe (e.g. for Major discontinuitiesduetonaturalfactors namely therange(Evans 2011). &Arvela, the overall area in which a habitat type occurs, adjacent cellswilldefinetheouter limitsof on a10xkmgrid;polygonscreated by meadows are inconsiderable P. oceanica Complementary notes Complementary , terrestrial areas andareas 2 ) Group willbeledby SINP. • • • • •

Component of the conservation status Component oftheconservation Working Group assure input ofdataintodatabase organize allworks andmeetings prepare agreements withcooperatinginstitutions prepare agreements forallpaidcontractors nominate monitoring coordinator and members of the The SINPcoordinator hasthefollowing tasks: SINP willcoordinate nationalmonitoringactivities. F Logistics Structure andfunctions uture Posidonia (or Marine habitats) Working Future prospects Monitoring -research onlocalities- Monitoring -research onlocalities- Way ofsurveillance scientific research scientific research • • • • Etc. - - when necessary initiate revision ofmonitoringprogramme/scheme check thequalityofmonitoringresults andcoordinatesurvey monitoringactivities

Rudjer Boskovic Institute, Centre for Marine Institute for Oceanography and Fisheries, Split: national monitoringactivities Research, Rovinj: scientificinstitution-advisorof videographic/monitoring methods of monitoring under MSFD-advisor for testing monitoring activitiesunder WFD andpreparation scientific institution responsible ofnational considering thefuture trends andlikely Future prospects shouldbeevaluated by status. conservation videography asadditionalforassessingthe meadows; research totesttheeffectiveness of the potentialinfluenceofalienspecieson Croatian meadows; additionalresearch toassess classification methodsusedare suitablefor research inorder toclarifyifdescriptorsand monitoring shouldbecombinedwithscientific to budgetavailability, baselinedatafrom habitat datathroughout thetime.According possible todescribeby comparingchangesin 2011); changesinmeadow conditionswillbe of themeadows (UNEP/MAP-RAC/SPA, status immediate informationonconservation descriptors are suggestedtobeusedget for Croatia, standard thresholds offollowing in theMediterranean. Asthere isnobaseline in nearlyall SCUBA-based methodsliketheonesused and depth,shouldbemonitored withdirect including cover, shootdensity, lower limitstype Fundamental descriptorsof of managementmeasures. suggested toassessandmaximize theeffects measures. BACIconservation studiesare also disturbances andidentify prevention and period, toevaluate theeffectsofanthropogenic impacts occurringwithinadefinedtime et al. Benedetti-Cecchi Control/Impact, Underwood, 1992;1993; possible the BACI approach (Before/After- influence) (Evans 2011). &Arvela, When policies (positive influence) and conservation dependent onpressures andthreats (negative and functions; future trends of habitats are future statusof range,area andstructure , 2008)isrecommended toidentify Complementary notes Complementary Posidonia et al. monitoring programs monitoringprograms , 2004; Montefalcone P. oceanica status, status,

MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS 7 8 MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS Regional coordination ofthefieldwork Expert coordinationExpert (membershipin - - Communication withITexperts

Preparation ofmethodologies University ofZadar, Maritime Department: University ofZagreb, Faculty ofScience, scientific institution-advisorfortesting methods - advisor for testingvideographic/monitoring ofBiology:Department scientificinstitution Expert examination Expert Data evaluation Kind ofworkKind Field work WG) Lastovo Islands) &coastalCountiesstaff staff (Brijuni, Telascica, , , (Sunce (Split), 20000miles()), MPA - LatinkaJanjanin (Istria County), + experiencedmarinefieldbiologists - from PMF, IOR,IRB,UNIZD+SINP Members oftheproject Posidonia team - - Possible several regional coordinators from PMF, IOR,IRB,UNIZD+SINP Members oftheproject Posidonia team- from PMF, IOR,IRB,UNIZD+SINP Members oftheproject Posidonia team- from PMF, IOR,IRB,UNIZD+SINP Members oftheproject Posidonia team- On regional level –regional coordinators Coralligenous WorkingGroup from MembersSINP +support of On nationallevel: support) + trainedSCUBAdivers (fortechnical (PI Priroda) Members oftheproject Posidonia team- counties staff(PI Priroda) Mljet, Lastovo Islands) &coastal (Sunce (Split), 20000miles(Zadar)), Latinka Janjanin (Istria County), + experiencedmarinefieldbiologists- from MPA MPA Current specialists&institutions PMF staff (Brijuni, Telascica, Kornati, , IOR, IRB SINP , UNIZD +SINP

capacities issummarized inthetablebelow: Current ofbothavailable overview andneeded videographic/monitoring methods NGO Roles ofparticipants NGO s s

of localdatabases Biologist experiencedinGIS,withknowledge with goodknowledge oflocalcapacities Marine biologistexperienced incoordination, the stateofhealthmeadows speciesandmethodologyforassessing Marine biologistswith goodknowledge of experienced infielddatacollection the stateofhealthmeadows, and plant speciesandmethodologyforassessing Marine biologistswith goodknowledge of the stateofhealthmeadows plant speciesandmethodologyforassessing Marine biologistswithgoodknowledge of scientificwork atsea supporting Seaman experiencedinoperatingboatsand scientific data(alsostudentsandinterns); SCUBA experienced infielddatacollection; the stateofhealthmeadows, and plant speciesandmethodologyforassessing Marine biologistswithgoodknowledge of experienced infielddatacollection the stateofhealthmeadows, and plant speciesandmethodologyforassessing Marine biologistswithgoodknowledge of divers trained incollectionof Specialisation needed

Preparation of methodologies & examination • Theoretical coordination(Working Group)

capability todistinguishsubstratetypesanddeadmatte traditional SCUBA-basedprotocol (especially, its oceanica statusof the monitoringofconservation devoted to verify the effectiveness of videography for A Clarification ifapilotproject isneeded. TOTAL EXCLUDING PILOT TOTAL EXCLUDING PILOT Monitoring onplots–optionA Monitoring onplots–optionB ccording to budget availability, pilot projects could be Coordination ofthefieldwork N ote: Collection ofexistingdata Pilot project PROJECT (optionB) PROJECT (optionA) Option A understandsthatallcostsare covered by fieldworkers. Fees forfieldworkers inthatcaseincludefee,perdiem,accommodation,travel and rentingboat. TOTAL (optionB) TOTAL (optionA) Scientific research meadows anditsconsistencywiththedirect, Data evaluation Pilot project* Activity Option B understandsthatrenting aspeedboatorsailingispaidseparatelyfrom thefeesforfieldworkers. Posidonia Costs per6year period € 4,260.00 € 33,000.00 € 261,360.00 € 297,000.00 € 4,260.00 € 33,000.00 € 26,730.00 € 4,500.00 € 5,000.00 € 339,110.00 € 374,750.00 € 372,110.00 €

407,750.00

in thetablebelow: capacities andpreparation ofmonitoringprogrammes of thehabitattype(s)givingaframeworkforplanning General estimation ofcostsformonitoringprogrammes with sediment,leaflitterordensecanopy). in different conditions,whenever seabediscovered Funding * Pilot project couldbeexcluded, asitisnotobligatory. Trend infollowing periods decreasing decreasing decreasing increasing increasing stable stable stable stable

MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS 9 10 MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS 391-400. Port-Cros National Park Mediterranean (north-western Sea). Marine Aquatic Conservation: andFreshwater Ecosystems 9: FRANCOUR P., GANTEAUME M.,1999Effectsof boat anchoringin A.,POULAIN Guidelines fortheperiod2007-2012.European Topic Centre onBiological Diversity. 92pp. +appendices. EVANS D.,ARVELA 17oftheHabitat M.,2011.AssessmentandreportingDirective. underarticle Notes Explanatory & oceanicae E.,DUARTEDÍAZ-ALMELA C.M.,2008.Management ofNatura 2000 habitats. 1120*Posidonia beds( effects ofdifferent magnitude. Marine Ecology Progress Series423,39-45. F.,DI CARLOL.,BADALAMENTI G.,BENEDETTI-CECCHI 2011.Response of integrated management.Published by Faculty ofNatural SciencesoftheUniversity of Tirana. 596-605. Conference on Marine and Coastal Ecosystems (MarCoastEcos2012): Increasing knowledge and for a sustainable conservation oceanica DI CARLO G.,JAKLZ.,ŠIJANM.,PRVAN M.,ŽULJEVIC A.,PECAR O.,GUALAI.,2013.Astandardised Posidonia oceanica CANCEMI G.,DEFALCO G.,PERGENT G.,2003.Effectsoforganicmatterinputfrom afishfarmingfacilityon BUIA M.C.,GAMBIDAPPIANO M.,2004. systems.Biologia Marina Mediterranea 11(suppl.1),133-183. Posidonia oceanica PERGENT G., PERGENT-MARTINI C., RUITTON S., TUNESI L. 2006. Préservation des herbiers à et conservation BOUDOURESQUE C.F., BERNARD G., BONHOMMEP., CHARBONNELE.,DIVIACCO G.,MEINESZ A., 89143-21-3. Available at:http://www.seagrasses.org. monitoring and management. EU project Monitoring and Management of European Seagrass Beds (Publ). 88 pp. ISBN: 87- BORUM J.,DUARTE C.M.,KRAUSE-JENSEN D.,GREVE TM (eds.),2004.European :anintroduction to 479. of anthropogenic impactofassemblagesandcoastalmarineenvironments. Biologia Marina Mediterranea 11(suppl.1),457- L.,AIROLDIBENEDETTI-CECCHI S., L.,FRASCHETTI TERLIZZI A.,2004.Experimental methods fortheassessment BENACCHIO sistematicheebiologichesulleZosteraceae N.,1938.Osservazioni dell’Alto Adriatico. Thalassia3(3),3-41. December 2010),28-29. the Croatian Adriatic. Proceedings ofthe4 BAKRAN-PETRICIOLI T., SCHULTZ andleaflepidochronology S.,2010Biometry oftheseagrass 96-105. DUJMOVIĆ S.,2006.Modelling spatialdistributionoftheCroatian marinebenthichabitats.Ecological Modelling 191, BAKRAN-PETRICIOLI T., ANTONIĆ O.,BUKOVEC D.,PETRICIOLI D.,JANEKOVIĆ J.,KUŠAN I.,KRIŽAN V., Državni zavod zazaštituprirode, Zagreb (ISBN978-953-7169-84-8),184pp. BAKRAN-PETRICIOLI T., 2011.Priručnik zaodređivanje prema Direktivi morskihstaništauHrvatskoj ostaništimaEU. prirode, Zagreb (ISBN978-953-7169-31-2),56pp. +appendix. BAKRAN-PETRICIOLI T., 2007.Priručnik zainventarizaciju ipraćenjestanjamorskihstaništa.Državni zavod zazaštitu www.drypis.info (ISSN1845-4976). PETERNEL H.,PETRICIOLI D., TKALČEC S.,2005.Mapping habitatsoftheRepublic ofCroatia (2000-2004),vol. 1, MATOČEC S., PERNAR R., HEĆIMOVIĆ Ž., JANEKOVIĆ I., GRGURIĆ Z., HATIĆ D., MAJOR Z., MRVOŠ D., ANTONIĆ O.,KUŠAN V., S.D.,BUKOVEC JELASKA J.,BAKRAN-PETRICIOLI D.,KRIŽAN T., GOTTSTEIN- monitoringprotocol forCroatian Marine Protected Areas: first year monitoring results. Proceedings ofthe International ). European Commission. References . RAMOGEpub., 1-202. meadow. EstuarineCoastalandShelf Science.56:961-968. th Mediterranean Symposium onMarine Vegetation (Yasmine-Hammamet, 2-4 Posidonia oceanica Posidonia oceanica Posidonia oceanica growth todredging seagrassbedsin Posidonion Posidonia in Congrès delaCommissionInternationale pourl’Exploration Scinetifiquedelamer Méditerranée, 15. ZAVODNIK N., JAKLIN A., 1990. Long-Term Changes in the Northern Adriatic Marine Phanerogam du Beds.32e Rapport ZAVODNIK N.,1983.Prilog poznavanju flore morskihalgaicvjetnicazapadneobale Istre. Biosistematika, 9(1):1-13. Archipelago (North , Croatia). Acta Adriatica, 46(2):3-68. ZAVODNIK D.,PALLAORO A.,JAKLINKOVAČIĆ M.,ARKO-PIJEVAC oftheSenj M.,2005.Abenthossurvey Mare. ISBN8888192360.159pp. VV.AA., 2008. Praterie afanerogame marine.Quaderni habitat,19.Ministero dell’Ambiente edella Tutela del Territorio edel Publ., UNEP(DEPI)/MED WG 359/9.1-63. Magnoliophyta intheMediterranean. Tenth Meeting ofFocal Points forSPAs Marseilles, France, 17-20May 2011,RAC/SPA UNEP/MAP-RAC/SPA, 2011.Draft Guidelines fortheStandardization ofMapping andMonitoring Methods ofMarine in avariable world.Australian Journal ofEcology 18,99-116. UNDERWOOD A.J.,1993.Themechanismsofspatially replicated samplingprogrammes todetectenvironmental impacts world. Journal ofExperimental Marine Biology andEcology 161,145-178. UNDERWOOD A.J.,1992.Beyond BACI: thedetectionofenvironmental impactsonpopulationsinthereal, butvariable, Italy. Identification sheets. Biologia Marina Mediterranea. 16(1):1-372. RELINI G.,GIACCONE G.,2009.Priority habitatsaccording totheSPA/BIO Protocol (Barcelona Convention) present in photographs andside-scansonar:Application oftheislandCorsica(France). EstuarineCoastalShelf Science,47:359-367. PASQUALINI V., PERGENT-MARTINI C.,CLABAUT P., PERGENT G.,1998.Mapping of Workshop 09 (Eds. G.Di Carlo,A.Calladine andA.Žuljević), p53. the centralAdriatic Sea using K.,OBARČANIND., MADIRAZZA A.,ŽULJEVIĆ A.,CVITKOVIĆ I.,2009.First classificationofcoastalwatersin NIKOLIĆ V., DESPALATOVIĆ M.,ALCOVERRO T., ROMERO J.,ANTOLIĆ B.,ZOKO M.,BLAŽEVIĆD.,BRAJČIĆ design reveals thedeclineofseagrass MONTEFALCONE M.,CHIANTORE M.,LANZONE A.,MORRIC.,BIANCHIC.N.,ALBERTELLI G.,2008.BACI Experimental Marine Biology andEcology 299:51-62. beds inamarineprotected area (Italy, western Mediterranean): effectsofanchortypesindifferent anchoringstages. Journalof MILAZZO F., M.,BADALAMENTI CECCHERELLIG.,CHEMELLO R.,2004.Boatanchoringon index (POMI)inthree Mediterranean regions. Marine Pollution Bulletin 64:926-931. Uncertainty analysisalongtheecologicalqualitystatusofwaterbodies:The response ofthe MASCARÓ S.,MARBÀN.,NIKOLIC O.,BENNETT V., ROMERO J.,DUARTE C.M.,ALCOVERRO T., 2012. Change Biology, 16:2366–2375,doi:10.1111/j.1365-2486.2009.02130.x MARBÀ N.,DUARTE C.M.,2010.Mediterranean warmingtriggersseagrass( Sea). Journal oftheMarine Biological AssociationoftheUnited Kingdom88(5):883-892. KRUŽIC P., 2008. Variations in Association Sunce Technical Report, January 2012, 40pp. +Annexes. GUALA I.,DICARLO G.,JAKLZ., 27: 111-157. II. Infralitorale e Circalitorale. Proposte di aggiornamento. Bollettino dell’Accademia Gioenia di Scienze Naturali, Catania, GIACCONE G.,ALONGI G.,PIZZUTO F., COSSUA.,1994.Lavegetazione marinabentonicafotofiladel Mediterraneo: 568. GAMULIN-BRIDA H.,1967.Thebenthicfaunaofthe Adriatic Sea. Oceanography Marine Biology Annual Review, 5:535- Posidonia oceanica Posidonia oceanica et al Posidonia oceanica ., 2012a.Monitoring of asbioindicatorofwaterquality. Proceedings oftheMediterranean structure alongthecoastofDugi Otok Island (easternAdriatic inducedby anchoring.Marine Pollution Bulletin 56,1637-1645. Posidonia oceanica Posidonia oceanica meadows inCroatian Protected Areas. Posidonia oceanica Posidonia oceanica ) shootmortality. Global Posidonia oceanica multivariate usingaerial

