The Effectiveness of Computer-Based Spaced Repetition in Foreign Language Vocabulary Instruction: a Double-Blind Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Queueing-Theoretic Foundation for Optimal Spaced Repetition
A Queueing-Theoretic Foundation for Optimal Spaced Repetition Siddharth Reddy [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 Igor Labutov [email protected] Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850 Siddhartha Banerjee [email protected] School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850 Thorsten Joachims [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 1. Extended Abstract way back to 1885 and the pioneering work of Ebbinghaus (Ebbinghaus, 1913), identify two critical variables that de- In the study of human learning, there is broad evidence that termine the probability of recalling an item: reinforcement, our ability to retain a piece of information improves with i.e., repeated exposure to the item, and delay, i.e., time repeated exposure, and that it decays with delay since the since the item was last reviewed. Accordingly, scientists last exposure. This plays a crucial role in the design of ed- have long been proponents of the spacing effect for learn- ucational software, leading to a trade-off between teaching ing: the phenomenon in which periodic, spaced review of new material and reviewing what has already been taught. content improves long-term retention. A common way to balance this trade-off is spaced repe- tition, which uses periodic review of content to improve A significant development in recent years has been a grow- long-term retention. Though spaced repetition is widely ing body of work that attempts to ‘engineer’ the process used in practice, e.g., in electronic flashcard software, there of human learning, creating tools that enhance the learning is little formal understanding of the design of these sys- process by building on the scientific understanding of hu- tems. -
Benefits of Immediate Repetition Versus Long Study Presentation On
Neuropsychology In the public domain 2010, Vol. 24, No. 4, 457–464 DOI: 10.1037/a0018625 Benefits of Immediate Repetition Versus Long Study Presentation on Memory in Amnesia Mieke Verfaellie and Karen F. LaRocque Suparna Rajaram Memory Disorders Research Center, VA Boston Healthcare Stony Brook University System, and Boston University School of Medicine Objective: This study aimed to resolve discrepant findings in the literature regarding the effects of massed repetition and a single long study presentation on memory in amnesia. Method: Experiment 1 assessed recognition memory in 9 amnesic patients and 18 controls following presentation of a study list that contained items shown for a single short study presentation, a single long study presentation, and three massed repetitions. In Experiment 2, the same encoding conditions were presented in a blocked rather than intermixed format to all participants from Experiment 1. Results: In Experiment 1, control participants showed benefits associated with both types of extended exposure, and massed repetition was more beneficial than long study presentation, F(2, 34) ϭ 14.03, p Ͻ .001, partial 2 ϭ .45. In contrast, amnesic participants failed to show benefits of either type of extended exposure, F Ͻ 1. In Experiment 2, both groups benefited from repetition, but did so in different ways, F(2, 50) ϭ 4.80, p ϭ .012, partial 2 ϭ .16. Amnesic patients showed significant and equivalent benefit associated with both types of extended exposure, F(2, 16) ϭ 5.58, p ϭ .015, partial 2 ϭ .41, but control participants again benefited more from massed repetition than from long study presentation, F(2, 34) ϭ 23.74, p Ͻ .001, partial 2 ϭ .58. -
Memorization & Practice
Y O R K U N I V E R S I T Y Department of Theatre MEMORIZATION & PRACTICE THEA 2010 VOICE I Eric Armstrong [email protected] C F T 3 0 6 , 4 7 0 0 K e e l e S t . To r o n t o O N M 3 J 1 P 3 • t e l e p h o n e : 4 1 6 . 7 3 6 - 2 1 0 0 x 7 7 3 5 3 • h t t p : / / w w w. y o r k u . c a / e a r m s t r o Memorization What is Memorization? Committing something to memory is a process that all actors working outside of Improvisation need. Memory is a complicated process whereby images, sounds, ideas, words, phrases, and even times and places are encoded, so we can recall them later. To ef- fectively learn “lines,” one may use several different kinds of memory at different times in the process of encoding, storing and recalling the text at hand. The basic learning of a single line begins with you using your working memory to get the line off the page and into your head. At this stage of the process, you can repeat the line while looking at an acting partner, or moving around the space, but it won’t last more than a few seconds. The next phase is when the text gets encoded into the short-term memory. These kinds of memories will stay in your mind for a few minutes at most. -
An Evidence-Based Guide for Medical Students: How to Optimize the Use of Expanded-Retrieval Platforms
