Water Chestnut (Trapa Natans) ERSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimum Dietary Diversity for Women a Guide to Measurement
FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S. -
Sedges in Our Wetlands Typha Latifolia Schoeneplectus (Scirpus) Acutus • Native, Common, Sedge Family, up to 10’ Tall and S
TULE (COMMON and CALIFORNIA) CATTAIL, COMMON/BROAD-LEAVED BULLRUSH (COMMON and SOUTHERN) Sedges in Our Wetlands Typha latifolia Schoeneplectus (Scirpus) acutus • Native, common, sedge family, up to 10’ tall and S. californicus • Wetland Obligate in fresh water up to 0.8 m • Native, common, sedge family, up to10’ tall “Sedges have edges. Rushes are round. depth • Wetland Obligate, in standing freshwater Grasses have knees that bend to the ground. ” • Intrudes into marshes when salinity decreases marshes, can tolerate slight salinity Description: The Cyperaceae are a family of graminoid (grass-like), monocot- • Can block channels, but lays down in high flow • Rhizomatous, dense monotypic colony yledonous flowering plants known as sedges. The family is large, with some 5,500 • Used as a bioremediator to absorb pollutants known species described in about 90 genera, the largest being the "true sedges" ge- • Terminal panicle inflorescence nus Carex with over 2,000 species. The stems of Cyperaceae are often triangular • Can be weaved into baskets, mats, seats, and • California Tule – bright green triangular stems (found in and mostly solid, whereas those of grasses are never triangular and are usually hol- binding for tule canoes ECWRF ponds) low except at the nodes. Sedges differ from grasses in many features, most obvious- Ethnobotany: All parts of the cattail are edible ly in their sheaths and the arrangement of the leaves on the stem. The leaves are ar- • Common Tule – grey green round stem (found in Shollen- when gathered at the appropriate stage of growth. ranged such that they spiral around the stem in 3-ranks and have a basal portion that berger Park channel) The young shoots are cut from the rhizomes sheaths the stem. -
Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again. -
NDVI As a Proxy for Estimating Sedimentation and Vegetation
remote sensing Article NDVI as a Proxy for Estimating Sedimentation and Vegetation Spread in Artificial Lakes—Monitoring of Spatial and Temporal Changes by Using Satellite Images Overarching Three Decades Loránd Szabó 1,*, Balázs Deák 2 , Tibor Bíró 3, Gareth J. Dyke 4 and Szilárd Szabó 1 1 Department of Physical Geography and Geoinformation Systems, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; [email protected] 2 MTA-ÖK Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4., 2163 Vácrátót, Hungary; [email protected] 3 Department of Regional Water Management, National University of Public Service Faculty of Water Sciences, Bajcsy-Zsilinszky 12-14., 6500 Baja, Hungary; [email protected] 4 Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-52-512900 (ext. 22326); Fax: +36-52-512945 Received: 29 March 2020; Accepted: 3 May 2020; Published: 6 May 2020 Abstract: Observing wetland areas and monitoring changes are crucial to understand hydrological and ecological processes. Sedimentation-induced vegetation spread is a typical process in the succession of lakes endangering these habitats. We aimed to survey the tendencies of vegetation spread of a Hungarian lake using satellite images, and to develop a method to identify the areas of risk. Accordingly, we performed a 33-year long vegetation spread monitoring survey. We used the Normalized Difference Vegetation Index (NDVI) and the Modified Normalized Difference Water Index (MNDWI) to assess vegetation and open water characteristics of the basins. -
Juglans Nigra Juglandaceae L