11 MONITORING SCHEME FOR POSIDONIA OCEANICA BEDS 12 DUPUY DE LA GRANDRIVE Renaud © RAC/SPA, © RAC/SPA, Phytocoenological conversion Equivalents indifferent classifications *1120 ENGLISH NAME(NATURA CODE) OCEANICA 2. • (=Associationwith • Associations andfacies: Manual forInterpretation ofhabitatsaccording to Barcelona Convention UNEP(OCA)/MED WG.143/5 A meadows A EUNIS Alliances andassociation* (source: Bakran-Petricioli, 2007) (=Asocijacijasvrstom G.3.5.1. Biocenoza naseljavrste G.3.5. Naselja posidonije N A5.535: [Posidonia] beds E 11.34 [Posidonia] beds CORINE Biotopes EUNIS, National habitatsclassification G Habitats Directive (HD) I I I I I I (Hyères report, experts 1998) beds A without muchepiflora A meadow MONITORING PROGRAMMEFOR II. 5.1.4.Associationwith II. 5.1.3.Facies of dead“mattes” of meadows II. 5.1.2.Ecomorphosis of“barrier-reef” II. 5.1.Ecomorphosis ofstripedmeadows II. 5.1. II. 5. UNIS 5.5354: Associationwith[ 5.5353: Facies ofdead«mattes»[ 5.5352: Ecomorphosis of«barrier-reef» [ 5.5351: Ecomorphosis of striped [ ational habitatclassification: .3.5.1.1. Ekomorfoza naseljau“prugama” Posidonia oceanica withoutmuchepiflora Posidonia oceanica COMMON CHAPTERS Posidonia oceanica : beds(priorityhabitattype) meadows Caulerpa prolifera BEDS

meadows Posidonia oceanica Caulerpa prolifera Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia oceanica ] on[Posidonia] . ) ) ] ] ]

biocoenosis: on therhizomes inthesubstratum(Relini &Giaccone, 2009). Flabellio-Peyssonnelietum squamariaeMolinier 1958located ofleaves,that develops andthe inepibiosistheupperpart the the basin,duetoextensive humanimpactsandpressures. regression andMiddle of bothinthenorthern Easternparts (Pasqualini the sea bottom between 0 and 45 m in the Mediterranean basin the Mediterranean seabed(VV.AA., 2008)andabout25%of 45,000 km It isestimatedthattheycover from anarea 25,000to varying (coarse andmediumsands;rock) (Relini &Giaccone, 2009). m according to light availability and nature of the substratum ; depthrangevaries to-40 from thesurface oceanicae Range

d) c) b) a) • •

Myrionemo-Giraudietum sphacelarioidis National Classificationof Habitats (NCH) association with G G G G G G G description ofits Total worldandEuropean rangeofthehabitattypewith 2009). priority habitatsofSPA/BD Protocol); Remarks onphytocenological variability facies ofdead“ ecomorphosis ofstripedmeadows; ecomorphosis of “barrier-reef” meadows (both are ecomorphosis of“barrier-reef” .3.5.1.4. Asocijacijasvrstom .3.5.1.3. Facijes naslagarizoma posidonije mrtvih .3.5.1.2. Ekomorfoza naseljakojatvore “barijeru” .3.5.1.4. Asocijacijasvrstom .3.5.1.3. Facijes naslagarizoma posidonije mrtvih .3.5.1.2. Ekomorfoza naseljakojatvore «barijeru» .3.5.1.1. Ekomorfoza naseljau«prugama» (Funk 1927)Molinier 1958-are exclusive tothe epiflorebez epiflore bez Distinct facies and ecomorphosis form part of the Distinct ofthe faciesandecomorphosisformpart P. oceanica Posidonia oceanica Posidonia oceanica 2 et al. (Borum (Borum POSIDONIA , 1998)(Fig. 1). includes two other distinct associations: includestwootherdistinctassociations: mattes et al. distribution pattern Caulerpa prolifera , 2004) that means about 1-2 % of , 2004)thatmeansabout1-2%of ” of meadows are inconsiderable meadows - Posidonia oceanica ( Caulerpa prolifera Caulerpa prolifera source: Bakran-Petricioli, 2007). (Relini &Giaccone, (includingmaps) Van derBen 1971 Posidonietum ;

. 13 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 14 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS the spatialmodelling(Antonić Existing informationismainlybasedontheapplicationof unknown and data related torange for 2008). The distribution of data ontheirdistribution and statusare poor(Kružić, been scarcely investigated intheAdriatic Sea andaccurate 1983; Zavodnik in several areas (Benacchio, 1938;Zavodnik, inthenorth (Gamulin-Brida, 1967);however theyhave beenrecorded Posidonia Croatian coast (Bakran-Petricioli, 2007; 2011). In general, inCroatia Distribution ( • modified from http://www.eea.europa.eu/data-and-maps/figures/distribution-of-the-marine-angiosperm-posidonia-oceanica-and-zostera- Summary of bedsare betterdeveloped inmidandsouthAdriatic Posidonia oceanica Figure 2. type1120 of habitat Known distribution historicaldevelopment ofdistribution et al. Figure 1. angiosperm ofthemarine Distribution , 2005). meadows are commonalongthe Posidonia et al. P. oceanica , 2005;Bakran-Petricioli beds in Croatia is still P. oceanica meadows have are partial. sp-in-the-mediterranean) by subsequent field surveys (Zavodnikby subsequentfieldsurveys distribution ofthehabitattypeare notcompletelysupported et al. of mapping project willresult inmore precise distributionmap entered into databases. Also, future detailed marine habitat or internationalprojects andSINPcoordinated research. institutes, facultiesandNGOs intheframeworkofnational gathered through research/mapping by different or experts (SINP) whichmainlyconsistofpresence-absence data data from databasesofState Institute forNature Protection is based on available data from literature and most of the (Bakran-Petricioli, 2007).Distribution shown inFigure 2 archipelago) andtheyshouldbeconsidered aspreliminary P. oceanica Posidonia P. oceanica , 2006);however findingsofmodellingthespatial There are stillfew recent datatobeevaluated and meadows inCroatian Adriatic. bedsinCroatia (5x5kmgrid) intheMediterranean et al. , 2005,forSenj © © SINP EEA shaped), continued or interrupted by unvegetatedshaped), continued orinterrupted areas more or lessheterogeneous (steep, striped,barrier-like,hill- sedimentation rate,meadows canbeflatand smooth or to depth,topography, substratetype,hydrodynamics and with different morphologies(ecomorphosis);according their own substratum,the and rocky bedsandare abletomodifythebottom building coastal ecosystems(Buia the mostrepresentative Mediterranean andimportant andfunctions Structures the field in associated generally types Habitat Habitats Directive. during theassessmentofeachhabitattypeunder functions andtypicalspecieswhichshouldbeconsidered reference_portal); thisdocumentindicatesstructures, http://bd.eionet.europa.eu/activities/Reporting/Article_17/ the habitattype1120inEvans (2011;available at &Arvela Posidonia oceanica Posidonietum oceanicae oceanica Typical species • • • • •

G.3.2. Fine withmore orlessmud on fragmentation number oftemporalandspatialscalesincludingnotes Description ofecologicalprocesses occurringata indicator species fortypical/threatened/of thehabitattypeimportant andfunctionalcharacteristics Description ofstructural Description ofphysicalcomponentsthehabitattype G G G G G G G G G G zonations or mosaics) are exposedtosuccession(phytodynamicsuccessions, Enumeration ofhabitat types that comein mosaics or associations/subassociations) List oftypicalspeciesthehabitattype(orsubtypes–e.g. .3.5.1.4. Associationwith .3.3.1. Biocenosis ofcoarsesandsandfinegravels .3.3. Coarsesandswithmore orlessmud .3.2.3.4. Associationswith .3.2.3. Biocenosis ofsuperficialmuddysandsin .3.2.2.1. Associationswith .3.2.2. Biocenosis finesands ofwell sorted .3.2.1. Biocenosisshallow offinesandsinwaters very .3.6.1. Biocenosis ofinfralittoralalgae .3.6. Hard bedsandrocks istheonlycharacteristicspeciesofassociation mixed by thewaves sheltered waters Posidonia oceanica According toGiaccone istheonlytypicalspeciesindicatedfor (Funk 1927)Molinier 1958; et al. matte meadows are considered among , 2004);theygrow onsandy . Themeadows are developed Caulerpa prolifera Cymodocea nodosa Cymodocea nodosa et al. (1994) Posidonia cover ofseabed,leadingtotheregression ofthemeadow transparency (Evans 2011). &Arvela, thus protecting from coastalerosion andmaintainingwater resuspension of sediments (Boudouresque they are abletoreduce thehydrodynamics aswell asthe Pergent organic matter(Duarte most efficient vegetated coastalsystems for fixing CO 2006; Evans 2011)andare considered &Arvela, amongthe are ofrelevance forwateroxygenation (Boudouresque (Boudouresque highlevelsfor several ofbiodiversity speciesandsupport 2011); the meadow (Boudouresque specieslivingbothwithinandoutside chains thatsupport production, meadowsprimary are thebasisofmanyfood 2006 andliterature therein). Because ofthehighrates for Mediterranean coastalecosystems(Boudouresque 2006). nuisance (Cancemi and In general, marine environment causedby anthropogenic disturbances. Pressures andthreats (Boudouresque andfish),arecrustaceans trophically connectedto (e.g. importance species, including many species of conservation (Boudouresque the herbivores andotherconsumers(detritivores, carnivores) consists ofmultiplerelations amongtheplant,epiphytes, the associatedcommunities.Thefood web inthemeadows trophic relationships ofthedifferent and compartments function intheseecosystemsisevidentthestudyof et al. well astothechangeofitskeyfunctions(Boudouresque limits andtheoccurrence ofwideareas ofdeadmatte,as mechanical impacts,pollution)factors(Boudouresque (e.g. storms,hydrodynamism) orhuman-mediated(e.g. their occurrence, abundanceandsize dependonnatural ( with organicmatter andnutrientsfrom fishfarms and and industrialwastewater materials construction nourishment development Boudouresque areas oftheMediterranean (Zavodnik &Jaklin, 1990; documented tobecausedby humanactivitiesinmany The regression of intermattes •

, 2006).Theclose relationship between structure and Pinna nobilis prospective ones(threats) influences from thepresent andpast(pressures) and Detailed andprecise descriptionofknown important increased water turbidity, P. oceanica et al. Human activitiescanreduce shootdensityand Meadows playseveral ecologicalroles ofrelevance Posidonia oceanica ). pollution , 2012),eliminatingitfrom theatmosphere; (new marinas, ports andseaside complexes), marinas,ports (new Intermattes et al. et al. et al. et al. meadows areas are spawning and nursery ) andcommercial value (several molluscs, et al. Posidonia oceanica , 2006;Di Carlo , 2006). , 2006): a quarter ofallMediterranean, 2006):aquarter , , 2006;Evans 2011);they &Arvela, , , dispersion ofpollutantsfrom urban dredging oversedimentation , 2003;Boudouresque et al. can be structural orerosive canbestructural and , water andsedimentenrichment issensitive tochangesinthe et al. , 2010;McLeod are themainfactorsof , dumpin , 2006;Evans &Arvela, et al. meadows hasbeen , , 2011): g atseaof eutrophication et al. et al. et al. Posidonia , 2006), , 2006). coastal , 2011; et al. et al. et al. 2 as , , ,

15 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 16 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS affect effects, suchashightemperatures andprolonged heatwaves, (Montefalcone,other perturbations 2009).Climatechange they mayreduce meadow recovery whenassociatedwith (Boudouresque been foundinlow densitymeadows andondeadmatte not penetrateintodensehealthymeadows, theyhave often and threats (Borum of seawater, spread ofalien species) are the mainpotential effects of nutrient loadingintothesea,aswell astheunpredictable column (Boudouresque increased turbidityandnutrientconcentrationsinthewater 2004); moreover, they cause re-suspension of the sediment, local scale.For instance,anchoring ofleisure boatscanbe statusof the conservation whole water body, these pressures and threats could affect to Pula, Bakar Bay andSplit. confined urban and industrial areasthese latter in very close 10 waterbodiesand“probably significant” in4waterbodies, significant” in8waterbodies, “probably notsignificant” in is alsoprovided: pressures andrisksare considered as“not on thebiologicalandchemicalqualityofeachwaterbody sudden pollution).Anoverall assessmentoftheirinfluence and threats (e.g.invasive/alien species,probability of fish/musselfarms, vessel transports) coastal constructions, (e.g. waterpumpingstations,power ,dams,jetties, industrial andurbanareas) andother typesofpressures inland agriculturalcrops, atmospheric depositions from diffusesourceswastewater), (e.g.drainageofnutrientsfrom matter, nutrients,metalsfrom municipalandindustrial types includingpunctualsources ofpollution(e.g.organic AA., 2011).Pressures andthreats are gathered indifferent was done for 22 water bodies along Croatian coasts (VV. et al. ofthehabitatisoftenirreversibledestruction (Boudouresque (Díaz-Almela & 2008). Duarte, P. oceanica Marbà &Duarte, 2010).Invasive speciesthatmostaffect plant densityandcover (Francour remove spatial scale(Boudouresque factors thatthreaten thestructure ofthemeadow atasmall the useofinvasive fishingtools chains), anchoring andmooringsystems Boudouresque direct orindirect effectsonthemeadows(VV.AA., 2008; outfalls , 2006). C. cylindracea P. oceanica , c P. oceanica placement ofsubmarinecablesandpipelines Increasing land-basedsources ofpollutionand Whatever theirinfluenceonthequality ofthe An assessmentofthemainpressures andthreats Recovery from damagetakesdecadesandthe The mechanicalimpacts resulting from global changes hanges in fluvial and sedimentary flows hanges in fluvial and sedimentary meadows, are thegreen algae et al. et al. shootgrowth andincrease shootmortality et al. . Although these species apparently do leaves and rhizomes largelyreducing , 2006). , 2006;Klein& Verlaque, 2008)and , 2004;Boudouresque et al. (e.g.strong temperature changes Posidonia oceanica et al. , 2006). , 2006).Mechanical impacts (e.g. trawling)are themain (deadweight andcrawling et al. , 1999;Milazzo Caulerpa taxifolia meadows ata et al. , 2006; , have et al. and boat ,

