Telescope Eyepieces

Total Page:16

File Type:pdf, Size:1020Kb

Telescope Eyepieces Telescope Eyepieces Mike Swanson Eyepiece Basics • The main purpose of the • For example, a scope with eyepiece is to magnify the 1000mm focal length is used image produced by the with a 10mm eyepiece, objective of the telescope. resulting in a magnification • Eyepieces come in various of 100x (1000/10). focal lengths measured in • Prices range from about $20 millimeters (mm). to several hundred dollars. • The magnification provided • Good quality eyepieces are by an eyepiece is determined “multicoated”, better quality by dividing the focal length eyepieces are “fully of the telescope (also multicoated”. measured in mm) by the • Some eyepiece sets are focal length of the eyepiece. parfocal - very little refocusing required when Scope Calculator switching from one eyepiece to another. Eyepiece Basics • Eyepieces come in three • Some eyepieces are heavy sizes: .965”, 1.25” and 2”, and unbalance small scopes. which indicates the size of • The eye relief of an eyepiece the barrel that fits into the indicates the farthest focuser tube (part of the distance your eye can be scope itself). from the first lens and still • The .965 variety is only take in the entire field of available in low quality view (FOV). eyepieces and must be • With most eyepiece designs, avoided. the shorter the focal length, • The majority of eyepieces the shorter the eye relief. are 1.25”. • If you must wear glasses • The 2” models are to allow when using a scope for a wider field of view on (necessary if you have low power eyepieces. astigmatism), a long eye relief will be required. Field of View (FOV) • The amount of sky we can • Eyepieces have a see through a telescope (or characteristic known as binoculars) is measured in Apparent FOV (AFOV). degrees and is called the • The TFOV given by a FOV or more correctly the specific eyepiece and True FOV (TFOV) telescope is calculated as: • The maximum possible AFOV TFOV is determined by the Magnification focal length of the scope and size of the “field stop”. • So if we are using a 1000mm scope and a 10mm eyepiece • Field stop is basically the with a 50 degree AFOV: inside diameter of the 50 eyepiece used, so, 2” = .5 deg eyepieces give a wider 1000/10 possible TFOV than 1.25” True Field of View eyepieces. Scope Calculator Common Eyepiece Types Kellner Usually included with intro scopes. Ok in longer • AFOV: focal lengths. Exhibits chromatic aberration and 45-50 poor performance at the edge of the FOV. • 3 lenses Orthoscopic Good eye relief at short focal lengths. Narrow • AFOV: field of view. Poor performance at the edge of 40-45 the FOV. Excels at planetary views. • 4 lenses Plossl Very good performance to the edge with few • AFOV: 50 optical flaws. Best all-around performer. • 4 lenses Moderate FOV. Poor eye relief at short focal lengths. Wide Angle Various trade names and designs. The most • AFOV: expensive class of eyepiece, prized for wide field 60-100 of view at higher magnifications. Try before you • 5 or more buy. Watch for poor sharpness at the edge, lenses difficulty positioning eye and black-outs when moving head. Some are very heavy. Long Eye Various trade names and designs. Try before you • AFOV Relief designs buy - but very nice for eyeglass wearers. Some varies by users complain of poor optical performance and type difficulty positioning eye. Eye relief typically • 5 or more 20mm. lenses Zoom Eyepieces Pros Cons • Zoom eyepieces allow you • Most have very narrow field to twist the barrel of the of view at lower magnifica- eyepiece to adjust its focal tion – 40 degrees or possibly length, thereby adjusting the less – just when you want a magnification. wider field of view. • Very convenient for tuning • Often, optical quality is in to just the right lower than even a budget magnification for a given Plossl eyepiece. object. • Some are mechanically a • Can save you money – like nightmare - sloppy design, having multiple eyepieces, hard to twist, etc. all in one. Be sure to try before you buy! Warning, Warning!!! There are some designs not previously mentioned, and they are to be avoided. These are some of the earliest eyepiece designs and exhibit many serious optical flaws. They are often shipped with department store scopes: • Huygenian - usually marked as H4 (Huygenian 4mm) • Ramsden - usually marked as R20 (Ramsden 20mm) Barlows and Magnifiers • A Barlow lens effectively • Better Barlow lenses sport stretches the focal length of multicoated optics, precise any scope resulting in higher mechanical tolerances, and magnification from any effective internal blackening. given eyepiece. • Typical Barlows have 2 • The Barlow is inserted into lenses, but better models the eyepiece holder and the include a third lens for edge eyepiece is then inserted into correction and reduced the Barlow. chromatic aberrations. • Barlow lenses are • TeleVue Powermates (4 lens designated by their elements) – available in 2x, magnification factor – 2x, 2.5x, 4x and 5x – are similar 3x, etc. in concept, but provide the best in image fidelity and do not extend the eye relief of the eyepiece. Binoviewers • You have two eyes...use • The greatly added weight them! may cause balance problems • Binoviewers fit into the for some telescopes/mounts. telescope’s eyepiece holder • Problems merging images and has holders for two can be caused by eyepieces. mismatched or poor quality • Prisms inside the binoviewer eyepieces, uncollimated split the light so that half goes to each eyepiece. binoviewer or inability to position the eyepieces close • The added distance between the eyepieces and the focal enough for your plane of the telescope may interpupillary distance. make focusing impossible • Less expensive models may without an adapter. result in vignetting of wide • Pairs of identical eyepieces field images are needed. • Need room for your nose! Clear Skies! Back.
