Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Paper No. LIUTR LIQUEFACTION-INDUCED UPLIFT OF BURIED STRUCTURES INSIGHTS FROM THE STUDY OF AN IMMERSED RAILWAY TUNNEL Thaleia TRAVASAROU 1, Weiyu CHEN2, and Jacob CHACKO3 ABSTRACT Light buried structures surrounded by liquefiable soils are susceptible to uplift during large earthquakes. Liquefaction-induced uplift, often referred to as “floatation”, has been commonly associated with significant displacements and is usually considered the result of a force-based buoyancy mechanism. Resistance to such mechanism is provided by the available shear strength of the liquefiable soil and a reverse end bearing capacity. We explored the mechanism of uplift in the context of the vulnerability and retrofit studies for an existing 5.8-km long immersed railroad tunnel located 15 km from the San Andrea fault in the Bay Area of California. The tunnel, built in the 1960’s, was placed in a trench excavated into the native soils and backfilled with loose gravel and sand. Two-dimensional effective stress dynamic soil- structure-interaction analyses complemented by two project-specific centrifuge experiments estimated relatively small tunnel uplift. Based on the analyses results and experimental observations we concluded that the governing mechanism of uplift is a displacement-limited ratcheting phenomenon associated primarily with co-seismic movement of soil under the tunnel. The amount of uplift is related primarily to the extent of liquefiable soils, their relative density, the differential weight between the buried structure and surrounding soil and amplitude and duration of shaking. Additional, sources are related to volumetric expansion of soil due to water inflow and potential heaving of soft soils. The methodology developed to assess the uplift vulnerability for this critical structure led to an improved understanding of liquefaction- induced uplift and the adoption of a no-retrofit strategy with significant cost savings. It also provides a framework for the future assessment of liquefaction-induced uplift vulnerability for a range of structures. Keywords: Liquefaction, immersed tunnel, uplift, centrifuge, soil-structure-interaction, numerical analyses OVERVIEW OF LIQUEFACTION-INDUCED UPLIFT Uplift of light structures buried in liquefiable soils has been observed during large earthquakes (e.g., Seed, 1967; Koseki, Matsuo, Ninomiya, & Yoshida, 1997; Yasuda and Kiku, 2006), and reported during shaking table tests (e.g., Koseki et al., 1997; Yasuda et al., 1994; Tamura et al., 1997), and centrifuge tests (e.g., Adalier et al. 2002 and 2003, Sasaki and Tamura, 2004). In most of the cases involving strong shaking large uplift (i.e., sometimes on the order of meters) was observed. As a result liquefaction- induced uplift has traditionally been referred to as “floatation” (e.g., Seed, 1967; Tamura et. al., 1997; Yasuda et al., 1994) suggesting a mechanism related to equilibrium of vertical forces. This concept implies that during strong shaking the soil liquefies fully (i.e., 100 percent excess pore pressure) turning into a viscous fluid and imparting upward buoyancy forces on the buried structure. Hence some researchers proposed (e.g., Koseki et. al., 1997; Tamura et. al., 1997) that uplift vulnerability be assessed using limit equilibrium stability analyses. We refer to this force-equilibrium involving the assumption of buoyancy as the “force-based” concept for the uplift mechanism. This concept implies that uplift occurs 1 Senior Engineer, Earthquake Group, Fugro West, Inc., e-mail: [email protected] 2 Senior Engineer, Earthquake Group, Fugro West, Inc. 3 Principal, Earthquake Group, Fugro West, Inc. 5th International Conference on Earthquake Geotechnical Engineering January 2011, 10-13 Santiago, Chile rapidly after soil liquefaction and is related to large displacements. However, observations from physical model tests suggest that structural uplift occurs primarily co-seismically (e.g., Sasaki and Tamura, 2004, and Koseki et al., 1997) which would be in contrast to a force-based mechanism. Until recently limited literature existed on liquefaction-induced uplift of tunnel structures. A combination of centrifuge model testing (Adalier et al. 2002 and 2003) and numerical analyses (Yang et. al., 