Posidonia oceanica 2000 are establishedfor the protection of the habitat 1120 Mediterranean belongingtotheecologicalnetwork Natura of themarineSites ofCommunityImportance (SCIs) inthe (HD) oftheEuropean Community(1992/43/EEC);most species in the Mediterranean) and the Habitats Directive the Barcelona Convention (on the protection of areas and of European Wildlife andNatural Habitats inEurope), Mediterranean: the Berne Convention (on the Conservation by international conventions ratified by mostcountriesofthe measures Conservation Guala Kobiljak, Lučica, Sestrica in Telašćica (Font-Gelabert, 2013; and Polače inMljetNational Park, Čuška Dumboka, Lastovo Islands, Kravljačicaand Vrulje inKornati, Lokva , Makarac and intheNature Park boaters destinationswithinmarineparks: Skrivena Luka, not; thisisthecaseofseveral sitesthatare well known as locally notablealsowhenpollutionandeutrophication are needed istoimplementappropriate measures toensure their endangered habitats,Official Gazette 119/2009),whatis are in force ( degradation are evident.AsCroatian nationalregulations prevent (EC) No 1967/2006. fanerogama, defined 4.1 of the Council by Article Regulation seagrass bottom,especially purse seinenets,shore seines orsimilarnetsover prohibition offishing by trawlnets,dredges, surrounding prescribes afineof40.000to75.000 kunasforviolationof Fisheries Act (Official Gazettearticle 76, item 18) 81/2013, ofdamagingfishinggears. Marine service surveillance and rock fillingnearand over ofillegalconstruction boat anchoring,toincrease surveillance aquaculture facilitiesover fishingtechniquessuchasbottomtrawling,toavoid certain measures torestrict emissionsofpollutants,torestrict authorization forprojects thatcouldharmtheenvironment, outimpactstudiesandtorequest the obligationtocarry inareasimportance withwell-developed the establishment of marine and reserves sites of community (Official Gazette 144/2013)) species inCroatia (Ordinance onstrictlyprotected species which 124/2013). There are 104 sites of Ecological network in has beenproclaimed inOctober 2013(Official Gazette •

realized aswell asneededtoavoid pressures andthreats Detailed and precise descriptionofmeasures already Posidonia oceanica et al. P. oceanica Regulation onEcological network in Croatia Posidonia oceanica An additional effort shouldbemade inorderAn additional effort to Many indirect measures alsoprotect Posidonia oceanica , 2012a;2012b). Posidonia beds. declineatleastinsiteswhere signsof beds are targethabitattype(Fig. 3). meadows have thestatusof Posidonia oceanica (L.)Delile isastrictlyprotected Posidonia meadows are directly protected Posidonia meadows, toregulate meadows, toincrease Posidonia or other marine orothermarine P. oceanica meadows, : is atraditional protocol usingthemostfundamental Programme information Monitoring preliminary common following includes Each REGION MEDITERRANEAN BIOGEOGRAPHICAL MONITORING PROGRAMMEFOR THE of pressures andfeasibility andtheirimpacts,surveillance managed sites)appropriate measures couldbemonitoring public awareness. Locally(e.g.withinprotected areas and enforcement andcompliance,alsoby meansofincreasing • • •

for regions where biogeographical for thefieldworkers). needed forresearch whenthatisthecase(instructions includinglistofpermits instruments relevant statutory projects ormonitoringsystems) programmes (forotherhabitattypesorspecies, mapping andmonitoringare combined) Rules ofoccupationalsafetyandcompliancewithall Sharing thedataormethodologieswithothermonitoring (howShort descriptionofbasicscheme ofsurveillance Figure 3. 2000sites for Natura type1120Posidonia thehabitat beds the given typeoccurs habitat The direct, SCUBA-basedprotocol here proposed, Specific chapters nautical tourismimpactonseabedcommunities). measures forreductionas anexampleofconservation of pressures) tobeimplemented(seeFont Gelabert study onspecificmeasures (dependingontheongoing zones andsamplingstations. material, are listedbelow: SCUBA divingwithoutinvolving theremoval ofbiological Thedescriptors,tobedetectedwith type conservation. monitoring ofreference descriptorsasindicatorsofhabitat includes periodic countries. The basic schemeof surveillance statusof conservation descriptors thatare present inprogrammes tomeasure - - -

non-covered andconsistingofsand, rock or dead covered withlive plantsof (no. ofshootsperm descriptors of thehabitat: structural abundance/distribution ofotherplants; belts, stripes,patches,hills,reefs, atolls;presence/ the bottom(flatandcontinuousbeds,terraced formations); distributionwithrespect tothenature of substrate type(mud,, range; positionoftypologyupperandlower limits; physical and physiographical descriptors: invasive oralienspecies(i.e.Caulerpales). (D abundance of biological variables oftheassociatedcommunities: az-Almela & Duarte, 2008); presence/abundance of íaz-Almela &Duarte, 2008);presence/abundance of Monitoring willbecarriedoutindifferent sites, (Posidonion oceanicae Pinna nobilis Posidonia 2 ); coverage (percentage ofseabed as indicator of meadow health asindicatorofmeadow health innearlyallMediterranean P. oceanica matte ) (from SINP, 2014) , rock/coralligenous compared tothat shoot density shootdensity et al. depth matte © , 2013 SINP ); ); 17 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 18 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS et al. water bodies(Romero element forthedefinitionofecologicalstatuscoastal been developed by using Directive 2000/60/EEC),anumberofindexes (WFD, have programme anditsimplementation are ongoingandare objectives were completed. Theelaborationofamonitoring of theenvironment andthedefinition ofenvironmental in 2008and,topresent, aninitialassessmentofthestate (GES) oftheEU’s marinewatersby 2020.It cameintoforce 2008/56/EEC) aims to achieve good environmental status different timingand requirements ofthemonitoring. anditisnotrecommendedcan onlybepartial becauseof methodologies between thesetwomonitoringprogrammes Index (Romero the ecologicalstatusofcoastalwaterby meansofPOMI Habitats Directive are alsousedasmetricsformonitoring statusofthehabitattype 1120underthe of conservation MAP-RAC/SPA, 2011;Mascarò applied toCroatian coast(Nikolić waters inCataloniasince2005;more recently, ithasbeen al. oceanica 2010a; Montefalcone, 2009).TheindexPOMI( information isavailable before themonitoringisconducted: status ofthehabitat. environmental conditionsproviding abroaderonthe view be monitored couldthenbechosenaccordingly todifferent most probably there is meadows tobemonitored are selectedwithinsquares where the habitathasbeendividedinto10x10kmsquares and entire nationalterritory, thewholegeographicalrangeof following section“Monitoring onplots”). (detailswillbeprovidedby asingle depthinterval inthe a samplingstationisanarea, withineachzone, characterized monitoring is carried out at different bathymetric intervals; in length;azone isanarea, withineachsite,inwhich meadow ishomogenouslydistributedforatleast1km - - - - -

, 2012)isusedforthemonitoringprogramme forcoastal , 2008; Gobert , 2008;Gobert meadows underclearly recognizable direct orindirect meadowsespecially well conserved shouldbeselected existence ofprevious informationonthemeadows; position anddepthoflower andupper limitsofthemeadows; distribution ofthemeadows andgeomorphological order toassesstheimpactofthesedisturbances. anthropogenic disturbancesare tobeselectedin worth as reference; features ofseabottom; Multivariate Index, Romero et al., 2007; Mascarò In theMediterranean, underthe Water Framework The Marine Strategy Framework Directive (MSFD, Some descriptors here suggested for the assessment It ishighlyrecommended thatthefollowing As themonitoringprogramme hastocover the A siteisdefinedasacontinuousarea where the et al. et al. , 2007). However, sharing the data or et al. Posidonia oceanica , 2009; Lopez yRoyo, 2009;Lopez Posidonia oceanica , 2007;Fernandez-Torquemada et al. et al. , 2012). . Themeadows to , 2009;UNEP/ asabiological et al. Posidonia , 2009; et rescue techniquesandmanagementofcasualties,theuse moreover, theymustbefullycompetentwith/inSCUBA appropriate to the scientific discipline being pursued; including thedeployment oftransects,samplingtechniques of accurately locating andmarking sites,basicrope work, capable andsub-surface, methods,bothsurface in survey emergency procedures; hence,theymustbeskilledwith/ and have a comprehensive understandingofequipmentand involved musthave specificcompetencies forscientificdiving to berealized inSCUBAdiving,fieldworkers (oroperators) included intheproposed monitoringprogramme. in Croatia isinpreparation andPosidonia meadows willbe 2013). So farwork onmonitoring inthescopeofMSFD and elaboratingmonitoringprogrammes (Bellan-Santini, currently defining concepts, identifying parameters to use of Ecology and Sustainable Development are and experts meadow isoneoftheecosystemsforwhichMinistry meadows are stillnotdefined. In France, specificapproaches formonitoring 07-27.pdf), nature/natura2000/marine/docs/FAQ%20final%202012- and HD)doexist(http://ec.europa.eu/environment/ monitoring requirements ofthedifferent Directives (MSFD and Italy (Tunesi, 2013).Althoughpotentialoverlaps inthe scheduled for2016atleastinFrance (Bellan-Santini, 2013) deterioration signs). characteristic ofthebottom(e.g. slope,typeofsubstrate, information ontheirdepthrange, positionofthelimits, meadows are distributed (Thomas Croatia. Mapping is a helpful tool to understand how the knowledge on a prioritywhereas there isnocomprehensive andsystematic protocol. consuming methods,mappingisnotaobjective ofthis this reason, andsinceitrequires expensive toolsandtime forother(e.g. scientific)purposes”.and dataserving For a methodofmonitoringbutwaytogetbaselinedata monitoring programme (VV.AA., 2012)“mapping isnot Field mapping is needed. areas permissionfrom managementboard ofMPA orPark Nature Protection. For monitoringinsitesinsideprotected should beobtainedfromofEnvironmental theMinistry and Permission outthemonitoringactivities fordivingtocarry accordance tothenationallaws,regulations andpermissions. (ESDP, 2009). user maintenanceofappropriate SCUBAdivingequipment •

chapter “fieldmapping” hastobedeleted) directly by SINP(ifnomappingisplannedthewhole during systemofmappingforallhabitattypesprepared Detailed descriptionhow thehabitattypeissurveyed For forfieldactivities safetypurposes,inparticular However, to note that mapping should be it is worth According totheguidelines forpreparation of All the activities must be implemented in Posidonia oceanica meadows distribution in et al. , 1999) and to supply P. oceanica P. oceanica sensitive tostress, easilymeasured andnotdestructive. means ofecologicalsyntheticindicesthatare informative, the ecosystemstatusandchangesateachmonitored siteby changes over time.Monitoring is chosen inorder toestimate meadows inCroatia and toidentify any degradation or habitat statusof information ontheconservation Objectives onplots Monitoring prepare theproject documentationbefore itstarts. Protection willapplyfortechnicalassistanceinorder to of would be2015.TheEnvironmental and Ministry Nature conducted withEUStructural Funds. Theearliestdate term goalduetoextensionofCroatian coasts. Posidonia oceanica (e.g. boat-basedvideography, SCUBAdiving).Mapping of byconsuming, andneedtobeground fieldsurveys truthed et al. suitable forlarger-scalestudies(Thomas aerial photography, remote sensing,acoustictechniquesare mapping isreported inUNEP/MAP-RAC/SPA (2011); the meadows (e.g.covering, shootdensity, fragmentation). oceanica order tocompletetheareas withtheoccurrence of recreational vessels). andservice areas, safeanchoringareas orareas suitablefor landingof subjected atsomedegree ofprotection, identifymooring sites andformanagementtargets(e.g.identifyareas tobe d) c) b) a) • •

collectionofphysicalandphysiographicaldata(depth

identification on presence or absence of habitat disturbances identification onpresence orabsenceofhabitatdisturbances collection of structural data of the habitat (meadowcollection of structural identification of conservation status of thehabitat identification ofconservation , 2003);however, thesemethodsare expensive andtime (e.g. pollution,mechanicalimpacts, invasive/alien species). Mediterranean); (according totheclassifications commonly usedinthe density andcoverage); substrate type;meadow type)oneachsamplingsite; range; positionoftypologyupperandlower limits; habitat types outputs are awaited “monitoring on plots” hastobedeleted) and what (if not the whole chapter for habitat type surveillance Description ofconnectionwithmonitoringother monitoringischosen Clarification why(thistypeof) meadows features withinformationonstructural of Expected outputsare: The overall objective ofthemonitoringistoobtain Comprehensive fieldmappingisplannedtobe toolsforseagrass A synthesisofmainsurvey Mapping and monitoring should be combined in Mapping is also of relevance for selecting sampling meadows shouldbeplannedasalong- et al. Posidonia oceanica , 1999;Kenny Posidonia after inputintothedatabase). dive rawdata slateinthefield,doingphotocopytopreserve and afterinputintothedatabase(e.g.takingpictures ofeach are rawdataoncetheyare inchargeforpreserving collected field staff;theyalso are responsibleofdataqualityandthey have toprovide onfieldmethodstoother clearinstructions meadows andotherfeatures ofthehabitattype. Coordinators and methodologyforassessingthestateofhealth goodknowledgemarine biologistswithvery ofplantspecies Field work instructions types isfeasible. and theavailability offinancial resources. can beadaptedaccording tothe results ofthefirst3-5 years information onthestatusand trend ofthemeadows; thenit of theprogramme (for3-5years) inorder toacquire basic monitoring canbeimplemented annuallyatthebeginning of reporting. Alternatively, asthere isnobaselinedata, times foreachmeadow over thesix-year officialperiod Both optionsallow implementingthemonitoringthree under the WFD (Nikolić V., personalcommunication). in Croatia formonitoringof following years; asimilarapproach iscurrently implemented of allsiteseachyear, twooptionsare suggested: available; if the budget is not sufficient forthe monitoring frequency dependsonthenumberofsitesandbudget approximately thesametimeofyear. However, sampling workers involved inthemonitoring. coordination and appointing coordinators and other field emergency procedures. SINPistheresponsible agencyfor a comprehensive understanding of diving equipment and All fieldstaffmustbeskilledinscientificdivingand have motivated and interested in achieving quality outcomes. methods tobeapplied;itisessentialthatworkers are rangers, alsovolunteer divers) trainedonthestandard ecologists, agronomists, studentsofthesedisciplines, • • b) a)

carry out monitoring of all sites every twoyears; outmonitoringofallsitesevery carry sites are randomly distributed within two sets and each year are randomly distributedwithintwosetsandeachyear sites − − − the sitesofonesetare monitored (Mayot Detailed instructions forthefieldworkDetailed including: instructions Determination offieldworkers specialization