Open Access Review Article DOI: 10.7759/cureus.10372 An Evidence-Based Guide for Medical Students: How to Optimize the Use of Expanded-Retrieval Platforms Cyrus A. Pumilia 1 , Spencer Lessans 1 , David Harris 2 1. Medicine, University of Central Florida College of Medicine, Orlando, USA 2. Medical Education, University of Central Florida College of Medicine, Orlando, USA Corresponding author: Spencer Lessans, [email protected] Abstract Recommendations have been made for improving medical education based on the available evidence regarding learning. Traditional learning methods in medical education (e.g. reading from textbooks) do not ensure long-term retention. However, expanded-retrieval studying methods have been shown to improve studying efficiency. Using evidence-based practices to optimize an expanded-retrieval platform has the potential to greatly benefit knowledge acquisition and retention for medical students. This literature review was conducted to identify the best practices of expanded-retrieval platforms. Themes within learning that promote knowledge gain and retention include presentation of related categorical information, schema formation, dual-coding, concrete examples, elaboration, changes in text appearance, and interleaving. Presentation of related categorical material together may mitigate retrieval- induced forgetting (RIF). Spaced retrieval helps to reinforce schema formation by solidifying the framework the individual students form when learning the material. Dual-coding improves learning by creating more neural pathways. Multiple concrete examples can be compared by students to see their respective differences, highlighting the true underlying principle. Variation in text appearance is most useful during the initial, short-term inter-study intervals. Interleaving is a theme where different topics are combined in the same study session and is unpopular with students but shown to be successful. -
The Spaced Interval Repetition Technique
The Spaced Interval Repetition Technique What is it? The Spaced Interval Repetition (SIR) technique is a memorization technique largely developed in the 1960’s and is a phenomenal way of learning information very efficiently that almost nobody knows about. It is based on the landmark research in memory conducted by famous psychologist, Hermann Ebbinghaus in the late 19th century. Ebbinghaus discovered that when we learn new information, we actually forget it very quickly (within a matter of minutes and hours) and the more time that passes, the more likely we are to forget it (unless it is presented to us again). This is why “cramming” for the test does not allow you to learn/remember everything for the test (and why you don’t remember any of it a week later). SIR software, notably first developed by Piotr A. Woźniak is available to help you learn information like a superhero and even retain it for the rest of your life. The SIR technique can be applied to any kind of learning, but arguably works best when learning discrete pieces of information like dates, definitions, vocabulary, formulas, etc. Why does it work? Memory is a fickle creature. For most people, to really learn something, we need to rehearse it several times; this is how information gets from short‐term memory to long‐ term memory. Research tells us that the best time to rehearse something (like those formulas for your statistics class) is right before you are about to forget it. Obviously, it is very difficult for us to know when we are about to forget an important piece of information. -
Memorization Techniques
MEMORIZATION Memorization BasicsTECHNIQUES Putting information in long-term memory takes TIME and ORGANIZATION. This helps us consolidate information so it remains connected in our brains. Information is best learned when it is meaningful, authentic, engaging, and humorous (we learn 30% more when we tie humor to memory!). Rehearsing or reciting information is the key to retaining it long-term. Types of Memory There are three different types of memory: 1. Long-term: Permanent storehouse of information and can retain information indefinitely 2. Short-term: Working memory and can retain information for 20 to 30 seconds 3. Immediate: “In and out memory” which does not retain information If you want to do well on exams, you need to focus on putting your information into long-term memory. Why is Memorization Necessary? Individuals who read a chapter textbook typically forget: 46% after one day 79% after 14 days 81% after 28 days Sometimes, what we “remember” are invented memories. Events are reported that never took place; casual remarks are embellished, and major points are disregarded or downplayed. This is why it is important to take the time to improve your long-term memory. Memorization Tips 1. Put in the effort and time to improve your memorizing techniques. 2. Pay attention and remain focused on the material. 3. Get it right the first time; otherwise, your brain has a hard time getting it right after you correct yourself. 4. Chunk or block information into smaller, more manageable parts. Read a couple of pages at a time; take notes on key ideas, and review and recite the information. -
Learning Efficiency Correlates of Using Supermemo with Specially Crafted Flashcards in Medical Scholarship