2004, Naesgaard et al., 2004) were performed for the George Massey Tunnel in Vancouver, Canada to help guide the decision for retrofit. In this case tunnel uplift was judged to be substantial and a stone column retrofit plan was proposed to limit uplift deformations. We studied the mechanism of liquefaction-induced structural uplift in the context of the analytical and experimental work performed to assess the vulnerability to uplift and need for retrofit of the Bay Area Rapid Transit (BART) submerged railway tunnel near the city of San Francisco. At the onset of the project, there was consensus in the scientific community regarding the liquefaction susceptibility of the very loose gravels and sands surrounding the tunnel under strong design shaking. However, due to the limited data and documentation of liquefaction-induced uplift in the literature the expected consequences of soil liquefaction for the tunnel were not obvious and potential catastrophic uplift associated with a force-based mechanism could not be precluded. The extensive numerical analyses and testing performed subsequently for this project, and discussed in this paper, helped gain improved understanding of the uplift mechanism which was found to be primarily a displacement-limited ratcheting phenomenon. In the case of the BART tunnel the implications of the governing uplift mechanism estimating relatively small displacements enabled the adoption of a no-retrofit strategy with substantial cost benefits. The analyses performed for the BART tunnel project provide a framework that can be used in the future to evaluate the liquefaction-induced uplift vulnerability for a range of buried structures. BART OFFSHORE TRANSBAY TUBE PROJECT DESCRIPTION The Bay Area Rapid Transit (BART) Offshore Transbay Tube (TBT) is a 5.8 km-long immersed cut and cover railway tunnel built in the 1960s and connecting San Francisco to Oakland in the high seismicity Bay Area in California (Figure 1a). The TBT is the most important transportation infrastructure in the Bay Area carrying more than 300,000 passengers daily. It is located at close distances of about 14 km and 9 km, respectively, from the San Andreas and Hayward faults with estimated characteristic magnitudes of 7.9 and 7.25 and relatively high slip rates on the order of 17 and 9 mm/year. The project design spectra for outcropping “soft rock” corresponding approximately to a 1,000-year return period Bechtel (2005) are presented in Figure 1b and show high ground motions with peak ground acceleration of about 0.63g. The TBT was constructed in a trench excavated into the native soils (Figure 2). After trench excavation an approximately 1.2-meter-thick layer of gravel was placed and screeded level. Prefabricated segments of tube, approximately 100 meters-long each, were immersed and connected together. The equivalent unit weight of the TBT is approximately 1.1 times that of sea water. Backfill material consisting of gravel was then tremmied around the sides of the tube section to about the middle height. Sand fill material was subsequently pumped in to provide a minimum cover of about 1.5 meters above the TBT. Natural sedimentation formed a soft impermeable layer of surficial mud. The relative density of the trench backfills was inferred by 36 pairs of Cone Penetration (CPT) soundings Fugro (2007b) performed at about 1.5-meter distance from the tunnel edge on either side of the tunnel. Permeability was estimated with in-situ tests and empirical correlations based on gradation curves. Table 1 summarizes the soil properties interpreted from all available data. In both the gravel and sand fill the tip resistance is relatively uniform and low, with median values corresponding to relative density of about 5th International Conference on Earthquake Geotechnical Engineering January 2011, 10-13 Santiago, Chile 35% and 40%, respectively. The permeability of the gravel fill and foundation is large with best estimate values of 1 to 5 cm/s, while permeability in the sandy fill is approximately 100 smaller. 2.0 Matched Motions 1.6 Design Spectra 5 % Damping 1.2 0.8 0.4 Spectral Acceleration (g) 0.0 0.01 0.1 1 10 Period (s) Figure 1. a) Location of BART offshore immersed tunnel with respect to major faults, b) Project design acceleration spectrum and seven spectrally-matched time histories Surficial mud Sand fill Stiff clay Gravel fill Gravel foundation Figure 2. Typical cross-section of immersed tunnel and surrounding trench backfills Table 1. Key trench backfill properties Dr (%) Permeability (cm/s) qc1N Unit best estimate best estimate SOIL TYPE best estimate Weight N (16%-84% (16%-84% 1,60 (16%-84% percentiles) (kN/m3) percentiles) percentile) Sand Fill 50 (32-70) 40 (35-45) 0.01 (0.002-0.1) 1.9 7 Gravel Fill 33 (25-48) 35 (30-40) 1 (0.3-10) 2.1 6 Gravel 33 (25-48) 35 (30-40) 1 (0.3-10) 2.1 6 Foundation