description ofdatarecording. character of plots to be chosen in the field and how period formonitoring(+otherlimitsliketemperature to mark it; if appropriate); Field staff can beotherpersons(biologists, Field work onmonitoringmustbecoordinated by No connectionwithmonitoringofotherhabitat The latterallows splittingthemonitoringintwo Monitoring sitesshouldbeexaminedannuallyat Posidonia oceanica et al. , 2006). meadows 19 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 20 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS recorded: at thescaleofzone; ateachzone following datashouldbe meadow; ateachsitefollowing datashouldberecorded: zones). General informationwillberecorded atthescaleof spatial scales (sites, zones within sites and stations within more favourable. (May toearlySeptember), whentheweather conditions are to schedulethemonitoringinlatespringorearlysummer • • • • • • • • • •

exposure; (2009) andUNEP/MAP-RAC/SPA (2009): of Pergent SCUBA diving; marking thepositionofsafetybuoy ofdivers; depth gaugeinSCUBAdiving; means ofGPSandechosounderfrom theboator typology oflower limits:basedonthedescription depth oflower limit:by meansofdepthgaugein position oflower limit:by meansofGPSfrom theboat position and depth of upper limit: to be recorded by presence ofevidentpotentialpressures inthearea. name oftheoperators; name ofthecoordinator; name/code ofthesite; date ofmonitoring; -

progressive limit:withplagiotropic (horizontal) bottom, absenceofmatte,coverage decreasing rhizomes beyond the limit oriented toward the Physical and physiographical data will be recorded Different typesofdatawillbecollectedatdifferent For practicalandlogisticalreasons, itispreferable et al. , (1995)integratedby Montefalcone Figure 4. Samplingschemeproposed for eachsamplingstation. limits andtheirmutualdistance. calculated in function of the depths of upper and lower placed randomly, sonomarking procedure isrequested. each station,samplingunits(transectsandquadrats)are should beusedtominimize thepositionalerror). Within but remain fixed eachmonitoringevent (dGPSequipment with GPS;stationsshouldberandomlychosenthefirst year, fixed (Duarte &Kirkman, 2001)andtheirpositionmarked where samplingstationsaresubdivided intodepthintervals Hence, thewholedepthrangeofmeadows hasto according tothebathymetricdistributionofeachmeadow. the sampling design has to incorporate different depths depth (Pergent - - - -

regressive limit:presence ofdeadmattebeyond the sparse limit:densityislower than 100shootperm erosive limit:themeadow withthe stopsabruptly sharp limit:themeadow withthe stopsabruptly the meadow (ittestifyadeclineofthemeadow). or withoutstepof residual patchesof isolatedshootsor limit, withinthedeadmatteafew degradated conditions); and cover lower than 15 % (in general it reflects 50 %; presence ofapronounced stepofmatteandcover > of theenvironment andanearlyimbalance); but thelow percent cover mayindicatedeterioration (these limitsusuallyindicateastatusofequilibrium matte; itcanhashigh(<25%)orlow (<25%)cover presence rhizomes ofvertical butintheabsenceof in thedepth); regularly (itindicatescolonizationofthemeadow Since seagrass abundance typically varies with Depth range andslopeofthemeadow canbe et al. , 1995;Duarte &Kirkman, 2001) P. oceanica matte , isolatedorconnectedto alive may persist,with © Ivan GUALA 2

recorded by meansofSCUBAdiving: stations; ateachsamplingstationfollowing datashouldbe Lasagna et al. 2003; Pergent-Martini Girolamo, 2001;Duarte &Kirkman, 2001;Cancemi et al. quadrats are placedateachsamplingstation(seePergent 0.16 m m inwhichplotsforthedetectionofshootdensity(quadrats ofapproximatelyThe fourtransectsdelimitasurface 400m each transect (see section «Description of data recording»). a safety buoy). Plant and substrate cover are assessed along sampling station(e.g.theanchorofboatorballast opposite directions from afixed pointinthemiddleof et al. Bianchi cover, fourtransects(LineIntercept Transects orLITs, different foreachofthe variables tomeasures. For percentage the monitoringofeachstationisshown. Sampling unitsare a)

- - - - - habitat data:

, 2000),willbepositioned;transectsextendradiallyin , 2006;Costantino , 1995;Marcos-Diego evidence ofmechanicalpressures (e.g.mooring presence ofalienspecies(e.g. presence ofotherseagrassspecies(e.g. main substratetype(mud/sand, distribution with respect to the nature of the bottom (e.g. systems, concrete blocks, pier, chains, ropes, trash): by Womersleyella setacea nodosa, Zostera noltii formations, mixed): by meansofvisualobservation; of visualobservation; beds, belts,stripes,patches,hills,reefs, atolls)by means flat/step andcontinuous/discontinuousbeds,terraced 2 , Buia et al. et al. Habitat and communitydataatthescaleof In Figure 4,thesamplingschemesuggestedfor , 2006;Dante, 2010;Sghaier, 2013). , 2004), each of 10 m length (Marcos-Diego et al.

, 2004)are randomly positioned. Ten Figure 5. ofthe LITmethodfor Explanation the assessmentofpercentage cover. et al. et al. ): by meansofvisualobservation; ): by means of visual observation; ): by means of visual observation; , 2005,Borg , 2006;Flagella et al. matte , 2000;Cicero &Di Caulerpa cylindracea, , rock/coralligenous , rock/coralligenous et al. , 2006;Cossu et al. Cymodocea , 2006; et al. 2 , ------

% coverage ofunvegetated rocky patches:withineach % coverage ofunvegetated muddy/sandypatches: % coverage ofdeadmatte:withineachfourtransects % coverage oflive shoot density(no. ofshootperm depth: itshouldberecorded withadepthgaugeatthe signs ofimpacts(e.g.detachedshoots,plates All percentage cover values will be assessed using the within eachoffourtransects(LITs) 10mlong; (LITs) 10mlong; transects (LITs) 10mlong; reported tothem other. Subsequently, thevalues ofthesinglecountare randomly atadistanceofleastonemeterfrom the 10 replicated quadrats (40x40 cm) are launched oceanica optimal samplingunitforestimatingthedensityof sampling unit.Anarea of0.16m shoots (countingtwicethoseindivision)withinthe density are detectedby countingthenumberofleaf beginning andendofeachtransectatquadrat; means ofvisualobservation; of matte,damagesduetotrawlingoranchoring):by means ofvisualobservation; changed underthelinedivers wasrecorded (Fig. 5). corresponding tothepointwhere thekeyattributes for eachLIT, theintercept tothenearest centimetr randomly positioned,were carriedoutineachstation; dead oceanica along whichare recorded theoccurrence oflive is a centimetre-marked line laid on the bottom et al. Line Intercept Transect technique(Bianchi (LIT) of fourtransects(LITs) 10mlong. , 2004;Montefalcone matte (Panayotidis andthenature ofthesubstrate(sand,rock, ). Four LITs, eachof10mlengthand 2 andaveraged. P. oceanica et al. , 1981).So, ateachstation, et al. : withineachoffour , 2007).TheLIT 2 isconsidered the 2 ): thevalues of © Ivan GUALA .P. P. 21 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 22 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS b) communitydata: Th - - -

In eachLIT, thelengthofeachkeyattribute(Lx)is al. physical exposure hasamarked influence(Borum major regulating role, thaninshallow water, where water depthsandindeepwater, where lightplaysa sensitive indicator ofeutrophication atintermediate covering theseabed(Fig. 5).Seagrass cover isamore the amountofdifferent substrataandlive was calculatedby thefollowing formula: percent cover (R%)alongatransectof10mlength, and itiscalculatedby subtraction(Fig. 5).Their distance occurringbetween tworecorded intercepts, Figure 6. in thethree zonesand three different ofsamplingstations bathymetric ranges. Exampleofdistribution presence fauna:thebivalve oftargetinvertebrate % coverage ofsubstratecolonized by alienspecies(e.g. % coverage ofsubstratecolonized by otherseagrasses al. Transect” techniqueinBianchi sides ofeachfourtransects10mlong(see“Belt individual encountered withina2mcorridorforboth oceanica presence of physical impactsonthemeadows (e.g.boatanchoring); dependent onseagrasses,andistherefore affected by nobilis within eachoffourtransects(LITs) 10mlong; the green algae four transects(LITs) 10mlong; ( Cymodocea nodosa,Zostera noltii , 2004). us, percentage cover dataprovides informationof , 2010)andevaluation oftheirstatus(deadoralive). (listedintheAnnexIVofHD)isexclusively meadows (Borum P. nobilis R% =∑(Lx/10*100) Caulerpa taxifolia

isacharacteristicofhealthy et al. et al. , 2004). Count of all , 2004).Countofall and ): aswithineachof , 2004;Coppa C. cylindracea P. oceanica et et et .P. .P. ):

sampling designneedstotakeintoaccountthenatural deep (as close as possible to the lower limit). However, the be considered: shallow (<10m),intermediate(12-18 communication) thefollowingshould depthintervals depth andthelower oneat 25-30;Nikolić V., personal depth (inCroatia theupperlimitistypicallyat7-10m (Fig.bathymetric intervals 6). in eachzone three samplingstationsare chosenatdifferent site, three zones are about 100 m apart to be selected, and the meadow isdistributedforabout1kminlength.At each is definedasacontinuousarea (segmentofcoastline)where sites distributed over the whole Croatian coastline. A site Sampling design field andhow tomark it”). above (seesection“Character of plots to bechosenin the (transects andquadrats)are placedrandomlyasdescribed shape files in GIS). Within each station, sampling units the GPScoordinates ofeachstationshouldbemarked (for fixed over the six-year monitoringprogramme; therefore, Stations shouldberandomlychosenthefirst year, but remain variability andthespatialdistributionofseagrassmeadows. • • •

days peryear) needed (should beaddedlater) official periodsof andashapefileinGIS reporting) including distributionintime(respecting thesix-year (classification, randomchoiceetc.)formonitoring Particularities ofpotentialpilotproject (ifrelevant) Specification ofthenumberfieldworkers (or man Detailed description oftheselectionplots When themeadow extendbetween 7and30m Monitoring shouldbecarriedoutindifferent © Ivan GUALA the following factorsshouldbeconsidered: identification as Sites ofCommunity (SCIs),Importance (HD) thatdefinesthecriteriaforselectingareas eligiblefor the monitoring. geographical rangeofthehabitat,50sitesare proposed for assumingupto50sitesbemonitored.monitoring effort the shallow station). pair ofdiver, oneatdeep, oneatintermediateandthelast site (atotalofninemonitoringstations,three dives foreach boatman) cancover daythewholemonitoringforone every of three pairs of divers andoneoperator on board (the all theothervariables alongthetransects.Ateamcomposed quadrats, theotherpercentage cover of independent workers, onetoassessthedensitywithin year.preferably onceevery three timesduringthesix-year officialperiodsof reporting, monitoring”), themonitoring shouldbecarriedoutatleast c) b) a)

natural habitattypeconcernedandrestoration possibilities. habitat typewithinnationalterritory. in relation covered tothetotalsurface by thatnatural on theareas. Degree of conservation of the structure and functions of the Degree of the structure and functions of the of conservation Degree ofrepresentativity ofthenaturalhabitattype Surface ofthearea covered by thenaturalhabitattype Figure 7. (10x10kmgrid). region ofCroatia dividedinarea Mediterranean biogeographic with different priority According totheAnnexIIIofHabitats Directive In order tocover asmuchpossiblethewhole So, seven fieldstaffper yearcan cover thewhole Each samplingstationismonitored by two As describedabove (seesection“Period of Colours identify different priorities (seetext). identifydifferentColours priorities P. oceanica and square ofthegrid: squares of10x10kmandacolourcodeisassignedtoeach be considered forselectingpotentialsitestobemonitored: the dominanthabitatatsite)following factorscould information (butensuringthat selection ofareas according theHD.In theabsenceofthis d) - - - - - priority 3. priority 2. priority 1.

yellow, fillinggaps(potentialadditionalsites). further blue, possiblefuture WFD sites(2014-2016); green, existing WFD sites; orange, amixwithpressure/no pressure sites; red, MPAs, Natura important 2000areas, siteswith Global assessment ofthevalue ofthearea for conservation ofthenaturalhabitattypeconcerned. conservation data available; In Figure 7theCroatian coastalarea isdividedinto for This meansthatbaselinedataare necessary

the site is relevant for other monitoring purposes the siteisrelevant forothermonitoringpurposes the site is subjected to various anthropogenic the siteisrelevant purposes forconservation communication). planned inthenext2years (Nikolić V., personal WFD, 15monitoringstationsexistand26are WFD and/orMSFD);currently, underthe (e.g. othermonitoringprogrammes withinthe pressures; already exist; statusofthemeadows or dataonconservation Protected Areas; Natura important 2000areas) (e.g. itislocatedinsideNatural Parks, Marine © Vedran Posidonia oceanica NIKOLIC meadow is 23 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 24 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS P 2000 (SINP, 2012): ofNaturapart 2000network inCroatia -marineNATURA Eu IPA 2007:Identification andsetting-upofthemarine added forfillinggapsthroughout thehabitatrange. to budget availability, additionalmonitoring sites may be regularly monitored over time. At a later stage, according of alimitednumbermeadows inorder toensure theyare fieldinvestigation. tolocalpeople,preliminary interviews Selection procedure shouldinvolve “Google map” investigation, case, logistically feasible(e.g.weather, access,safety)andthat,inany tentative because itdependsonthebudgetavailability): selected asfollows (butnotethatthetotalnumberofsitesis ------rotected areas

Posidonia oceanica National Park Kornati (Vrulje bay, Islet RašipMali, National Park Brijuni Nature Park Lastovo (Skrivena Luka bay, Lastovnjaci Nature Park Telašćica (Islet Mali Garmenjak) 15 sitesfrom priority3(blueandgreen), selected 20 sitesfrom priority2(orange); 15 sitesfrom priority1(red squares inFigure 7); Islet Piškera) and VrhovnjaciIslets) through the wholehabitatrange. Below thelistofsitesproposed within theProject In general,itisappropriate to beginthesurveys It totakeintoaccountthatsitesshouldbe isworth Based onpriorities,50monitoringsitescouldbe

has to be the dominant habitat at the site. has tobethedominanthabitatatsite. Figure 8. Tentative positionsofproposed sites(seetext) O this document. meantime. Kmzfilesare considered of anintegralpart additional datawhichwillbecomeavailable inthe the first round ofmonitoringactivitiesandbasedon tentative. Theexactpositionwillbedeterminedduring monitoring inaccordance withHabitats Directive isreported. ------ther sites