Learning efficiency correlates of using SuperMemo with specially crafted Flashcards in medical scholarship. Authors: Jacopo Michettoni, Alexis Pujo, Daniel Nadolny, Raj Thimmiah. Abstract Computer-assisted learning has been growing in popularity in higher education and in the research literature. A subset of these novel approaches to learning claim that predictive algorithms called Spaced Repetition can significantly improve retention rates of studied knowledge while minimizing the time investment required for learning. SuperMemo is a brand of commercial software and the editor of the SuperMemo spaced repetition algorithm. Medical scholarship is well known for requiring students to acquire large amounts of information in a short span of time. Anatomy, in particular, relies heavily on rote memorization. Using the SuperMemo web platform1 we are creating a non-randomized trial, inviting medical students completing an anatomy course to take part. Usage of SuperMemo as well as a performance test will be measured and compared with a concurrent control group who will not be provided with the SuperMemo Software. Hypotheses A) Increased average grade for memorization-intensive examinations If spaced repetition positively affects average retrievability and stability of memory over the term of one to four months, then consistent2 users should obtain better grades than their peers on memorization-intensive examination material. B) Grades increase with consistency There is a negative relationship between variability of daily usage of SRS and grades. 1 https://www.supermemo.com/ 2 Defined in Criteria for inclusion: SuperMemo group. C) Increased stability of memory in the long-term If spaced repetition positively affects knowledge stability, consistent users should have more durable recall even after reviews of learned material have ceased. -
One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline
Florida International University College of Law eCollections Faculty Publications Faculty Scholarship 2019 Using Science to Build Better Learners: One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline Louis N. Schulze Jr. Florida International University College of Law, [email protected] Follow this and additional works at: https://ecollections.law.fiu.edu/faculty_publications Part of the Legal Education Commons Recommended Citation Louis N. Schulze, Jr., Using Science to Build Better Learners: One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline, 68 J. Legal Educ. 230 (2019). This Article is brought to you for free and open access by the Faculty Scholarship at eCollections. It has been accepted for inclusion in Faculty Publications by an authorized administrator of eCollections. For more information, please contact [email protected]. 230 Using Science to Build Better Learners: One School’s Successful Efforts to Raise its Bar Passage Rates in an Era of Decline Louis N. Schulze, Jr. I. Introduction “The wise know their weakness too well to assume infallibility; and he who knows most, knows best how little he knows.” Thomas Jefferson.1 Bar examination pass rates are plummeting. Many laws schools are searching urgently for some way to stem the tide of decline. Silver bullet cure- alls are attractive, all too often adopted, and almost never fruitful. So what should schools do? Should a school teach to the test? Induce less proficient students into not taking the bar exam?2 Reteach doctrine in a bar prep course? Begin bar prep in 1L year? Spoon-feed black-letter law? Require faculty to use only multiple- choice questions in exams? Only essay questions? The answer to all these questions is “no,” but the questions themselves miss the point—like asking a mergers and acquisitions lawyer whether her achievements resulted from taking more depos. -
References Acknowledgements
Cover Page The handle https://hdl.handle.net/1887/3134566 holds various files of this Leiden University dissertation. Author: Versteeg, M. Title: At the heart of learning: navigating towards educational neuroscience in health professions education Issue Date: 2021-01-21 Supplementary 201019_Proefschrift_naproefdruk.indd 194 23-10-2020 07:41:52 SUPPLEMENTARY Supplementary A | The used literature search term combinations. Spaced [ti] Learning [ti] Spaced learning [tw] Health professions education [tw] Spaced AND Learning OR Spaced training AND Education, Professional [Mesh] Spacing Memory Spacing training Medical educat* Retriev* Training Spaced learning Professional educat* Repetition* Educat* Spacing learning Teach* Recall Spaced interval Medical student* training Mental Spaced interval Biomedical recall learning student* [Mesh] Memory training Pharmacy student* Spaced retrieval Biology student* Spaced retrieving Dental student* Retrieval practic* Nursing student* Mass learning Undergraduate* Massed learning Graduat* Spacing effect Intern* Distributed practic* University Spacing efficacy Universities Spacing practice Resident* sessions Spacing of learning Health professional* Spacing repetition Spacing and repetition Spaced educat* Spaced test* Test-enhaned learning Testing effect* Within each column all terms are searched with the Boolean operator “OR”. 195 201019_Proefschrift_naproefdruk.indd 195 23-10-2020 07:41:52 SUPPLEMENTARY Supplementary B | Frequency distribution of research articles on spaced learning included in this scoping -
The Art of Loci: Immerse to Memorize