Recommended publications
  • 20-4 Seismic Retrofit Guidelines for Bridges in California (PDF)
    MEMO TO DESIGNERS 20-4 • JUNE 2016 LRFD 20-4 SEISMIC RETROFIT GUIDELINES FOR BRIDGES IN CALIFORNIA Introduction Caltrans Memo to Designers (MTD) 20-4 describes policies and procedures for the seismic retroft of California’s bridges.1 Caltrans, Bridge Design Aids (BDA) 14-5 and Bridge Standard XS Detail Sheets Section 7 include common retrofts that can be used by designers. The Federal Highway Administration has published a bridge retroftting manual (Buckle, 2006), with examples of common retrofts. This manual is a useful reference, however the specifcations and details are not approved by Caltrans. While MTD 20-4 is intended to provide guidelines for retroftting existing structures, it is not possible to anticipate every situation that may be encountered. It is the designer’s responsibility to accurately assess the performance of the existing structure, to show a collapse mechanism if it exists, and to develop retroft strategies that ensure the structure meets the no collapse performance standard. Expected Performance The primary performance standard for retroftting bridges is to prevent the structure from reaching the collapse limit state2 for the Design Earthquake3 . The goal of this “No Collapse” performance standard is to protect human life and there are no serviceability expectations for retroftted bridges. An acceptable determination of collapse is captured through an analysis of the bridge model subject to the Design Earthquake. However, determining collapse is different than simply determining that demand exceeds capacity. First of all, capacity is more conservatively 1. This memo is intended to apply to Ordinary Standard state and local bridges. In cases where this memo does not apply, the designer is referred to MTD 20-1 and 20-11.
    [Show full text]
  • Geo-Information for Snow Avalanche Hazard
    Volume 5, Number 1, June 2007 This issue of Panel Update Volume 3 Number 1 marks the beginning of our fifth year of circulating our bimonthly eNewsletter to share Panel activities with its members. Our June issues highlight the Panel’s recently conducted technical site visits. These site visits followed the Panel’s three day Technical Meetings of 14-16 May 2007 in Tsukuba. Proceedings of the Panel on Wind and Seismic Effects will be published in the fall and circulated to all Panel members and manuscript authors. HIGHLIGHTS - TECHNICAL SITE VISITS 39TH MEETING OF THE US-JAPAN PANEL ON WIND AND SEISMIC EFFECTS 17-19 MAY 2007 1. Tokyo Metropolitan Expressway Route The Metropolitan Expressway Company Limited, a privatized organization in 2005, is responsible for design, construction and management of Tokyo’s Metropolitan Expressway. The delegation was briefed on investigation and techniques used to repair fatigue cracks in expressway steel bridge piers and orthotropic steel decks. Fatigue cracks are detected by magnetic particle testing procedure. Of 2011 piers tested, 566 had fatigue cracks. As temporary measure, holes are drilled at each end of the crack to prevent propagation of cracks that allowed traffic flow until permanent repairs. Monitoring is performed following a five year inspection plan. When visual inspection identifies serious cracks, annual inspections are performed for those selected fatigue cracks. Modern Tokyo transportation relies on multiple highways that overlay the extinct canals and waterway systems of near the end of the Edo period (1603 – 1868). The delegation visited the Ohashi Junction of the Central Circular Shinjuku Route under construction designed to allow vehicles to pass through the central part of Tokyo by avoiding surface traffic congestion.