Cavtat (Mrkan andBobaraIslets) Island ofMljet(Velike iMale Blace bays) Island ofHvar (Pakleni Islands) Island ofBrač (Smrka Bay) Island ofDrvenik Veli (Solinska Bay) Island ofŽirje (Stupica Bay, Tratinska Bay) Islet Tetovišnjak(Kablinac) Island ofŽut (Pinizel Bay) Island ofDugi otok(LagnićiIslets, Veli rat,Brbinjšćica Island of (Duboka Bay) Island ofSilba Island (Sveti Antebay, Južni rat) Island ofCres (Islets Veliki andMali Ćutin) Island ofKrk (Baška bay) Southern ofIstria part Kamenjak) peninsula(rt National Park Mljet(Lastovska bay, Islet Glavat) bay, Mežanj islets) In Table 1thefirstproposal ofthelistsitesfor The positionsmarked in Figure 8are only © Vedran NIKOLIĆ for theirfillingoutare inAnnexesreported IandII. Data forms Communication • Have • Forms assheettables,check listsetc. • No. 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (CroHabitat etc.)andtheformsprescribed structure of actual andprepared officialdatabases possible andminimumoffree textfields structure Suggested formsfordatacollectionandremarks -Veli rat Dugi otok-sredina Telašćica (MPA) Brač-jugozapad Lastovo (MPA) Kornati (MPA) Brijuni (MPA) to Mljet (MPA) Pakleni otoci -Šćedro Korčula-jug Šolta-zapad Hvar-sjever -Ćutin Brač-sjever -Baška Lošinj-jug Kamenjak -zapad - no latitude making misinterpretation Lokrum be Šipan Prvić Site Žut Vis user-friendly with Colour code: red – 1st priority; orange – 2nd priority; green – blue–future withdata; WFD stations WFD sites(2014-2016). orange – 2ndpriority; Colour code: priority; red –1st SINP anchoring anchoring anchoring and pressure Main needed contain because Natura 2000 Table 1. ofproposed List sites clear data (1120*) x x x x x x x x x x x x x x x x x x x x x x x of the Objectives Scientific research Clarification • No. 39 38 37 36 35 34 33 32 31 30 29 28 27 26 50 49 48 47 46 45 44 43 42 41 40 Most of the knowledge on biologicalandecological sector of the basin (Lopez yRoyosector ofthebasin(Lopez and regional monitoringprogrammes refers tothis NW Mediterranean meadows andmostofnational features of research” hastobedeleted)andwhatoutputsare awaited (ifnotthewholechapter “Scientific of speciessurveillance Lastovo (Skrivena luka) Pelješac (Marčuleti) Lastovo-lastovnjaci Elafiti (Koločep) Pelješac-Žuljana Brač-jugoistok Korčula-sjever Split (Žnjan) Mljet-sjever -jug Baška voda Rogoznica Cres-Zeča Makarska Hvar-jug Molunat Korčula Cavtat Biševo P. oceanica Site Pag Vir why also scientific is basedondataobtainedfrom urbanization urbanization urbanization urbanization urbanization urbanization pressure research Main et al. is , 2007). chosen Natura 2000 (1120*) x x x x x x x x x x x x x as a part

25 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 26 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS is notabletoevaluate density(numberofshootperm to identifyposition,depthandtypeofmeadow limits,it testing theeffectiveness ofvideographyforthe reliable method are reported, ifpilotprojects willbechosenfor canopy. case ofunvegetated areas maskedby leaflitterordense Aslo, videographycouldprovide misleadinginformation in main reasons forreduction of V., commoninCroatiansediment isvery meadows (Nikolić is covered withsediment;infact, dead Index) duetomisidentificationofdead assessmentofmeadowuncertain cover (andConservation different conditionsshouldbeexplored inorder toavoid capability ofvideographytodistinguishsubstratetypesin al. in theMediterranean yRoyo monitoringsystems(Lopez Martini and dynamicsofthe descriptorofvitality considers tobethemostimportant that scientificcommunitythroughout the Mediterranean Puhr effectiveness indetectingmeadow cover (Schultz2008; because ofitsprecision, highstatisticalpower andcost- of it isadvocated tobesuitableformappingandmonitoring toolforacoustic,aerialandsatellitemapping; ground truth meadows. Videography iscommonlyusedworldwideas statusof for assessingtheconservation the effectiveness ofvideographyasadditionalmethod Womerseleyella setacea potential influenceofalienspecies(e.g. substrate type)andvarious anthropogenic impacts. at different latitude,exposure, hydrodynamics, topography, conditions alongtheAdriatic coast(e.g.climaticdifferences density) aswell asthepresence ofdifferent environmental account thespatialvariability ofmaindescriptors(e.g.shoot should beconsidered. of Thispart research shouldtakeinto 2011) are suitableforCroatian meadows, orwhether others Montefalcone et al. NW Mediterranean meadows (Pergent if descriptorsandclassificationmethodscommonlyusedfor data (althoughbaselineexistforsomesporadicareas). Adriatic Sea, scientific research isneededtoobtainbaseline and statusof paucity ofhistoricaldataondistribution,ecologicaltraits 2006; 2008;UNEP/MAP-RAC/SPA, 2011).Because ofthe 2004; Pergent-Martini level (Pergent oceanica Index)Conservation fordefiningthestatusof , 2007;UNEP/MAP-RAC/SPA, 2011).Moreover, the Posidonia oceanica pers. comm. , 2001;Buia et al. meadows have beendefined atNW Mediterranean et al. Below, suggestionsforimplementingvideographic Further research shouldalsobeaddressed totest Additional research shouldbedevoted toassessthe The outputsexpected by the research should clarify Moreover, someindicatorshere suggested(density, , 2014). However, although videography is able , 2005)andthevariable mostcommonlyused Posidonia oceanica et al. et al. and increased sedimentationisone ofthe et al. , 1995;Moreno , 2006;2008;UNEP/MAP-RAC/SPA, ) onthemeadows. Posidonia oceanica meadows intheCroatian Adriatic , 2004;Pergent-Martini et al. , 2005;Montefalcone meadows intheCroatian Posidonia oceanica et al. et al. meadows (Pergent- matte , 2001;Buia C. cylindracea Posidonia oceanica matte , 1995;Moreno covered with whenever it et al. Posidonia , 2005; cover. et al. et al. and et 2 ) , , SCUBA-based protocol here proposed. meadows anditsconsistencywiththedirect, traditional statusof monitoring oftheconservation datalogger screen, oron thedisplayofasecondlaptop. provided by thenavigatoranddisplayed either ontheGPS are necessary. Thedriver follows a pre-planned trajectory can alsobethenavigator, andaminimumoftwopersons towfish operator. the driver In caseofcombinedexpertise, by asuitablewinchorpulleysystem. of light to the sea bottom. The towfish is raised and lowered cameras, andtwolaserpointersdirecting twoparallelbeams and aminimumof20kginweight. Attached are the two one secondintoadownloadable fileinthedatalogger. satellite) records thedifferential positionoftheboatevery the Trimble Pro-XRS orlater. TheDGPS(usingEGNOS time, as for example any Trimble DGPS device including video. TheDGPSmustbehigh(submeter)accuracy real- by recording theGPStimefrom aGPSdataloggerontothe to theboat.The GoPro videoissynchronized withtheGPS benthos simultaneously, butdoesnotsendthevideosignal camera (GoPro Hero 3)thatrecords anotherimageofthe file. Thesecondcameraisahighdensity(HD)colorvideo image real timeonthemonitorandrecords itintoanAVI laptop, where avideocapture programme displaysthevideo overlay box toa issenttoaSIIGanalog-digitalconverter the analog video display. The analog signal from the video DGPS position,depthoftheseabottom,andGPStimeonto cable directly toanonboard videooverlay box thatoverlays Power andLight)sendsananalogcolorvideosignalvia attached toatowfish. One camera(Multi SeaCam, DeepSea al. of themethodsusedby Ardizzone for 6. 5. 4. 3. 2. 1. (1997), andGaeckle

Posidonia oceanica sufficient statistical power to detectsmallchangesin the abilitytoconductquantitative imageanalysisto and identify bottom habitat with the ability to observe the low costoffieldlabour; the production ofapermanenthighresolution photographic the abilitytosamplelargeareas time(Puhr inashort anthropogenic disturbance. design of BACI studies to quantify the magnitude of to detectsmallchangeswithinsitesallows the 2008; Puhr seagrass cover atindividualsamplingsites(Schultz, al. derive habitat variables withhighprecision (Puhr Ardizzone (Ardizzone,none ofthefatigueordiscomfort 1991; record ofthesite; al. 2014); , 2014); The field protocol ofDGPS-assistedvideography The mainadvantages ofvideographicmethodare: On theboatare three persons:driver, navigator, and The towfish canbeanydesignthatisstreamlined et al. et al., , 2006); monitoringinCroatia isahybrid 2014).Theabilityofvideography et al. (2008). Two videocamerasare et al. , (2006),Norris Posidonia oceanica et et et to demonstratetheaccuracyof the latter. (ICC) is calculated between the human and machine scores cover of columns are DGPS coordinates, GPS time, depth, and digital whose rows are number of seconds into the video, and whose damage. Thisinformationwillbeentered intoaspreadsheet disturbances affecting interest, evidenceofspecifickinds of conservation such aspresence of importance, visually identifiableinformationofconservation cover of available forimageanalysis.Theseimageswillbescored for subset canvary, depending onthenumberofperson-hours using randomsampling,stratified by depth.Thesize ofthis intensities inthegreen bandtoobtaincover estimates. digitallyanalyzed using further with highaccuracy. Images with analysis whichidentifies forstudyandanalysis. parties stored, andwillbemadeavailable inperpetuitytointerested depth, speed,andGPStime.Allimagescanbepermanent second, witheachframescored withDGPScoordinates, Image analysis superimposed ontheprevious monitoringtrack. thereal-time positionaltrack GPS compassandobserving 2008). Transects are revisited by thedriver whilereading a some control over spatial variation in cover (Schultz, closely aspossibleinorder toincrease power by providing However, itisadvisedthatprevious transectsare revisited as power to detect a decline in cover of 10 % (Schultz, 2008). rather thanrevisited, whilestillproviding sufficientstatistical transects canbechosenrandomlyeachmonitoringevent, session. Because ofthehighsamplesize persite,video produces over 4kmofvideotransectsduringa3-hrfield variable, but numberatleastthree persamplingsite. no longerseen.Thenumberofperpendiculartransectsis from 1mto30depthoruntil transects run three depths:20m,15and10m.Theperpendicular Each paralleltransectisonekilometerlongandatof two kinds:1)paralleland2)perpendiculartotheisobaths. six videotransectsare takenofthesite.Thesetransectsare of requiring upto12hourssamplingtime.For astandard site, only 3hoursoffieldtime. Priority samplingsites are those hours inthefield. Standard samplingsitesare those requiring Within-site sampling video display. the linewithawinchorpulleysystemwhilemonitoring target distanceabove theseabottomby constantlyadjusting Posidonia Th E A subset of images will be chosen for human analysis A subsetofimageswillbechosenforhumananalysis All imageswillbesubjectedtodigitaltexture At aspeed of0.5meterpersecond,thismethod The towfish operatormaintainsthe the towfish at Posidonia ach samplingsessioncomprisesaminimumof3 e video data is converted intoonestillframeper e videodataisconverted , dead . Theintraclasscorrelation coefficient Posidonia Pinna nobilis matte Posidonia oceanica , type of margin, and any other , typeofmargin,andanyother cover, epiphyticcover, grazing k -means clusteringonpixel Posidonia or other macrofauna or othermacrofauna presence/absence present willbe Posidonia is by videography. and the standard error foritems 1-3 canbemeasured only Posidonia oceanica status Conservation using real-time submeter-accuracyDGPSnavigation. monitoring teamrevisits alltransectsfrom theprevious year previous monitoringevent. In the fixed-plots method, the transect ischosenindependently oftransectsfollowed the the fixed-plots designs. In therandom-plotsmethod,each methods fordefiningtrend. These are therandom-plotsand are twosamplingdesignsandtherefore twofundamental one monitoringevent toanothermonitoringevent. There Trend estimation 4. 3. 2. 1. 9. 8. 7. 6. 5.

Type oflower onthe limit.Thisisdirectly observed Relationship between depthand Depth of upperlimitofPosidonia meadow. This Depth of the lower limit of The relationship between dead matte cover anddepth, The mean cover of dead Spatial autocovariance andautocorrelation ofcover at Mean cover of Type ofupperlimit.Same commentsasfor4. images. The type may vary spatially,images. Thetypemay vary andifsothenthe image asabove. isderived fromindependent observation adifferent slope of the regression of cover with depth, where each Videography allows calculationofthisrateasthe the rate at which cover declines as depth increases. seagrassmeadowfundamental parameterofevery is indicated by theperpendiculartransects. measured asmean(±SE)oftheupperlimitdepth descriptor isalsohighlyvariable inspace,andwillbe image. each imageonthe cover. Thisisachieved ina regression ofthedepth as theintercept ofaregression ofdepthonseagrass Videography allows a robust measure of the lower limit calculated astheregression slope. autocorrelation andautocovariance. processes causingmeadow disturbance. concerning identityandfrequency ofanthropogenic fragmentation, andmayprovide criticalinformation of fragmentationthemeadow, andthescaleof depth isobaths),andallow anestimateofthedegree spatial scaleatwhichcover varies (alongandacross autocorrelation andautocovariance are measures ofthe asthemeancover.across spaceisasimportant Spatial the sampledsite,across alltransects.How cover varies transects. of eachtype. type oflower limitispresented asatableoffrequencies Th T rend isthenetchangeinanydescriptor from e following variables willbeused asindicators of conservation status.Note conservation that items7-8 Posidonia Posidonia atthesampledsite,across all cover asexpressed onthat matte Posidonia meadow Posidonia and its spatial cover. A . 27 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 28 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS sampling sitesis necessary. a paired design,asamplesize ofjust10randomlychosen all samplingsitesinCroatia atastatisticalpower of0.8in 0.1 orlower. Thustodetectan overall declineof0.1across standard deviationinmeancover persite,approximately measured inthefield(Puhr (Puhr and afieldstudyin length, asshown by bothatheoretical model(Schultz,2008) any sampledsitedefinedasasegmentofshoreline 1kmin method candetecta5-10%declineinseagrasscover within Precision andstatisticalpower ofthedescriptors slope anditsconfidenceinterval. significant trend, anditsestimateis provided by themean does not span zero, then we conclude that there has been a are calculated. confidence interval If theconfidence interval all transects,themeanslopeanditsstandard error and time iscalculated.Thisproduces asampleofslopes. Across each transect,theslopeoflinearregression against transect is calculated at eachmonitoring event. Thenfor sampling methodisstrongly advised. potential forreducing spatialsources oferror, thefixed-plots random-plots method (Schultz, 2008). Because of the sampling error thatissimilarinmagnitudetothe error inrenavigation willhave theeffectofintroducing transects donotneedtobere-navigated exactly, andany are re-navigated eachmonitoringevent. Note thatthese Fixed-plots method t difference between twomonitoringtimes,thetwo-sample is calculated. To testthesignificanceofasample mean events, the significanceprobability ofthelinear regression for significance of a linear trend across several monitoring ofsamplingormeasurementmay beanartefact error. To test The trend calculatedasabove, however, maynotbe real, but between the twomonitoringtimes. is theoverall difference inthesamplemeanofdescriptor monitoring timestobecompared, thentheestimatedtrend regression withmonitoringtime.If there are onlytwo and trend ismeasured simplyby theslopeoflinear mean forthedescriptor is calculatedeachmonitoring event, relative position.In tothatstarting thismethod,theoverall representing position,andtransectsare thestarting situated Each monitoringeventrandomcoordinates new are drawn independently ofthosetheprevious monitoringevent. plotsmethod Random statistical analysis. method willincrease statisticalpower andsimplifythe fixed-plots method(Schultz,2008);however, afixed-plots intensity ofvideography, thismethoddoesnotrequire a -test oritsnon-parametricequivalent isused. et al. I I D In thisdesign,themeanseagrasscover foreach Note largesampling that,becauseofthevery n thissamplingdesign,transectsare chosen n thissamplingdesign,thesamefixed transects , 2014). Variance componentsin uring atypical6-hourfieldday, the videography Posidonia oceanica et al. , 2014) indicate a very low, 2014)indicateavery meadow inCroatia Posidonia cover however, negligible). If it ispossibleidentifyanimpactoccurring located inareas where navigationandanchoringare interdicted or, be evaluated (e.g.inthecaseofrecreational boating,meadows exposure), buttheyare notsubjecttotheimpactthathas characteristics similartoimpactedones(e.g.substrate,depth, Cecchi of environment tobemonitored, shouldbeselected(Benedetti- impacted), reference areas thatare representative of the same type activities onmeadows supposedtobeunderpressure (i.e. Framework assignment required undertheHD. capable of detecting small changes in Posidonia cover as powerfulvideography method monitoring is avery method in cover of0.1,atanalphaprobability of0.05.Thus,the would yieldastatisticalpower of0.99detectingadecline be apublishablestudy. Anannualsamplesize of20sites because a sample size ofless than 20would generally not monitoring event across Croatia fortheanymethod, Range components E CONSERVATION STATUS ISDESCRIBED: FOR ALL FOURCOMPONENTS OF THE THE WAY OFEVALUATION NEEDED conduct theresearch above: al. Control/Impact, Underwood, 1992;1993;Benedetti-Cecchi within adefinedtimeperiod,theBACI approach (Before/After- Proposal • Basic withahypothesistobetested instructions • Proposal • Description • Description • - - - - valuation of the conservation status status valuation oftheconservation , 2004;Montefalcone

