Biogeosciences, 15, 3831–3840, 2018 https://doi.org/10.5194/bg-15-3831-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form Zachary T. Aanderud1, Trevor B. Smart1, Nan Wu2, Alexander S. Taylor1, Yuanming Zhang2, and Jayne Belnap3 1Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA 2Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Sciences, Urumqi 830011, China 3US Geological Survey, Southwest Biological Science Center, 2290 SW Resource Blvd., Moab, UT 84532, USA Correspondence: Zachary T. Aanderud (
[email protected]) Received: 15 October 2017 – Discussion started: 20 November 2017 Revised: 17 May 2018 – Accepted: 26 May 2018 – Published: 22 June 2018 Abstract. Besides performing multiple ecosystem services cant enrichment of δ15N in A. hymenoides leaves but only in individually and collectively, biocrust constituents may also cyanobacteria biocrusts translocating 15N, offering evidence create biological networks connecting spatially and tempo- of links between biocrust constituents and higher plants. Our rally distinct processes. In the fungal loop hypothesis rain- results suggest that minor rainfall events may initiate fun- fall variability allows fungi to act as conduits and reser- gal loops potentially allowing constituents, like dark septate C − voirs, translocating resources between soils and host plants. Pleosporales, to rapidly translocate N from NH4 over NO3 To evaluate the extent to which biocrust species composi- through biocrust networks. tion and nitrogen (N) form influence loops, we created a mi- 15 C 15 − nor, localized rainfall event containing NH4 and NO3 .