    [Show full text]
  • Scale and Complexity in the Seismic Retrofit of California Bridges Benjamin Sims Introduction Infr
    Seismic Shifts and Retrofits: Scale and Complexity in the Seismic Retrofit of California Bridges Benjamin Sims Introduction Infrastructure systems play a crucial role in the relationship between humans and the natural world, in part because they are the only human technological systems built on a large enough scale to have geophysical relevance (Edwards 2003). Many of the chapters in this book focus on infrastructure retrofit as a means to reduce human impact on the environment. This chapter instead focuses on retrofit to protect human beings from their environment: specifically, seismic retrofit of bridges to prevent them from collapsing in earthquakes. Although the impetus for retrofit may differ, the program discussed here raises many issues that are likely to be relevant for any kind of large-scale retrofit program that impacts urban settings. In particular, it provides examples of the complexities that arise in implementing a systemic retrofit program (May et al. 2013). This kind of systemic effort can be particularly complex because of the tension between global and local aspects of retrofit. At a global level, such a program must attend to the factors that sustain a systemic effort, such as engineering standards, funding sources, and political support. At a local level, each individual retrofit project has the potential to become entangled in localized contingencies of communities and the built environment. This paper examines the characteristics of infrastructure that play into this global-local tension, the processes by which changes in sociotechnical systems become mobilized as worrisome problems, and the resulting practices of infrastructure repair, of which retrofit is one variety.
    [Show full text]
  • Seismic Retrofit of Soft-Story Woodframe Buildings Using Cross Laminated Timber John W
    New Developments in Structural Engineering and Construction Yazdani, S. and Singh, A. (Eds.) ISEC-7, Honolulu, June 18 –23, 2013 SEISMIC RETROFIT OF SOFT-STORY WOODFRAME BUILDINGS USING CROSS LAMINATED TIMBER JOHN W. VAN DE LINDT1, POURIA BAHMANI1, MIKHAIL GERSHFELD2, GIRAJ KUMAR KANDUKURI3, DOUG RAMMER4, and SHILING PEI5 1Civil and Env. Engineering, Colorado State University, Fort Collins, Colorado, USA 2Civil and Env. Engineering, Cal Poly-Pomona, Pomona, California, USA 3Civil, Construct., and Env. Eng., University of Alabama, Tuscaloosa, Alabama, USA 4U.S. Forest Products Laboratory, Madison, Wisconsin, USA 5Civil and Env. Engineering, South Dakota State University, Brookings, South Dakota, USA As early as 1970, the structural engineering and building safety community recognized that a large number of two-, three- and four-story woodframe buildings designed with the first floor used either for parking or commercial space were built with readily identifiable structural system deficiencies, referred to as a “soft story”. Thus, many multi-story woodframe buildings are susceptible to collapse at the first story during earthquakes. The majority of these older multi-story woodframe buildings have large openings and few partition walls at the ground level. This open space condition results in the earthquake resistance of the first story being significantly lower than the upper stories. As part of the five-university multi-industry, U.S. National Science Foundation – funded NEES-Soft project, a performance-based retrofit method has been developed for these types of buildings. This paper presents the first generation of this method and resulting retrofit design using an engineered wood technology that is just being introduced in the United States.