Recommended publications
  • Ira Sprague Bowen Papers, 1940-1973
    http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington.
    [Show full text]
  • Tele Vue's New Eyepiece Field Tested
    EQUIPMENT REVIEW The Ethos offers an ultrawide field of view at high power. ⁄ ⁄ ⁄ BY STEPHEN JAMES O’MEARA Tele Vue’s new eyepiece field tested When I first heard about Tele Vue Optics’ 13mm Ethos eyepiece with its 100° apparent field of TELE VUE ETHos EYEPIECE Apparent field of view: 100° view, I didn’t realize its significance or potential. Not until Focal length: 13mm I placed the eyepiece in my 5-inch Tele Vue NP-127 f/5.2 Eye relief: 15mm Barrel size: 2" and 11⁄4" refractor did I discover that, like Alice, I had gone through Weight: 1.2 lbs. (545g) Accepts: Tele Vue DIOPTRX astigmatism the looking glass and entered a new world south. Orange Antares sat on the eastern corrector of visual wonder. And that’s what I’d like to edge of the field, while blue Sigma (σ) Scor- Price: $620 share with you: the awe and beauty of the pii shone equidistant to the northwest. Ethos experience. I found the view “as dif- All these objects stood out against a ferent as possible.” backdrop of milky starlight, scrubbed in also of NGC 6144, which was now trans- places by streaks of dim nebulosity. The formed into a distinct globe with irregular A celestial window view was worthy of an artist’s brush. starlit edges and a slightly condensed core. My observing experience began with the When I switched over to the Ethos, I The “wow” factor of observing these magnitude 5.6 globular cluster M4 in Scor- immediately became disoriented. Here was objects magnified in a wide field of view is pius.
    [Show full text]
  • Tele Vue--102 Operating Guide.Pdf
    Tele Vue®-102-102-102 Operating Guide 880mm f/8.6 2-ELEMENT APO REFRACTOR Thank you for purchasing the Tele Vue-102. This 4” aperture telescope has an 880mm focal length f/8.6 APO doublet diffraction-limited objective. WARNING: NEVER try to look at the sun or point the telescope toward or near the sun without professional solar observing equipment rigidly secured in front of the objective lens. When observing the sun with the proper filters, use only the Tele Vue “Sol-Searcher” (SSF-1006) for finding the Sun. Remove any other finding devices such as Starbeam from the telescope. Instant and permanent eye damage may result from viewing the sun directly, even during a solar eclipse, or when viewing through thin clouds, or when the sun is near the horizon. Standard features of the optical tube assembly (O.T.A.) include: sliding dew shield, screw-on cover, 2” focuser, and custom hard-shell case. The Complete Package also includes a 2” Everbrite diagonal, 2” to 1¼” adapter, Ring Mount, and Plössl eyepiece. Mounting - The Tele Vue Ring Mount permits mounting to the Tele Vue Gibraltar, heavy duty camera tripods or equatorial mounts using Tele Vue adapters (consult your Tele Vue dealer). You will receive the two ¼-20 studs, wing knobs, Allen wrench and complete mount assembly instructions with the mount. Finders - We particularly recommend using the Starbeam reflex sight (part# SFT-2003) to complement the 3o field of the telescope and attaches directly to the Ring Mount. The case has a cutout for the Starbeam. The Quick Release Universal Finder Bracket (QFM-1008) holds a traditional 50mm finderscope and also attaches to the mount ring channels.