The Art of Loci: Immerse to Memorize Anne Vetter, Daniel Gotz,¨ Sebastian von Mammen Games Engineering, University of Wurzburg,¨ Germany fanne.vetter,[email protected], [email protected] Abstract—There are uncountable things to be remembered, but assistance during comprehension (R6) of the information, e.g. most people were never shown how to memorize effectively. With by means of verbalization, should follow suit. Due to the this paper, the application The Art of Loci (TAoL) is presented, heterogeneity of learners, the applied process and methods to provide the means for efficient and fun learning. In a virtual reality (VR) environment users can express their study material should be individualized (R7) and strike a productive balance visually, either creating dimensional mind maps or experimenting between user’s choices and imposed learning activities (locus with mnemonic strategies, such as mind palaces. We also present of control) (R8). For example, users should be able to control common memorization techniques in light of their underlying the pace of learning. Learning environments should arouse the pedagogical foundations and discuss the respective features of intrinsic motivation of the user (R9). Fostering an awareness TAoL in comparison with similar software applications. of the learner’s cognition and thus reflection on their learning I. INTRODUCTION process and strategies is also beneficial (metacognition) (R10). Further, a constructivist learning approach can be realized by Before writing was common, information could only be the means to create artefacts such as representations, symbols preserved by memorization. Major ancient literature like The or cues (R11). Finally, cooperative and collaborative learning Iliad and The Odyssey were memorized, passed on through environments can benefit the learning process (R12). -
A Curriculum for Biomedical Writing and Editing: a Second Volley
DIALOGUE ◆ A Curriculum for Biomedical Writing and Editing: A Second Volley Courses for Biomedical Writers and Editors Core Courses 5. Communication Theory and Research 1. An Overview of Biomedical Research and Publications Forms of communication (interpersonal, mass, computer-assisted) Epistemology and philosophy of science and its alternatives Classical rhetorical theory (argument, persuasion, exposition) The scientific method: biomedical research terms and concepts Diffusion of innovations and marketing communication Practices and ethical principles of animal, pharmaceutical, Research into written communication and clinical research Psychology of meaning-making and interpretation The drug-development process Effect of communication media on messages The scientific literature: journalology Organizational communication Types of biomedical communication and publication Evaluating written communication (protocol analysis, focus groups, Authorship, falsification, fraud, and plagiarism surveys, and so on) Evidence-based medicine 6. Medical Writing 2. Medical Editing Data-collection techniques (interviewing, Internet, libraries) Review of grammar, syntax, and punctuation Audience analysis Review of sentence and paragraph structures Techniques of writing Medical terminology, nomenclature, and discourse Collaborative writing Marking a manuscript, editing and proofreading techniques, and Writing original research articles: the IMRAD format queries Writing review articles, case reports, and chapters Style manuals and electronic information sources -
A Spaced-Repetition Approach to Enhance Medical Student Learning and Engagement in Pharmacology
A Spaced-Repetition Approach to Enhance Medical Student Learning and Engagement in Pharmacology Dylan Jape Monash University Jessie Zhou Monash University Shane Bullock ( [email protected] ) Monash University Research Article Keywords: pharmacology, spaced-repetition, ashcards, medical education Posted Date: July 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-625499/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Background: Pharmacology is a cornerstone of medical education as it underlies safe prescribing practices. However, medical students have reported unease regarding their perceived prociency in clinical pharmacology. Despite the signicant impetus to improve student outcomes, there is little analysis available of the techniques used by medical students to learn, retain and apply pharmacology knowledge. Methods: A mixed methods, student-focused approach was conducted to design and rene specic resources developed to address gaps in pharmacology education. This methodology comprised an anonymised scoping survey, followed by structured focus group interviews. We developed a relevant and time ecient resource to support long-term revision for academic and clinical success. These resources were released to a cohort of 100 graduate preclinical medical students who were invited at the end of year to evaluate the intervention via a subsequent anonymous survey. Results: The scoping survey received 103 complete responses. Surveys and focus group interviews revealed that only 50% of students engage in ongoing revision. The analysis identied in-semester revision of pharmacology as a signicant predictor of strategic and deep learning methods and improved quiz performance (a 5% higher score on average), compared to supercial learning methods.