    [Show full text]
  • All Hazards Mitigation Plan Update
    All Hazards Mitigation Plan Update Anchorage, Alaska Prepared for: Municipality of Anchorage Project Management & Engineering PO Box 196650 Anchorage, AK 99519-6650 Prepared by: HDR Alaska 2525 C Street, Suite 305 Anchorage, AK 99503 June 2011 Anchorage All-Hazards Mitigation Plan Update June 2011 E XECUTIVE SUMMARY The Municipality of Anchorage (MOA) is vulnerable to a wide range of natural, technological, and human/societal hazards including earthquakes, avalanches, and hazardous material accidents. These hazards can affect the safety of residents, damage or destroy public and private property, disrupt the local economy, and negatively impact the quality of life. Typically, we cannot eliminate these hazards altogether but we can lessen their impact by undertaking hazard mitigation activities. Hazard mitigation activities are those that reduce or eliminate the long-term risk to property and human life from hazards. Examples of hazard mitigation activities include elevating a structure out of a floodplain, bolting a structure to its foundation and developing a hazard mitigation plan. The Disaster Mitigation Act of 2000 (DMA 2000) requires that local governments have a local mitigation plan approved by the Federal Emergency Management Agency (FEMA) as a condition for receiving future FEMA mitigation funds. This hazard mitigation plan was developed to fulfill federal and state hazard mitigation planning requirements. Development and implementation of this plan has been directed by the Anchorage Hazard Mitigation Planning Team consisting of representatives from a variety of municipal departments including the Office of Emergency Management, Project Management & Engineering, Maintenance & Operations, Anchorage School District, Anchorage Water & Wastewater Utility, Anchorage Police Department and Anchorage Fire Department.
    [Show full text]
  • Seismic Retrofitting Manual for Highway Structures: Part 1 – Bridges
    Seismic Retrofitting Manual for Highway Structures: Part 1 – Bridges PUBLICATION NO. FHWA-HRT-06-032 JANUARY 2006 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HRT-06-032 N/A N/A 4. Title and Subtitle 5. Report Date SEISMIC RETROFITTING MANUAL FOR HIGHWAY January 2006 STRUCTURES: PART 1 – BRIDGES 6. Performing Organization Code N/A 7. Author(s) 8. Performing Organization Report No. Ian Buckle, Ian Friedland, John Mander, Geoffrey Martin, Richard Nutt and Maurice Power 9. Performing Organization Name and Address 10. Work Unit No. Multidisciplinary Center for Earthquake Engineering Research N/A University at Buffalo, State University of New York 11. Contract or Grant No. Red Jacket Quadrangle DTFH61-92-C-00106 Buffalo, NY 14261 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Office of Infrastructure Research and Development Final Report Federal Highway Administration 14. Sponsoring Agency Code 6300 Georgetown Pike McLean, VA 22101-2296 15. Supplementary Notes: Contracting Officer’s Technical Representatives: James Cooper, P.E., HRDI-03, Wen-huei (Phillip) Yen, Ph.D., P.E., HRDI-07, John D. O’Fallon, P.E., HRDI-07 16. Abstract This report is the first of a two-part publication entitled: Seismic Retrofitting Manual for Highway Structures: Part 1: Bridges Part 2: Retaining Structures, Slopes, Tunnels, Culverts and Roadways. Part 1 of this manual is based on previous Federal Highway Administration (FHWA) publications on this subject including Seismic Retrofitting Manual for Highway Bridges, published in 1995 as report FHWA-RD-94-052.
    [Show full text]
  • Seismic and Energy Renovation Measures for Sustainable Cities: a Critical Analysis of the Italian Scenario
    sustainability Article Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario Paolo La Greca and Giuseppe Margani * ID Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-738-2509 Received: 13 December 2017; Accepted: 15 January 2018; Published: 19 January 2018 Abstract: One of the main challenges of the twenty-first century is to increase the sustainability level of our cities. However, a town, to be considered sustainable, must, above all, be safe, particularly against natural hazards, which in Europe are mostly related to climate changes (e.g., hurricanes, floods, storms, and landslides) and seismic events (earthquakes). Unfortunately, sustainability is still not a prerogative of most European cities, especially those placed in seismic countries such as Italy, where at least 50% of the residential stock is earthquake-prone, while over 80% of the same stock is highly energy-consuming and carbon dioxide-emitting, thus contributing to trigger hazards related to climate changes. In this context, renovation actions, which combine both energy and seismic issues are strongly needed. Nevertheless, several technical, organizational and financial barriers considerably limit the real possibility to extensively undertake this kind of renovation. This study analyzes such barriers, with particular reference to the Italian scenario, suggesting and discussing possible solutions and underlining the advantages of increasing energy and seismic performances at the same time. The proposed solutions may be effectively extended to many other countries with similar socio-economic scenarios. Keywords: seismic retrofit; energy retrofit; sustainability; safety; policy measures; apartment blocks 1.