    [Show full text]
  • Evaluating and Selecting Astronomical Eyepieces Gary J
    Observing Special Interest Group Session 5 – November 18, 2020 Hello everyone! It is almost time for another TAS Observing Special Interest Group (ObSIG) meeting, which will happen at 7:00 PM on Nov. 18th. I hope that all of you are well and have found time to do a lots of observing. This month we will start with a question and answer session. Please feel free to ask any question that has been holding you back from observing or would help you understand any technical issue that would help you observe better. Whaz up? What can you see tonight and the next few weeks? By Chaz Hafey What has the group been observing lately? I really hope that we have lots of people who have lots to share. Next, our guest speaker, Gary Carter, has a special presentation on eyepieces. The talk will cover how they developed, the way they are constructed, and what they can do and cannot do in a telescope. The presentation is in a pdf form so you can follow along. Second, there is a bonus spreadsheet of all the eyepieces currently on the market at this time. After the meeting a link to tooth the Power Point and spreadsheet will be posted on our TAS/ ObSIG web page. I would advise that you look over this presentation before Wednesday, if you have time, because there is a lot of very good information to take in here and it is going to come at you pretty fast. Best Regards Lloyd Lashbrook Texas Astronomical Society of Dallas 6001 Frontier Ln.
    [Show full text]
  • The Celestron Edgehd a Flexible Imaging Platform at an Affordable Price
    A FLEXIBLE IMAGING PLATFORM AT AN AFFORDABLE PRICE Superior flat-field, coma-free imaging by the Celestron Engineering Team Ver. 04-2013, For release in April 2013. The Celestron EdgeHD A Flexible Imaging Platform at an Affordable Price By the Celestron Engineering Team ABSTRACT: The Celestron EdgeHD is an advanced, flat-field, aplanatic A skilled optician in a well-equipped optical shop can reliably series of telescopes designed for visual observation and imaging produce near-perfect spherical surfaces. Furthermore, by with astronomical CCD cameras and full-frame digital SLR comparing an optical surface against a matchplate—a precision cameras. This paper describes the development goals and reference surface—departures in both the radius and sphericity design decisions behind EdgeHD technology and their practical can be quickly assessed. realization in 8-, 9.25-, 11-, and 14-inch apertures. We include In forty years of manufacturing its classic Schmidt-Cassegrain cross-sections of the EdgeHD series, a table with visual and telescope, Celestron had fully mastered the art of making imaging specifications, and comparative spot diagrams for large numbers of essentially perfect spherical primary and the EdgeHD and competing “coma-free” Schmidt-Cassegrain secondary mirrors. designs. We also outline the construction and testing process for EdgeHD telescopes and provide instructions for placing sensors In addition, Celestron’s strengths included the production of at the optimum back-focus distance for astroimaging. Schmidt corrector plates. In the early 1970s, Tom Johnson, Celestron’s founder, perfected the necessary techniques. Before Johnson, corrector plates like that on the 48-inch 1. INTRODUCTION Schmidt camera on Palomar Mountain required many long The classic Schmidt-Cassegrain telescope (SCT) manufactured hours of skilled work by master opticians.