Juglans nigra L. Juglandaceae LOCAL NAMES English (walnut,American walnut,eastern black walnut,black walnut); French (noyer noir); German (schwarze Walnuß); Portuguese (nogueira- preta); Spanish (nogal negro,nogal Americano) BOTANIC DESCRIPTION Black walnut is a deciduous tree that grows to a height of 46 m but ordinarily grows to around 25 m and up to 102 cm dbh. Black walnut develops a long, smooth trunk and a small rounded crown. In the open, the trunk forks low with a few ascending and spreading coarse branches. (Robert H. Mohlenbrock. USDA NRCS. The root system usually consists of a deep taproot and several wide- 1995. Northeast wetland flora: Field office spreading lateral roots. guide to plant species) Leaves alternate, pinnately compound, 30-70 cm long, up to 23 leaflets, leaflets are up to 13 cm long, serrated, dark green with a yellow fall colour in autumn and emits a pleasant sweet though resinous smell when crushed or bruised. Flowers monoecious, male flowers catkins, small scaley, cone-like buds; female flowers up to 8-flowered spikes. Fruit a drupe-like nut surrounded by a fleshy, indehiscent exocarp. The nut has a rough, furrowed, hard shell that protects the edible seed. Fruits Bark (Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office produced in clusters of 2-3 and borne on the terminals of the current guide to plant species) season's growth. The seed is sweet, oily and high in protein. The bitter tasting bark on young trees is dark and scaly becoming darker with rounded intersecting ridges on maturity. BIOLOGY Flowers begin to appear mid-April in the south and progressively later until early June in the northern part of the natural range. -
Int. J. Biosci. 2017
Int. J. Biosci. 2017 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 11, No. 4, p. 144-149, 2017 RESEARCH PAPER OPEN ACCESS Ability of local species plant in surface flow constructed wetland to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in sasirangan wastewater Nopi Stiyati Prihatini*1, Jumar2, Rima Sari Arisnawati1, Raudhyna Zata Nadhillah1, Romadhini Putri Wulandari1, Dwi Apriliani Fazriati1, Soemarno3 1Department of Environmental Engineering, Lambung Mangkurat University, Indonesia 2Department of Agrotechnology, Lambung Mangkurat University, Indonesia 3Department of Soil Sciences, University of Brawijaya, Malang, Indonesia Key words: BOD, COD, Constructed wetlands (CW), Sasirangan http://dx.doi.org/10.12692/ijb/11.4.144-149 Article published on October 21, 2017 Abstract Sasirangan wastewater has characteristics of high pH as well as high level of biochemical oxygen demand(BOD)and chemical oxygen demand(COD). Sasirangan industries produce large amount of wastewater, which then is directly discarded around the environment without treatment processes. The effect afterward is the oxygen supply in the water diminishes and eventually triggers the activity of anoxic-anaerobic microorganisms that produces odors. Constructed wetlands are able to become the alternative to waste treatment technology at the economical household scale industries. This study was conducted to determine the ability of the removal of BOD and COD in the sasirangan effluent with constructed wetlands (CW) surface flow system using the batch method. Plants used in CW is Hydrilla verticillata, purun tikus (Eleocharis dulcis) and lotus (Nelumbo nucifera). CW was running for 0, 3, 6, 9 and 12 days. -
Flora.Sa.Gov.Au/Jabg
JOURNAL of the ADELAIDE BOTANIC GARDENS AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY flora.sa.gov.au/jabg Published by the STATE HERBARIUM OF SOUTH AUSTRALIA on behalf of the BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM © Board of the Botanic Gardens and State Herbarium, Adelaide, South Australia © Department of Environment, Water and Natural Resources, Government of South Australia All rights reserved State Herbarium of South Australia PO Box 2732 Kent Town SA 5071 Australia J. Adelaide Bot. Gard. 1(1) 55-59 (1976) A SUMMARY OF THE FAMILY LYTHRACEAE IN THE NORTHERN TERRITORY (WITH ADDITIONAL COMMENTS ON AUSTRALIAN MATERIAL) by A. S. Mitchell Arid Zone Research Institute, Animal Industry and Agriculture Branch, Department of the Northern Territory, Alice Springs, N.T. 5750. Abstract This paper presents a synopsis of the nomenclature of the family Lythraceae in the Northern Territory. Keysto the genera and species