University ofZadar, Maritime Department. University ofZagreb, Faculty ofScience,Department Rudjer Boskovic Institute, CenterforMarine Research, Institute forOceanography andFisheries, Split; to dotheresearch parameters where appropriate according totheenvironmental biogeographical regions together) in 10 x 10 km grid cells (map will be prepared for all prepared for allbiogeographicalregions together) preparation ofthedistributionmap (mapwillbe of Biology; Rovinj; et al. In order toevaluate theeffectsofanthropogenic We recommend however, atleast20sitesper List ofacademicinstitutionswithcompetenceto , 2004). These meadows have environmental , 2004).Thesemeadows have environmental of of academic rules of of the the for et al. data gap closure data institutions , 2008)isrecommended. use use and and interpretation to join grids together or other interpretation subjects to filling able for et et for determination of the surface area and the distribution pattern areafor determinationofthesurface andthedistribution pattern no orminimalsampling(Evans 2011).Reliable &Arvela, data opinionwith some extrapolationand/ormodellingoronexpert datawith type 1120couldbeestimatedonthebaseofpartial (inkm thesurface complete surveys, Area covered by habitattype of thewholerangeover time. and projected onthemapgridinorder toestimatechanges event, presence/absence ofthehabitatshouldberecorded almost thewholerangeofhabitat.At eachmonitoring Mediterranean biogeographic region ofCroatia andcover distribution cellsorpolygons(Evans 2011). &Arvela, considering therecommended gapdistanceof40kmbetween be excluded totherange(Evans 2011). &Arvela, oceanica Major discontinuitiesduetonaturalfactors(e.g.for type occurs,namelytherange(Evans 2011). &Arvela, define theouterlimitsof overall area inwhichahabitat a 10xkmgrid;polygonscreated by adjacentcellswill no orminimalsampling(Evans 2011). &Arvela, opinionwith extrapolation and/ormodellingoronexpert datawithsome range couldbeestimatebasedonpartial area thesurface of maps comingfrom complete surveys, of theactualdistribution.Because ofthelackprecise - - Description • % cover atlower Lower limit the the determination of: Depth (m) , terrestrial areas and areas over 30 m depth) should limit Because of the lack of precise maps coming from The monitoringsitesare scattered throughout the Discontinuity in the range will be calculated Distribution datawillbeprovided aspresence on Range shouldbecalculatedbasedonthemap distribution pattern, areasurface Table 3. ofthemeadow Status infunctionoflower limitdepth(UNEP/MAP-RAC/SPA, 2011modified) Table 2. ofthemeadow Status infunctionoflower limitdepth(UNEP/MAP-RAC/SPA, 2011modified) Table 4. Meaningofmeadow cover thelower at limit(UNEP/MAP-RAC/SPA, 2011modified) of the incl.methodologyofanalysis progressive data > 35% > 34.2 High High High ifpossible use 2 ) area covered by thehabitat and interpretation sharp (cover >25%) 35 %to25 34.2 to30.4 Good Good Good to .P. sharp (cover <25%) of waterquality(Pergent colonisation depthisoneofthebest-known seagrassindicators the relative easewith which it can be estimatedprecisely, clarity (transparency andnutrientconcentrations) Lower limitdepth statusofthemeadows.information onconservation of following descriptorsare suggestedtobeusedgetimmediate 1994; Evans 2011). &Arvela, (Table 4,UNEP/MAP-RAC/SPA, 2009). provide informationonthehealthstatusofmeadow Cover atthelower limit 2009)isproposed in (UNEP/MAP-RAC/SPA, Table 3. on the healthstatusofmeadow. Aninterpretation Type ofthelower limit the WFD (UNEP/MAP-RAC/SPA, 2009),isreported. Table 2arecent classification,thatmeetthe requirements of oceanicae characteristic speciesoftheassociation As previous reported Specific structures andfunctions 1 to25m²assuggestedby UNEP/MAP-RAC/SPA (2011). resolution, area e.g.withminimummappedsurface rangingfrom by habitat type wouldonlybepossibleaftermappinginhigher section “Field mapping”). Areal assessmentofthearea covered of 25 %to15 Description • 30.4 to26.6 P. oceanica Moderate Moderate Moderate determine theconditionsandstatusoftypicalspecies (Funk 1927)Molinier 1958(Giaccone D As there isnobaselineforCroatia, standard thresholds Th Th ue toitswell-described relationship withwater meadows should come from mapping (see previous meadows shouldcomefrom mapping (seeprevious e percent cover ofliving e features ofthelower limitmaybeindicative of the 15 %to5 26.6 to22.8 et al. Posidonia oceanica sparse Poor Poor Poor data , 1995; Borum , 1995;Borum use and Posidonia oceanica interpretation et al. regressive istheonly < 22.8 < 5% Posidonietum Bad Bad Bad , 2004).In et al. to , 29 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 30 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS the depth,Pergent change ornegative trends thatare happeninginthehabitattype. Changes ofshootdensityover timemaybeearlyindicatorsof when measured onapluriannual time scale(Buia revealing changesduetohumaninfluence(Pergent information onvitalityanddynamicofthemeadows, also al. descriptors toassesstheecosystemhealth (Pergent-Martini Shoot density , 2005;UNEP/MAP-RAC/SPA, 2011)becauseitprovides Depth (m) 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 40 39 38 37 Th Since themeadow densityisstrongly affected by 9 8 7 6 5 4 3 2 1 e number of shoots per m Table 5. Meaningofmeadow cover thelower at limit(UNEP/MAP-RAC/SPA, 2011modified) et al. (1995)identifyfourclasses,which > 240 > 255 > 271 > 288 > 305 > 324 > 344 > 365 > 387 > 411 > 436 > 463 > 492 > 522 > 554 > 588 > 624 > 662 > 703 > 746 > 792 > 841 > 892 > 947 > 1005 > 1067 > 1133 > 111 > 118 > 125 > 133 > 141 > 149 > 158 > 168 > 179 > 189 > 201 > 213 > 227 High 2 is one of the most used is oneofthe most used 1005 to808 1067 to863 1133 to930 703to547 841to665 240 to175 255 to186 271 to198 288 to211 305 to224 324 to239 344 to255 365 to271 387 to289 411 to308 436 to328 463 to349 492 to372 522 to397 554 to423 588 to451 624 to481 662 to513 746 to584 792 to623 892 to709 947 to757 141 to100 149 to106 158 to113 168 to120 179 to128 189 to136 201 to145 213 to154 227 to164 111 to78 118 to83 125 to88 133 to94 et al. et al. Good , 2004). , 2004). , 1995) , 1995) et et MAP-RAC/SPA, 2011). suggested fortheinterpretation ofmonitoringdata(UNEP/ WFD (UNEP/MAP-RAC/SPA, 2009).Thisclassificationis good andhigh, Table 5)thatmeettherequirements ofthe Turkey) withthecreation offive classes(bad,poor, moderate, countries oftheMediterranean (Algeria, Tunisia, Libya, adapted to the meadow (Buia for eachdepth,andthatreflect theecologicalconditionsof are afunctionofthetheoretical average densitiescalculated 547to391 665to489 584 to421 623 to454 709 to526 757 to567 808 to612 863 to659 930 to727 164 to102 175 to109 186 to117 198 to125 211 to134 224 to144 239 to154 255 to165 271 to177 289 to190 308 to204 328 to219 349 to236 372 to253 397 to272 423 to292 451 to314 481 to338 513 to364 Moderate 100 to59 106 to63 113 to68 120 to72 128 to77 136 to83 145 to89 154 to95 78 to45 83 to48 88 to52 94 to55 Recently this classification has been updated and P. oceanica et al. meadows ofSouthern andEastern 391to235 489to312 421 to259 454 to284 526 to343 567 to377 612 to415 659 to456 727 to524 204 to101 219 to111 236 to122 253 to134 272 to147 292 to161 314 to177 338 to195 364 to214 , 2004). 102 to39 109 to43 117 to47 125 to52 134 to57 144 to63 154 to69 165 to76 177 to83 190 to92 68 to22 72 to24 77 to27 83 to30 89 to32 95 to36 Poor < 45 < 48 < 52 < 55 < 59 < 63 < 235 < 259 < 284 < 312 < 343 < 377 < 415 < 456 < 524 < 101 < 111 < 122 < 134 < 147 < 161 < 177 < 195 < 214 < 22 < 24 < 27 < 30 < 32 < 36 < 39 < 43 < 47 < 52 < 57 < 63 < 69 < 76 < 83 < 92 Bad decline, andvice versa. to alower level classcanbeconsidered asan indicatorof and cover, Index), shootdensityandConservation theshift interpretation scaleisavailable (i.e.lower limit depth,type & Duarte, 2008). For all the descriptors for which an due tonaturalpatchinessofseagrass growth (D conditions (Borum number ofshootsclearlyindicatesadeclinethemeadow small seasonalvariability, decrease anabrupt (>20%)inthe status (Evans 2011).For &Arvela, thedensity, duetoits componentsfortheassessmentofconservations important measured onmulti-year timescale. Trend isoneofthemost on thebasisoftemporalevolution ofthevalues ofCI status of origin (Boudouresque all thetransectsatalocalorregional scale. calculated for each depth taking into account CI values of w suggested forclassifyingCIvalues atalocalorregional scale: al. that follow the WFD requirements: according tothecriterionproposed by Montefalcone (2009) the percentage cover ofdead w to live related abundanceofdeadmatterelative totheproportional index, useful to assess the state of health of the meadows, 2001; Montefalcone index(CI)ofthemeadowsthe conservation (Moreno (Pergent-Martini on boththemacrostructure andthehealthofmeadows matte (Buia to thatnon-covered andconsistingofsand,rock ordead percentage, covered withlive plantsof IndexConservation 4. 3. 2. 1. 5. 4. 3. 2. 1. here themean(x)andstandard deviation(s)are here P is thepercentage cover ofliving (2001)andreviewed by Montefalcone

high state of conservation: CI>(x+½s). high stateofconservation: impacted meadow: (x–½s)≤CI0.9:highconservation CI between 0.7and0.9excluded:status; goodconservation low-to-moderate status:x≤CI<(x+½s); conservation CI between 0.3 and 0.5 excluded: status; poor conservation status; CI <0.3:badconservation CI between 0.5 and 0.7 excluded: moderate conservation CI between 0.5and0.7excluded: moderateconservation status; P. oceanica Th Since thepresence ofdead However, themethodproposed by Moreno Based onthevalues ofCI,meadows canbeclassified Percentage cover allows to calculate, for each LIT, P. oceanica e coverage ofseabed,expressed isthesurface asa et al. , 2004).This variable provides information andisexpressed by theformula: et al. et al. meadows have to be evaluated locally, et al. CI =P/(P+D), , 2005;Montefalcone, 2009). , 2004),regardless ofthevariability et al. , 2006);CIisanenvironmental matte , 2006), the conservation , 2006),theconservation . matte P. oceanica P. oceanica maybeofnatural et al. compared íaz-Almela (2006)is and D is et al. et , species rangeandpotentialthreats. shouldbeconsidered assessmentof justforapreliminary survey and distributionof individuals, and data coming from sucha could notbeenoughforanaccurateknowledge ofabundance be selected (Coppa Katsanevakis, 2005) andthat a proper area surveyed size should P. nobilis measurements. However, itshouldbeconsidered thatusually typical speciesshouldbedetectedinatleasttwoconsecutive assessment ofthesituation,changesinabundance possible todescribechangesinconditions.For anunfavourable comparing changesinhabitatdatathroughout thetimeitis status;onlyby baseline fortheassessmentofconservation according toHD.However, isjustthe asingleobservation meadows thatare considered infavourable stateofconservation obtained by comparingdatacomingfrom otherMediterranean habitat type, reference value of status (deadoralive). To ofthe assessthestateofpreservation the fourtransects(LITs) ofeachstationsandevaluating their be obtainedby countingthenumberofindividualsalong statusofpopulationscan of itsdensityandtheconservation P. oceanica (alien species). Presence of P Pinna nobilis some speciesthatare relevant purpose(i.e. forconservation importance ofpressuresimportance andthreats shouldberankedas: information ontheirmagnitudealocalscale,therelative Croatian coasts(VV.AA., sources of 2011)andfurther policies (positive influence)(Evans 2011). &Arvela, on pressures and threats (negative influence)andconservation structure andfunctions;future trends ofhabitatsare dependent the future trends andlikelyfuture statusofrange,area and Future prospects trends inhabitatconditions. data throughout thetime,itiseasytodescribenegative as indicated by theincreasing abundanceofalienspecies,such - - - • main • description •