    [Show full text]
  • Delos 14 Pkg.Pdf
    WARRANTY REGISTRATION FORM We sincerely thank you for your purchase and wish you years of pleasure using it! Tele Vue Warranty Summary Eyepieces, Barlows, Powermates, & Paracorr have a “Lifetime Limited” warranty, telescopes & acces- sories are warranted for 5 years. Electronic parts are warranted for 1 year. Warranty is against defects in material or workmanship. No other warranty is expressed or implied. No returns without prior authoriza- tion. Lifetime Limited Warranty details online: http://bit.ly/TVOPTLIFE 5-Year/1-Year Warranty details online: http://bit.ly/TVOPTLIMITED Keep For Your Records Dealer: ________________________________ City/State/Country: ______________________ Date (day/month/yr): ______/______/________ 14.0 Delos (EDL-14.0) Please fill out, cut out, and mail form below within ® 2-weeks of product purchase. Please include copy of sales receipt that has your name, the Tele Vue 32 Elkay Drive dealer name, and product name. Chester, NY 10918-3001 Cut out mailing address at left, tape to envelope, insert form & sales receipt in envelope and apply U.S.A. sufficient postage to envelope. 14.0 Delos (EDL-14.0) How did you learn about this product? c Dealer c Friend c Tele Vue Blog c CloudyNights.com c TeleVue.com ______________________________________ c Social Media/Magazine/Other(s): Name Last First ______________________________________ Street Address What made you decide to buy this and your com- ments after using the product? ______________________________________ City State/Province ______________________________________ Postal Country Code Email*: _________________________________ Purchase Information Phone: _________________________________ Dealer: ________________________________ Astro Club: ____________________________ City/State/Country: ______________________ *c Check to receive email blog / newsletter Date (day/month/yr): ______/______/________ DELOS EYEPIECE INSTRUCTIONS Thank you for purchasing a Tele Vue Delos eyepiece.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Tele Vue-76 Operating Guide
    Tele Vue® -76 Operating Guide 480mm f/6.3 2-ELEMENT APO REFRACTOR Thank you for purchasing the Tele Vue-76. We hope it brings great enjoyment to your observing ex- perience. The wonderfully versatile hand-built 3” aperture telescope features a diffraction limited, 480mm focal length, f/6.3 APO doublet objective which delivers razor sharp images sure to please you for years to come and wherever you observing interests lead you. WARNING: NEVER try to look at the sun or point the telescope toward or near the sun without professional solar observing equipment rigidly secured in front of the objective lens. When observing the sun with the proper filters, use only the Tele Vue “Sol-Searcher” (SSF-1006) for finding the Sun. Remove any other finding devices such as Starbeam from the telescope. Instant and permanent eye damage may result from viewing the sun directly, even during a solar eclipse, or when viewing through thin clouds, or when the sun is near the horizon. Standard features of the optical tube assembly (O.T.A.) include: sliding dew shield, screw-on cover, 2” rack and pinion focuser with 10:1 reduction, and custom padded carrying bag. Accessories TV-76 Accessory Package - includes a 2” Everbrite diagonal, 2” to 1¼” adapter, Ring Mount, Telescope Balance Adapter, and DeLite eyepiece. Mounting - The optional Tele Vue Ring Mount (available separately or in the package) permits mounting to the Tele Vue Gibraltar, Panoramic, and Tele-Pod mounts, or heavy duty camera tripods. You will receive the two ¼-20 studs, wing knobs, Allen wrench and complete mount assembly instructions with the mount.
    [Show full text]
  • To Photographing the Planets, Stars, Nebulae, & Galaxies
    Astrophotography Primer Your FREE Guide to photographing the planets, stars, nebulae, & galaxies. eeBook.inddBook.indd 1 33/30/11/30/11 33:01:01 PPMM Astrophotography Primer Akira Fujii Everyone loves to look at pictures of the universe beyond our planet — Astronomy Picture of the Day (apod.nasa.gov) is one of the most popular websites ever. And many people have probably wondered what it would take to capture photos like that with their own cameras. The good news is that astrophotography can be incredibly easy and inexpensive. Even point-and- shoot cameras and cell phones can capture breathtaking skyscapes, as long as you pick appropriate subjects. On the other hand, astrophotography can also be incredibly demanding. Close-ups of tiny, faint nebulae, and galaxies require expensive equipment and lots of time, patience, and skill. Between those extremes, there’s a huge amount that you can do with a digital SLR or a simple webcam. The key to astrophotography is to have realistic expectations, and to pick subjects that are appropriate to your equipment — and vice versa. To help you do that, we’ve collected four articles from the 2010 issue of SkyWatch, Sky & Telescope’s annual magazine. Every issue of SkyWatch includes a how-to guide to astrophotography and visual observing as well as a summary of the year’s best astronomical events. You can order the latest issue at SkyandTelescope.com/skywatch. In the last analysis, astrophotography is an art form. It requires the same skills as regular photography: visualization, planning, framing, experimentation, and a bit of luck.