    [Show full text]
  • Approaches for the Seismic Retrofit of Braced Steel Bridge Piers and Proof-Of-Concept Testing of an Eccentrically Braced Frame with Tubular Link
    ISSN 1520-295X Approaches for the Seismic Retrofit of Braced Steel Bridge Piers and Proof-of-Concept Testing of an Eccentrically Braced Frame with Tubular Link by Jeffrey W. Berman and Michel Bruneau University at Buffalo, State University of New York Department of Civil, Structural and Environmental Engineering Ketter Hall Buffalo, New York 14260 Technical Report MCEER-05-0004 April 21, 2005 This research was conducted at the University at Buffalo, State University of New York and was supported by the Federal Highway Administration under contract number DTFH61-98-C-00094. NOTICE This report was prepared by the University at Buffalo, State University of New York as a result of research sponsored by the Multidisciplinary Center for Earth- quake Engineering Research (MCEER) through a contract from the Federal High- way Administration. Neither MCEER, associates of MCEER, its sponsors, the Uni- versity at Buffalo, State University of New York, nor any person acting on their behalf: a. makes any warranty, express or implied, with respect to the use of any infor- mation, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method, or process disclosed in this report. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of MCEER or the Federal Highway Administration. Approaches for the Seismic Retrofit of Braced Steel Bridge Piers and Proof-of-Concept Testing of an Eccentrically Braced Frame with Tubular Link by Jeffrey W.
    [Show full text]
  • The Race to Seismic Safety Protecting California’S Transportation System
    THE RACE TO SEISMIC SAFETY PROTECTING CALIFORNIA’S TRANSPORTATION SYSTEM Submitted to the Director, California Department of Transportation by the Caltrans Seismic Advisory Board Joseph Penzien, Chairman December 2003 The Board of Inquiry has identified three essential challenges that must be addressed by the citizens of California, if they expect a future adequately safe from earthquakes: 1. Ensure that earthquake risks posed by new construction are acceptable. 2. Identify and correct unacceptable seismic safety conditions in existing structures. 3. Develop and implement actions that foster the rapid, effective, and economic response to and recovery from damaging earthquakes. Competing Against Time Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake It is the policy of the State of California that seismic safety shall be given priority consideration in the allo- cation of resources for transportation construction projects, and in the design and construction of all state structures, including transportation structures and public buildings. Governor George Deukmejian Executive Order D-86-90, June 2, 1990 The safety of every Californian, as well as the economy of our state, dictates that our highway system be seismically sound. That is why I have assigned top priority to seismic retrofit projects ahead of all other highway spending. Governor Pete Wilson Remarks on opening of the repaired Santa Monica Freeway damaged in the 1994 Northridge earthquake, April 11, 1994 The Seismic Advisory Board believes that the issues of seismic safety and performance of the state’s bridges require Legislative direction that is not subject to administrative change. The risk is not in doubt. Engineering, common sense, and knowledge from prior earthquakes tells us that the consequences of the 1989 and 1994 earthquakes, as devastating as they were, were small when compared to what is likely when a large earthquake strikes directly under an urban area, not at its periphery.