have been prepared. The family Lythraceae has been neglected in Australian systematics, andas a result both the taxonomy and nomenclature are confused. Not since the early work of Koehne (1881, 1903) has there been any major revision of the family. Recent work has been restricted to regional floras (Polatschek and Rechinger 1968; Chamberlain 1972; Dar 1975), with Bentham's Flora (1886) being the most recenton the family in Australia. From a survey of the available literature the author has attempted to extract all the relevant names applicable to Australian material and to present them solelyas a survey of the nomenclature of the group. No type material has beenseen, and the only material examined was that lodged in the Department of the Northern Territory Herbariaat Alice Springs (NT) and Darwin (DNA). -
Go Nuts! P2 President’S Trees Display Fall Glory in a ‘Nutritious’ Way Report by Lisa Lofland Gould P4 Pollinators & Native Plants UTS HAVE Always Fascinated N Me
NEWSLETTER OF THE NC NATIVE PLANT SOCIETY Native Plant News Fall 2020 Julie Higgie, editor Vol. 18, Issue 3 INSIDE: Go Nuts! P2 President’s Trees Display Fall Glory in a ‘NUTritious’ Way Report By Lisa Lofland Gould P4 Pollinators & Native Plants UTS HAVE always fascinated N me. I was a squirrel for a while when I P6 Book Review was around six years old. My best friend and I spent hours under an oak tree in a P10 Habitat Report neighbor’s yard one autumn, amassing piles of acorns and dashing from imagined preda- P12 Society News tors. So, it seems I’ve always known there’s P14 Scholar News nothing like a good stash of nuts to feel ready for winter. P16 Member It’s not surprising that a big nut supply might leave a winter-conscious Spotlight beast feeling smug. Nuts provide fats, protein, carbohydrates, and vit- amins, along with a number of essential elements such as copper, MISSION zinc, potassium, and manganese. There is a great deal of food value STATEMENT: in those little packages! All that compactly bundled energy evolved to give the embryo plenty of time to develop; the nut’s worth to foraging Our mission is to animals assures that the fruit is widely dispersed. Nut trees pay a promote the en- price for the dispersal work of the animals, but apparently enough sur- vive to make it worth the trees’ efforts: animals eat the nuts and even joyment and con- bury them in storage, but not all are retrieved, and those that the servation of squirrels forget may live to become the mighty denizens of our forests. -
Diversity of Wisconsin Rosids
Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white -
Crapemyrtle Scientific Name: Lagerstroemia Indica Order
Common Name: Crapemyrtle Scientific Name: Lagerstroemia indica Order: Myrtales Family: Lythraceae Description Crapemyrtle is a popular deciduous ornamental plant chosen for its thin, delicate, crinkled petals, which bloom quite largely in pinnacles and come in shades of white, purple, lilac, pink, and (true) red. The bark of this favorable woody plant has a smooth texture, and is the base of beautiful thick foliage composed of leaf blades measuring from 2-4 inches in length in opposite arrangement and pinnate venation. They are oval shaped and green during the summer and change to orange, red, and yellow in fall months. Crapemyrtle produces a small fruit, less than .5 inches, which is hard, tan/brown, and round in shape. Growth Habit Crapemyrtles can be used as a shrub or a small tree. They can come in a variety of sizes from 18 inches to around 30 feet. Hardiness Zone(s) Crapemyrtle can grow in the USDA zones 7 through 9. It is native to southern China, Japan, and Korea, but has been introduced mainly to the southern United States. They need plenty of heat to bloom, thus most start blooming between the middle of May and early June when the weather is consistently warm, flowering for 90-120 days. Culture Crapemyrtles require full sun, at least 8 hours of sun a day, to grow to their best potential. They are heat tolerant, and bloom well in the summer heat, and continue into fall. As well as being heat tolerant, they are also drought resistant, growing best in moist, well-drained soil. Overwatering is often detrimental to the crapemyrtle, especially when planted in the summer. -