    [Show full text]
  • A Wide-Field Imager's Dream Scope
    EQUIpmEnt REVIEW Tele Vue’s NP101is delivers ultra-sharp images. ⁄ ⁄ ⁄ BY JIM BURNELL A wide-field imager’s dream scope changing focus thanks to a four-point collar As CCD chips have grown in size, so built into the focuser’s drawtube. too have the demands they place on telescopes. In 2004, Tele More than a scope Vue Optics of Chester, New York, started work on a new The “is” series has a comprehensive set of design to address this demand. The Imaging System (“is”) imaging accessories. Among them is a set series provides a suitable image field for use with these chips. of camera adapters, a 0.8x focal reducer, and a single-element large-field corrector I participated in the development of the minimize vignetting (shadowing of the (needed only for the largest CCD chips). “is” series as a prototype-tester. During field that shows up as dark edges on Spacer rings go between the focal reducer evaluation, I imaged with each of the images) on a focal plane up to 2" (51.9mm) or large-field corrector and the scopes using several different CCD cam- across. Its focuser has an entrance aperture CCD chip to optimize eras. I took images of dense star fields from of 3" (76mm) and a full 2.4" (61mm) of performance. my observatory, which I scrutinized clear aperture throughout its length. intensely to assess the image quality. Mechani- cally, Tele Vue’s The “is” series new focuser Tele Vue’s “is” series consists of the TV-60is can support the (a 60mm f/6 APO doublet), the NP101is (a heaviest CCD 101mm f/5.4 four-element Nagler-Petzval), camera without the NP127is (a 127mm f/5.2 four-element flexing.
    [Show full text]
  • Historyofthetelescope
    HISTORY OF THE TELESCOPE Pedro Ré http://pedroreastrophotography.com/ Contents Joseph von Fraunhofer (1787 - 1826) and the Great Dorpat refractor .................................................. 3 Alvan Clark (1804-1887), George Bassett Clark (1827-1891) and Alvan Graham Clark (1832-1897): American makers of telescope optics. .................................................................................................. 13 William Parsons (1800-1867) e o Leviatã de Parsonstown (in Portuguese) ......................................... 21 O Telescópio de Craig (1852) (in Portuguese) ...................................................................................... 29 The 25-inch Newall Refractor ............................................................................................................... 37 The Kew Photoheliograph ..................................................................................................................... 43 O Grande Telescópio de Melbourne (in Portuguese) ........................................................................... 51 O Grande Refractor da Exposição de Paris (1900) (in Portuguese) ...................................................... 61 William Lassell’s (1799-1880) Telescopes and the discovery of Triton ................................................ 71 James Nasmyth’s (1808-1890) telescopes ............................................................................................ 77 The 36-inch Crosley Reflector ..............................................................................................................
    [Show full text]
  • A Barlow Lens Increases the Focal Length of a Telescope Without Increasing the Physical Length Correspondingly
    A Barlow lens increases the focal length of a telescope without increasing the physical length correspondingly. It is a useful way of obtaining higher magnifications without using very short focal length eyepieces. Barlow lenses used to be sold with a specified focal length. The lens was fitted into a cell, within a tube that could be slid into the drawtube. The increase in the focal length could be varied by altering the separation between the Barlow lens and eyepiece. Now, because telescope focusers tend not to have drawtubes, they are sold with a specified, and usually fixed, amplification. Spacer tubes may be supplied to change the amplification. The Barlow lens is negative, and needs to be achromatized, to maintain the spherical and chromatic correction of the telescope objective. The change in the focal length is given by the universal lens formula: 1 1 1 = − f u v where f is the lens focal length v is the object distance u is the image distance € Defining Barlow lens parameters as the negative focal length B, distance inside the prime focus D, and separation between Barlow lens and effective focus S, 1 1 1 = − B S D € and when the negative focal length B is known, can be rearranged in terms of D: SB D = S + B S Image amplification is given by A = D € from which S = B(A −1) The increase in telescope€ tube length is S − D. The Barlow lens cannot be€ placed inside the prime focus by more than its focal length. If placed at its focal length inside prime focus the effective focus becomes infinite.
    [Show full text]