C. cylindracea Low: low direct orimmediateinfluence, indirect Medium: medium direct or immediate influence, High: direct important orimmediateinfluence and/or acting onlyregionally (Evans 2011). &Arvela, influence and/or acting ofthearea/over smallpart ofthearea/actingpart onlyregionally; mainly indirect influenceand/oracting over moderate acting over largeareas; realized toavoid pressures andthreats measuresconservation to determinationof: hasapatchydistribution(Richardson Additional informationcanbeacquired by detecting Based onexistingbaselineofmainpressures along Future prospects should be evaluated by considering Degradation process withinthishabitattypeis meadows (Borum pressures ) or for potential detrimental effects on the meadows ) orforpotentialdetrimentaleffectsonthemeadows . Again,by comparingchangesinhabitat of et al. the and information , 2010); a surface of only 160 m , 2010); a surface threats . nobilis et al. andotherpositive provisions P. nobilis andtheirvalue , 2004). A gross assessment , 2004).Agross assessment is a characteristic of healthy is a characteristic of healthy use abundance could be abundance could be and interpretation et al. , 2004; , 2004; 2

31 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 32 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS for future prospects isavailable inEvans (2011). &Arvela statusofthemeadow.conservation Anevaluation matrix of mainpressures andinformationonthetrend ofthe quality over timewillprovide quantificationoftheeffects increasing future trend (Evans 2011). &Arvela, threats of low or no threats importance indicate stable or even indicates thatthefuture trend willlikelybedecreasing; 2011). chance ofhappeningare tobeconsidered (Evans &Arvela, (Evans 2011).Only threats & Arvela, that have a reasonable from sites/occurrences orotherdatasources are notavailable Changes incommunitystructure andhabitat A numberofthreats ofhighormediumimportance judgmentsshouldbeusedwhereExpert real data of managementmeasures. studies are alsosuggestedtoassessandmaximize theeffects and identifyprevention measures. BACI andconservation period, toevaluate theeffectsofanthropogenic disturbances it ispossibleidentifyimpactsoccurringwithinadefinedtime 2004; Montefalcone Impact, Underwood, 1992; 1993; Benedetti-Cecchi under investigation (Benedetti-Cecchi reference areas disturbance notexposedtotheparticular between areas characterized by thoseactivitiesandsimilar activities affect measures. Assumingthatanthropogenic and conservation on themeadows toensure iscrucial proper management The BACI approach (Before/After-Control/ Evaluating theeffectsofanthropogenic activities P. oceanica et al. meadows, differences mustbefound , 2008)isrecommended, whenever et al. , 2004). , 2004). et al. , Posidonia oceanica CANCEMI G.,DEFALCO G.,PERGENT G.,2003.Effects oforganicmatterinputfrom afishfarmingfacilityon BUIA M.C., GAMBIDAPPIANO M.,2004.Seagrass systems.Biologia Marina Mediterranea 11(suppl.1),133-183. Posidonia oceanica PERGENT G., PERGENT-MARTINI C., RUITTON S., TUNESI L. 2006. Préservation des herbiers à et conservation BOUDOURESQUE C.F., BERNARDG.,BONHOMMEP., CHARBONNELE.,DIVIACCO G.,MEINESZA., 89143-21-3. Available at:http://www.seagrasses.org. monitoring and management. EU project Monitoring and Management of European Seagrass Beds (Publ). 88 pp. ISBN: 87- BORUM J.,DUARTE C.M., KRAUSE-JENSEN D.,GREVE TM (eds.), 2004.European seagrasses:anintroduction to 0485.2006.00085.x. oceanica BORG J.A.,MICALLEF M.A., SCHEMBRI P.J., 2006.Spatio-temporal variation in thestructure ofa deep water B., CERRANOC.,BAVESTRELLO G.,2004.Hard bottoms.Biologia Marina Mediterranea 11(suppl.1),185-215. CHEMELLO R.,MILAZZO S., M.,FRASCHETTI TERLIZZI A.,PEIRANO A.,SALVATI E.,BENZONI F., CALCINAI BIANCHI C.N., PRONZATO R., CATTANEO-VIETTI CECCHI L., MORRI C., PANSINI R., BENEDETTI M., of anthropogenic impactofassemblagesandcoastalmarineenvironments. Biologia Marina Mediterranea 11(suppl.1),457-479. L.,AIROLDIBENEDETTI-CECCHI S., L.,FRASCHETTI TERLIZZI A.,2004.Experimental methods fortheassessment 11(suppl. 1),407-455. L.,2004.Experimental designandhypotesistestinginecology.BENEDETTI-CECCHI Biologia Marina Mediterranea BENACCHIO sistematicheebiologichesulleZosteraceae N.,1938.Osservazioni dell’Alto Adriatico. Thalassia3(3),3-41. Congresso dellaSocietà Italiana di Biologia Marina (SIBM),Roma, 14-16Maggio 2013. Volume Pre-print 10-14. D.,2013.LaDirettivaBELLAN-SANTINI Quadro perlaStrategia Marina (2008/56/EC).L’approccio francese. 44 96-105. DUJMOVIĆ S.,2006.Modelling spatialdistributionoftheCroatian marinebenthichabitats.Ecological Modelling 191, BAKRAN-PETRICIOLI T., ANTONIĆ O.,BUKOVEC D.,PETRICIOLI D.,JANEKOVIĆ J.,KUŠAN I.,KRIŽAN V., Državni Zavod zaZaštitu Prirode, Zagreb (ISBN978-953-7169-84-8),184pp. BAKRAN-PETRICIOLI T., 2011.Priručnik zaodređivanje prema Direktivi morskihstaništauHrvatskoj ostaništimaEU. Prirode, Zagreb (ISBN978-953-7169-31-2),56pp. +appendix. BAKRAN-PETRICIOLI T., 2007. Priručnik za inventarizaciju i praćenje stanja morskih staništa. Državni Zavod za Zaštitu www.drypis.info (ISSN1845-4976). PETERNEL H.,PETRICIOLI D., TKALČEC S.,2005.Mapping habitatsoftheRepublic ofCroatia (2000-2004),vol. 1, MATOČEC S., PERNAR R., HEĆIMOVIĆ Ž., JANEKOVIĆ I., GRGURIĆ Z., HATIĆ D., MAJOR Z., MRVOŠ D., ANTONIĆ O.,KUŠAN V., S.D.,BUKOVEC JELASKA J.,BAKRAN-PETRICIOLI D.,KRIŽAN T., GOTTSTEIN- http://www.dnr.wa.gov/Publications/aqr_nrsh_2006_07_svmp_report_final.pdf. Vegetation Monitoring Project 2006-2007Monitoring Report. Washington State ofNatural Department Resources. 95pp. GAECKLE J.,DOWTY P., BERRY H., WYLLIE-ECHEVERRIA S.,MUMFORD T., 2008.Puget Sound Submerged videography.of subtidalseagrassbedsusingunderwater Aquatic Botany, 58(3-4),269-287. NORRIS J.G., WYLLIE-ECHEVERRIA S.,MUMFORD T., BAILEY A., TURNER T., 1997.Estimatingbasalarea coverage landscape anditsreference foramonitoringplan.Marine Ecology, 27:299-309. ARDIZZONE G.D.,BELLUSCIO A.,MAIORANOL.,2006.Long-termchangeinthestructure ofa ARDIZZONE bentonicaconsistemivideocontrollati adistanza. G.D.,1991.Cartografia Oebalia, XVII(Suppl), 421-452. meadow assessed using techniques. non-destructive Marine Ecology, 27(4): 320-327. doi:10.1111/j.1439- References meadow. EstuarineCoastalandShelf Science.56:961-968. . RAMOGEpub., 1-202. Posidonia oceanica Posidonia th