Eleocharis Dulcis) and GIANT MOLESTA (Salvinia Molesta) EXTRACT
Sys Rev Pharm 2020;11(12):916-924 A multifaceted review journal in the field of pharmacy PHYTOCHEMICAL COMPOUNDS AND ANTIOXIDANT ACTIVITY OF WATER CHESTNUT (Eleocharis dulcis) AND GIANT MOLESTA (Salvinia molesta) EXTRACT BAEHAKI, Ace1*; TAMPUBOLON1, Nindi Herawati, LESTARi; Shanti Dwita1 1Sriwijaya University, Faculty of Agriculture, Department of Fisheries Product Technology. Indonesia. * Corresponding author e-mail: acebaehaki_thi@unsri,ac,id ABSTRACT The purpose of this research was to observe of phytochemical The results of antioxidant activity with the water chesnut and giant content and antioxidant activity of chinese water chesnut molesta extracts had very weak IC50 values in n-hexan solvents (Eleocharis dulcis) and giant molesta (Salvinia molesta) extracts valued at 1977.22 ppm and 3211.2 ppm. Water chesnut of extract with three solvents of different levels of polarity. This study used had the highest ABTS value in ethyl acetate solvents at a an experimental laboratory method and data analysis was carried concentration of 1000 ppm at 85.253% and in giant molesta out descriptively. Some of the steps carried out include the stages extract at a concentration of 1000 ppm using ethanol solvent had of sampling, sample extraction, calculation of extract extracts, the highest value of 76.665%. Ethanol extract in water chesnut quantitative phytochemical analysis (flavonoid content, phenol extract and giant molesta had the highest reducing ability power content, phenolic content, and tannin content), and test of with a mean absorbance of 0.477 and 0.520. The best solvent for antioxidant activity (DPPH, ABTS and Reducing ability. The extracting water chesnut and giant molesta were ethanol. -
Drupe. Fruit with a Hard Endocarp (Figs. 67 and 71-73); E.G., and Sterculiaceae (Helicteres Guazumaefolia, Sterculia)
Fig. 71. Fig. 72. Fig. 73. Drupe. Fruit with a hard endocarp (figs. 67 and 71-73); e.g., and Sterculiaceae (Helicteres guazumaefolia, Sterculia). Anacardiaceae (Spondias purpurea, S. mombin, Mangifera indi- Desmopsis bibracteata (Annonaceae) has aggregate follicles ca, Tapirira), Caryocaraceae (Caryocar costaricense), Chrysobal- with constrictions between successive seeds, similar to those anaceae (Licania), Euphorbiaceae (Hyeronima), Malpighiaceae found in loments. (Byrsonima crispa), Olacaceae (Minquartia guianensis), Sapin- daceae (Meliccocus bijugatus), and Verbenaceae (Vitex cooperi). Samaracetum. Aggregate of samaras (fig. 74); e.g., Aceraceae (Acer pseudoplatanus), Magnoliaceae (Liriodendron tulipifera Hesperidium. Septicidal berry with a thick pericarp (fig. 67). L.), Sapindaceae (Thouinidium dodecandrum), and Tiliaceae Most of the fruit is derived from glandular trichomes. It is (Goethalsia meiantha). typical of the Rutaceae (Citrus). Multiple Fruits Aggregate Fruits Multiple fruits are found along a single axis and are usually coalescent. The most common types follow: Several types of aggregate fruits exist (fig. 74): Bibacca. Double fused berry; e.g., Lonicera. Achenacetum. Cluster of achenia; e.g., the strawberry (Fra- garia vesca). Sorosis. Fruits usually coalescent on a central axis; they derive from the ovaries of several flowers; e.g., Moraceae (Artocarpus Baccacetum or etaerio. Aggregate of berries; e.g., Annonaceae altilis). (Asimina triloba, Cananga odorata, Uvaria). The berries can be aggregate and syncarpic as in Annona reticulata, A. muricata, Syconium. Syncarp with many achenia in the inner wall of a A. pittieri and other species. hollow receptacle (fig. 74); e.g., Ficus. Drupacetum. Aggregate of druplets; e.g., Bursera simaruba THE GYMNOSPERM FRUIT (Burseraceae). Fertilization stimulates the growth of young gynostrobiles Folliacetum. Aggregate of follicles; e.g., Annonaceae which in species such as Pinus are more than 1 year old.