33 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 34 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS ESDP, 2009.Commonpracticesforrecognition ofeuropean competencylevels forscientificdivingatwork. European 24:GB4032, doi:10.1029/2010GB003793. 2010. Seagrass communitymetabolism:assessingthecarbonsinkcapacityofseagrassmeadows. Global Biogeochem Cycles DUARTE C.M.,MARBÀN.,GACIA E.,FOURQUREAN J.W., BEGGINSJ.,BARRÓN C.,APOSTOLAKI E.T. , “Global Seagrass Research Methods”, F.T. Short &R.G.Coles edits,Elsevier publ., Amsterdam :141-153. DUARTE C.M.,KIRKMANH.,2001.Methods themeasurement fort ofseagrassabundanceanddepthdistribution.In oceanicae E.,DUARTEDÍAZ-ALMELA C.M.,2008.Management ofNatura 2000habitats.1120* effects ofdifferent magnitude. Marine Ecology Progress Series423,39-45. F.,DI CARLOL.,BADALAMENTI G.,BENEDETTI-CECCHI 2011.Response of (Italy). 143pp. +annexes. http://dspace.unitus.it/bistream/2067/996/1/gdante_tesid.pdf. Accessed 08/23/2011. Delile 1813, meadow: University Ph.D. dissertation, acase study withinasiteofcommunityimportance, of Tuscia, Viterbo DANTE G.,2010.Developmentandmanagementof ofsustainablestrategiesforconservation Mediterranea 14(4),199-205. structure ofalarge COSTANTINO G.,MASTROTOTARO F., CARLUCCI R.,MATARRESE A.,PANZA M.,2006First dataonmeadow meadows inLaMaddalena National Park (Sardinia). Biologia Marina Mediterranea 14(4),194-198. Association Sunce Technical Report, January 2012,40pp. +Annexes. GUALA I.,DICARLO G.,JAKLZ., the Assessment oftheecologicalstatus ofMediterranean French coastalwatersasrequired by the Water Framework Directive using GOBERT S.,SARTORETTO S.,RICO-RAIMONDINO V., ANDRAL B.,CHERY A.,LEJEUNEP., BOISSERY P., 2009. 27: 111-157. II. Infralitorale e Circalitorale. Proposte di aggiornamento. Bollettinodell’Accademia Gioenia di Scienze Naturali, Catania, GIACCONE G.,ALONGI G.,PIZZUTO F., COSSUA.,1994.Lavegetazione marinabentonicafotofiladel Mediterraneo: GAMULIN-BRIDA H.,1967.Thebenthicfaunaofthe Adriatic Sea. Oceanography Marine Biology Annual Review, 5:535-568. Cros National Park Mediterranean (north-western Sea). Marine Aquatic Conservation: andFreshwater Ecosystems 9:391-400. FRANCOUR P., GANTEAUME M.,1999Effectsofboatanchoringin A.,POULAIN Nature Park Lastovo Islands, Croatia, Sunce. 123pp. +Annexes. FONT GELABERT T., RAJKOVIC Ž.,JAKLZ., 2013. Organization andDevelopment ofSustainable Nautical Tourism in disturbance. Biologia Marina Mediterranea 14(4),215-219. S.,BORRIELLOFLAGELLA I.,GAMBIM.C.,BUIA M.C.,2006.Responses of context oftheEU Water Framework Directive. Ices Journal ofMarine Science,65(8):1492-1497. A.A.,2008.Descriptors fromESPLA FERNANDEZ-TORQUEMADA Y., DIAZ-VALDES F., M.,COLILLA LUNA J.L.,RAMOS- B.,SANCHEZ-LIZASO Guidelines fortheperiod2007-2012.European Topic Centre onBiological Diversity. 92pp. +appendices. EVANS D.,ARVELA 17oftheHabitats M.,2011.Assessmentandreporting Directive. underarticle Notes Explanatory & Scientific Diving Panel. Consultation Document. Version 2,22/09/09.1-7. COSSU A.,RAGAZZOLA F., S.,2006Distribution DEMELAS andecologicalconditionsof Biological AssociationoftheUnited Kingdom,pp. 1-10.doi:10.1017/S002531540999141X.(IF, 1). endangered species COPPA S.,GUALAI.,DELUCIA G.A.,MASSARO G.,BRESSANM.,2010.Density anddistributionpatternsofthe CICERO A.M.,DIGIROLAMO I.(acuradi),2001.Metodologie analitichediriferimento. ICRAM,Roma. Posidonia oceanica ). European Commission. Pinna nobilis Posidonia oceanica Rapid EasyIndex: PREI.Marine Pollution Bulletin 58: 1727-1733. withina et al., Posidonia oceanica bed alongtheSouthern Tyrrhenian coast(Mediterranean Sea). Biologia Marina Posidonia oceanica 2012a.Monitoring of (L.)Delile meadows incoastalwatersof Valencia, Spain, inthe meadow intheGulf ofOristano (Italy). Journal oftheMarine Posidonia oceanica meadows inCroatian Protected Areas. Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia oceanica Posidonia seagrassbedsinPort- growth todredging toenvironmental beds( (L.)Delile Posidonion (Linneo) oceanica MONTEFALCONE, M.,ALBERTELLI, G.,MORRI,C., BIANCHI,C.N.,2007.Urban seagrass:statusof design reveals the declineoftheseagrass MONTEFALCONE M.,CHIANTORE M.,LANZONE A.,MORRIC.,BIANCHIC.N.,ALBERTELLI G.,2008. BACI Indicators 9,595-604. MONTEFALCONE M.,2009.Ecosystem healthassessmentusingtheseagrass Experimental Marine Biology andEcology 299:51-62. beds inamarineprotected area (Italy, western Mediterranean): effectsofanchortypesindifferent anchoringstages. Journalof MILAZZO F., M.,BADALAMENTI CECCHERELLIG.,CHEMELLO R.,2004.Boatanchoringon habitats insequesteringCO W.H., SILLIMAN B.,2011.ABlueprint forBlue Carbon: Towards animproved understandingoftherole ofvegetated coastal MCLEOD E.,CHMURAG.L.,BOUILLON S.,SALMR.,BJÖRKM.,DUARTE C.M.,LOVELOCK C.E.,SCHLESINGER seagrass MAYOT N.,BOUDOURESQUE C.F., CHARBONNELE.,2006.Changeover timeofshootdensitytheMediterranean index (POMI)inthree Mediterranean regions. Marine Pollution Bulletin 64:926-931. Uncertainty analysisalongtheecologicalqualitystatusofwaterbodies:The response ofthe MASCARÓ S.,MARBÀN.,NIKOLIC O.,BENNETT V., ROMERO J.,DUARTE C.M.,ALCOVERRO T., 2012. June 2008establishingaframeworkforcommunityactioninthefieldofmarineenvironmental policy. MARINE STRATEGY FRAMEWORK DIRECTIVE2008/56/EECoftheEuropean Parliament andoftheCouncil17 GISPosidonieIntroductory guidetomethodsforselectedecologicalstudiesinmarinereserves., publ.,Fr., 2000,1-120. impact on MARCOS-DIEGO C.,BERNARDG.,GARCÍA-CHARTON J.A.,PÉREZ-RUZAFA Á.,2000.Methods forstudying Change Biology, 16:2366–2375,doi:10.1111/j.1365-2486.2009.02130.x. MARBÀ N.,DUARTE C.M.,2010.Mediterranean warmingtriggersseagrass( contamination ofplantsinidentifyingsources ofpressure. Hydrobiologia 633(1):169-179. angiosperm-based classificationsystem(BiPo) to Mediterranean coastalwaters:usingspatialanalysisanddataonmetal LOPEZ Y ROYO C.,SILVESTRI C.,SALIVAS-DECAUX M.,PERGENT G.,2009.Application G.,CASAZZA of an UNEP/MAP-RAC/SPA Publ., pp. 96-103. Mediterranean: a datawarehousing approach. In: Proceedings of the third Mediterranean Symposium on marine vegetation. LOPEZ Y ROYO C.,PERGENT G.,PERGENT-MARTINI G.,2007.Monitoring C.,CASAZZA oceanica LASAGNA R.,MONTEFALCONE M.,BIANCHIC.N.,MORRIC.,ALBERTELLI G.,2006.Morphology ofa Sea). Journal oftheMarine Biological AssociationoftheUnited Kingdom88(5):883-892. KRUŽIC P., 2008. Variations in KLEIN J., VERLAQUE M,2008.The mapping technologiesinthecontextofmarinehabitatclassification. Ices Journal of Marine Science,60(2):411-418. KENNY A.J.,CATO I.,DESPREZM.,FADER R.T.E., G.,SCHUTTENHELM ofseabed- SIDEJ.,2003.Anoverview 1, 1-9. KATSANEVAKIS S.,2005.Population ecology of thefanmussel wild faunaandflora. HABITATS DIRECTIVE 92/43/EEC. Council Directive of 21May of natural habitats and of 1992 on theConservation Second year ofsurvey. AssociationSunce Technical Report, October 2012,55pp. +annexes. GUALA I.,DICARLO G.,JAKLZ., meadow budget.Biologia underaltered Marina sedimentary Mediterranea 14(4),245-249. Posidonia oceanica facing theGenoa (Italy) citywaterfront andimplications formanagement.Marine Pollution Bulletin 54,206-213. Posidonia oceanica at itslower limit.Biologia Marina Mediterranea 14(4),250-254. 2 . Frontiers inEcology andtheEnvironment doi:10.1890/110004. meadows. In: Goñi R.,Harmelin-Vivien M.,Badalamenti F., LeDiréach L.,Bernard G.edit., Posidonia oceanica et al., Caulerpa racemosa Posidonia oceanica 2012b. Monitoring of meadow structure alongthecoastofDugi Otok Island (easternAdriatic invasion: a criticalreview. Marine Pollution Bulletin 56,205-225. induced by anchoring.Marine Pollution Bulletin 56,1637-1645. Pinna nobilis Posidonia oceanica in amarinelake.Endangered Species Research Posidonia oceanica Posidonia oceanica meadows inCroatian Protected Areas. Posidonia oceanica ) shootmortality. Global Posidonia oceanica : areview. Ecological Posidonia oceanica multivariate Posidonia Posidonia inthe 35 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 36 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS the centralAdriatic Sea using K.,OBARČANIND., MADIRAZZA A.,ŽULJEVIĆ A.,CVITKOVIĆ I.,2009.First classificationofcoastalwatersin NIKOLIĆ V., DESPALATOVIĆ M.,ALCOVERRO T., ROMERO J.,ANTOLIĆ B.,ZOKO M.,BLAŽEVIĆD.,BRAJČIĆ meadows: implicationsformonitoringstrategyandthedecision-makingprocess. Biological102,325-332. Conservation (1999). Seagrass inAustralia. 210pp. THOMAS M.,LAVERY P., COLESR.G.,1999.Monitoring andAssessmentofSeagrass. In: Butler andJernakoff (eds) (Republic ofCroatia). Project EUIPA 2007– TAIB/TAF: November 22, 2010 December 21,2011. SINP, 2012.Identification of andsetting-upofthemarinepart Natura 2000network in Croatia –marine Natura 2000 Facultédissertation, dessciencesde Tunis. 249pp. +annex. SGHAIER Y.R., 2013.Lesmagnoliophytesmarinesdela Tunisie :distribution,croissance etproduction primaire. Ph.D. power. Aquatic Botany88:228-238. SCHULTZ S.T., 2008.Seagrassvideography:Disturbance monitoringbyregimes, underwater samplingdesign,andstatistical Pollution Bulletin, 55:196-204. Posidonia oceanica ROMERO J.,MARTINEZ-CREGO B.,ALCOVERRO T., PEREZ M.,2007.Amultivariate indexbasedontheseagrass Experimental Marine Biology andEcology 299,1-16. season of recruitment of RICHARDSON C.A.,PEHARDA M.,KENNEDY H.,KENNEDY P. ANDONOFRI V., 2004.Age,growth rateand Italy. Identification sheets. Biologia Marina Mediterranea. 16(1):1-372. RELINI G.,GIACCONE G.,2009.Priority habitatsaccordino totheSPA/BIO Protocol (Barcelona Convention) present in of the Total Environment, (470-471):364-378. and integration of various seabed classification systems suitable for mapping PUHR K.,SCHULTZ S.,PIKELJ K.,PETRICIOLI D.,BAKRAN-PETRICIOLI T., application 2014.Theperformance, oceanica J.L.,SEMROUDLIZASO R.,SHEMBRIP., SHILIA., TOMASELLO A., VELIMIROV B.,2005.Descriptors ofP PANAYOTIDIS P., PEIRANO A.,PERGENT G.,PIAZZI L.,PIRROTTA M.,RELINIG.,ROMERO J.,SANCHEZ- S., CEBRIANJ.,CHARBONNELE.,CINELLIF., COSSUG.,MEINESZA.,MOLENAARH.,MANSOURH.M., A., BELSHER T., BORG J.,BOUDOURESQUE C.F., S.,BOUQUEGNEAU BOUMAZA J.M.,BUIA M.C.,CALVO PERGENT-MARTINI C.,LEONI V., PASQUALINI V., ARDIZZONE G.D.,BALESTRI E., BEDINIR.,BELLUSCIO comme indicateurbiologiquedelaqualitédumilieulittoralenMéditerranée: étatdesconnaissances.Mésogée 54,3-27. PERGENT G., PERGENT-MARTINI C., BOUDOURESQUE C.F., 1995. Utilisation de l’herbier à Mitigation, AShort Summary. Gland, Switzerland andMálaga, Spain: IUCN.40pages. SERRANO O., VERLAQUE M.,2012.Mediterranean Seagrass Meadows: Resilience andContributiontoClimateChange M., MATEO M.A.,MONTEFALCONE M.,MORRIC.,ORFANIDIS S.,PERGENT-MARTINI C.,SEMROUD R., PERGENT H.,BIANCHIC.N.,BOUDOURESQUE G.,BAZAIRI C.F., BUIA M.C.,CLABAUT P., HARMELIN-VIVIEN 359-367. aerial photographsandside-scansonar:Application oftheislandCorsica(France). EstuarineCoastalShelf Science,47: PASQUALINI V., PERGENT-MARTINI C.,CLABAUT P., PERGENT G.,1998.Mapping of Posidonia oceanica PANAYOTIDIS P., BOUDOURESQUE C.F., MARCOT-COQUEUGNIOT., 1981.Microstructure del’herbier de Workshop 09(Eds. G.Di Carlo,A.CalladineandŽuljević), p53. MORENO D.,AGUILERA P.A., CASTRO statusofseagrass( H.,2001.Assessmentoftheconservation meadow cover: acasestudyinPrelo Cove (LigurianSea, NWMediterranean). andEcology 22(1),207-217. Chemistry MONTEFALCONE, M.,LASAGNA,R.,BIANCHI,C.N.,MORRI,C.,2006.Anchoringdamageon meadows: useandapplication.Ecological Indicators 5,213-230. (POMI)toassessecologicalstatusofcoastalwatersunderthe waterframeworkdirective Marine (WFD). (Linnaeus) Delile. BotanicaMarina 24(3),115-124. Pinna nobilis Posidonia oceanica (L) in the Croatian Adriatic determined from Mg:Ca and Sr:Ca shell profiles. Journal of asbioindicatorofwaterquality. Proceedings oftheMediterranean Seagrass Posidonia oceanica (L.) Delile meadows. Science Posidonia oceanica Posidonia oceanica oioi oceanica Posidonia Posidonia oceanica osidonia using ) in-the-mediterranean http://www.eea.europa.eu/data-and-maps/figures/distribution-of-the-marine-angiosperm-posidonia-oceanica-and-zostera-sp- http://ec.europa.eu/environment/nature/natura2000/marine/docs/FAQ%20final%202012-07-27.pdf Archipelago (North Adriatic Sea, Croatia). Acta Adriatica, 46(2):3-68. ZAVODNIK D.,PALLAORO A.,JAKLINKOVAČIĆ M.,ARKO-PIJEVAC oftheSenj M.,2005.Abenthossurvey ZAVODNIK N.,1983.Prilog poznavanju flore morskihalgaicvjetnicazapadneobale Istre. Biosistematika, 9(1):1-13. Congrès delaCommissionInternationale pourl’Exploration Scinetifiquedelamer Méditerranée, 15. ZAVODNIK N., JAKLIN A., 1990. Long-Term Changes in the Northern Adriatic Marine Phanerogam du Beds.32e Rapport 22/12/2000, L327. 2000 establishingaframeworkforCommunityactioninthefieldofwaterpolicy. Official Journalofthe European Union, WATER FRAMEWORK DIRECTIVE2000/60/EEC.CouncilDirective oftheEuropean Parliament of 23October Manmon. RambollDanmark A/S(DK)andNatureBureau (UK).15pp+annexes. VV.AA., 2012.Guidelines forpreparation ofmonitoringprogrammes. Natura 2000Management andMonitoring, Natura Technical report andAnnex.Institut zaOceanografiju IRibarstvo Split. of waterstatusintransitionalandcoastaltheAdriatic Sea according totherequirements of WFD (EU/2000/60). VV.AA., 2011.Characterizationofthearea and development ofprogramme proposal andimplementationofmonitoring Mare. ISBN8888192360.159pp. VV.AA., 2008.Praterie afanerogame marine.Quaderni habitat,19.Ministero dell’Ambiente edella Tutela del Territorio edel Publ., ,UNEP(DEPI)/MED WG 359/9.1-63. Magnoliophyta intheMediterranean. Tenth Meeting ofFocal Points forSPAs Marseilles, France, 17-20May 2011,RAC/SPA UNEP/MAP-RAC/SPA, 2011.Draft Guidelines fortheStandardization ofMapping andMonitoring Methods ofMarine juin 2009,CAR/ASPPubl., UNEP(DEPI)/MED WG.331/Inf.11: 1-107+annex. A. eds.Document d’information pourlaneuvièmeréunion despointsfocauxnationauxpourlesASP, Floriana –Malte, 3–6 UNEP/MAP-RAC/SPA, surleprojet MedPosidonia. 2009.Rapport RaisC.,Pergent G.,Dupuy delaGrandrive R.,Djellouli in avariable world.Australian Journal ofEcology 18,99-116. UNDERWOOD A.J.,1993. Themechanismsofspatially replicated samplingprogrammes todetectenvironmental impacts world. Journal ofExperimental Marine Biology andEcology 161,145-178. UNDERWOOD A.J.,1992. Beyond BACI: thedetectionofenvironmental impactsonpopulationsinthereal, butvariable, Società Italiana diBiologia Marina (SIBM),Roma, 14-16Maggio 2013. Volume Pre-print 2-5. TUNESI L., 2013. La Direttiva Quadro per la Strategia Marina: della gestione. 44 la conoscenza a supporto th Congresso della 37 MONITORING PROGRAMME FOR POSIDONIA OCEANICA BEDS 38 GUALA © Ivan INFORMATION AT EACH SAMPLINGSTATION SHOOTS OF ANNEX I. FIELD SHEET FOR DETECTING THE NUMBER OF LEAF Signs ofimpact: Evidence ofmechanical pressures: Presence ofalien species: Presence of Other seagrasses: Main substrate: Meadow type: Si , mooringsitesforsmallboats e.g. anchoring,wastewater, campingarea, recreational Evident potentialpressures inthearea: coordinate systemisused) Geographical position(GPS): Depth: Sampling station: Zone: Site: Posidonion oceanicae ze ofUnit Sampling (US):

name orcode number orcode shallow (<10m),intermediate (~15m),deep(lower limit) Replicate Pinna nobilis 10 9 8 7 6 5 4 3 2 1 e.g. flat/step, continuous/discontinuous,terracedbeds,belts,stripes,patches,hills

mud/sand, yes/no, which(e.g.detachedshoots, platesof

yes/no, which(e.g. number orcode (1120)

: yes/no, which(e.g. yes (number)/no matte quadrat 40xcm Page: ___of position ofthebuoy (HTRS,oratleastmark which POSIDONIA OCEANICA , rock/coralligenous formations,mixed N yes/no, which(e.g.mooringsystems,concrete blocks,pier, chains,ropes) Cymodocea nodosa,Zostera noltii o. ofshoots … … … … … 60 15 50 67 55 Caulerpa cylindracea, Womersleyella setacea Upper limitdepth: P osition(GPS): DENSITY D epth (m) ) 7.8 8.0 7.9 7.8 7.1 7.3 … … … … matte coordinates , damagesoftrawling/anchoring) m ) Date: Lower limitdepth: Operators: Coordinator: - - P T

osition(GPS): ype: flowering, mucilage, overgrazing) computer additional information(e.g.presence of for eachreplicate record depthwithdiving N ADDITIONAL AND in blue it is reported as tables shouldbefilled astables in blueitisreported category category

name andsurname name andsurname

coordinates m N otes

ANNEX I. FIELD SHEET FOR DETECTING THE NUMBER OF LEAF SHOOTS OF POSIDONIA OCEANICA 39 AND ADDITIONAL INFORMATION AT EACH SAMPLING STATION 40 NIKOLIĆ Vedran Vedran © OTHER SPECIES AND FEATURES AT EACH SAMPLING STATION COVERAGE OF ANNEX II. FIELD SHEET FORDETECTING THE PERCENT O =Other species/features Cn = Ct = Ct = Cr = Pnd =deadP Pna = O =other correspondence ofeachcategory) along thetransect(toberecorded in point ofdiscontinuityencountered value incmcorresponding toeach i =intercept R =Rock St =Stones/Pebbles Sa =Sand M =Mud D =Dead P =Posidonia C =categories Size ofUnit Sampling (US): Geographical position(GPS): Depth: Sampling station: Zone: Site: Posidonion oceanicae

Caulerpa prolifera Caulerpa taxifolia Caulerpa cylindracea name orcode Cymodocea nodosa Pinna nobilis number orcode shallow (<10m),intermediate(~15deep(lower limit) Starting depth(m) matte Final depth(m) Pinna nobilis Replicate

alive number orcode

(1120) transect10m position ofthebuoy (HTRS,oratleastmark whichcoordinate systemisused) Page: ___of POSIDONIA OCEANICA M D D D D D D St C P P P P S S S 1000 970 940 870 830 730 710 610 530 510 475 220 195 75 20 … … 1 i O % COVERAGE C … … 2 i O , SUBSTRATES AND C in blue it is reported as tables should befilled astables in blueitisreported … … 3 i O surname Operators: surname Coordinator: Date: C

… … name and 4 i name and O

ANNEX II. FIELD SHEET FOR DETECTING THE PERCENT COVERAGE OF POSIDONIA OCEANICA, 41 SUBSTRATES AND OTHER SPECIES AND FEATURES AT EACH SAMPLING STATION Case study - Croatia

Regional Activity Centre for Specially Protected Areas (RAC/SPA)

Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - TUNISIA Tel. : +216 71 206 649 / 485 / 765 Fax : +216 71 206 490 E-mail : [email protected] www.rac-spa.org