    [Show full text]
  • Seismic Retrofit Guide
    HOMEOWNERS Seismic Retrofit Guide Improve Your Home’s Earthquake Resistance 800-999-5099 | www.strongtie.com PLEASE READ Purpose of this document: This Seismic Retrofit Guide is designed to promote public safety and welfare by reducing the risk of earthquake induced damage to existing homes. The following guidelines are prescriptive minimum standards based on the 2006 International Existing Building Code and are intended to improve the seismic performance of homes, but will not necessarily prevent earthquake damage. These guidelines only apply to homes with crawl spaces and cripple walls. They address reinforcing the cripple wall, but not the stories above. For conditions other than those shown in the following drawings, a structural engineer or other qualified designer should be consulted. Before starting any work, check with your building department for local building requirements, which may include stricter standards than those prescribed here. The information in this guide is intended to show how Simpson Strong-Tie® products should be installed. It is not intended for use by designers. Designers should refer to the current Simpson Wood Construction Connectors catalog for loads and other critical design information. Why Should I Retrofit My Home? uring an earthquake, the strength of a home is put to the test. Ground forces try to tear the Dhome apart and in many cases, cause severe damage. If you live in an area prone to earthquakes, it’s important that the structural frame of your home is strong enough to absorb an earthquake’s energy (see Continuous Load Path, page 4). Fortunately, advances in structural engineering, lessons learned from past earthquakes and research performed by the scientific community have paved the way for the development of new construction techniques that better equip homes to withstand an earthquake.
    [Show full text]
  • State Officials Announce $13.2 Million Available to Help California Homeowners Prepare for “The Big One”
    FOR IMMEDIATE RELEASE CONTACT: Kristen Rockwell Caloca February 21, 2020 [email protected], (424) 202-1671 STATE OFFICIALS ANNOUNCE $13.2 MILLION AVAILABLE TO HELP CALIFORNIA HOMEOWNERS PREPARE FOR “THE BIG ONE” Earthquake Brace + Bolt Program Offers $3,000 Grants to Help Strengthen Homes, Available in 355 High-Hazard ZIP Codes in California (SACRAMENTO) When he bought his home in 2012, David Beilfuss knew that it would be the biggest investment his family would make. The 1925 bungalow sits on a quiet street lined with picturesque oak trees in northeastern Pasadena. Though it is a safe, comfortable neighborhood for his children to grow up in, David feared that a unpredictable earthquake could bring the structure to the ground unless he spent the money needed for a seismic retrofit. David isn’t alone: Today, there are more than 1.2 million vulnerable homes in California that reside in high-seismic-hazard areas. Many homeowners know that their homes are at-risk when an earthquake occurs but are unaware that they can protect their homes with a seismic retrofit. California’s Earthquake Brace + Bolt grant program provides homeowners in eligibile ZIP Codes with $3,000 to help offset the cost of completing a seismic retrofit. “Like many Californians, we are house-rich and cash-poor,” said David. “Our home could simply fall off its foundation in the event of an earthquake, leaving my family and me homeless. My wife and I knew that even with earthquake insurance we needed to do more to protect our family, our home, and our investment.” David decided to retrofit his home with a grant from the Earthquake Brace + Bolt (EBB) program in 2019.
    [Show full text]
  • Seismic Performance of Concrete Encased Steel Buildings with Riveted Joints
    Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique July 25-29, 2010, Toronto, Ontario, Canada • Paper No 1282 SEISMIC PERFORMANCE OF CONCRETE ENCASED STEEL BUILDINGS WITH RIVETED JOINTS M. Naderi , J.W .Butterworth , G.C. Clifton ABSTRACT In the early 20th century, steel frame buildings were built to much lower earthquake standards and utilizing different materials from those used in modern construction. Riveted, built-up members were used instead of rolled sections, with joints and members encased in concrete for fire protection. These early steel buildings were designed based upon observations of past building performance rather than through detailed calculations and predictions of structural behavior. The walls were infill masonry and floors were typically reinforced concrete. The earthquake resisting strength and stiffness of the semi-rigid connections and masonry infill as well as the effect of floor slabs integral with their supporting beams are not well documented. Although riveted stiffened seat angle connections are not designed to resist moments, they can develop an appreciable moment capacity and exhibit a relatively ductile hysteretic behaviour which could be beneficially considered when evaluating frames built of these connections and subjected to small and moderate earthquakes. Structural engineers have found it challenging to make realistic predictions of the seismic performance of these buildings, many which are quite prestigious, in full service and often enjoying heritage protection. Examples in New Zealand include Auckland’s Britomart Station and Guardian Trust Building, and Wellington’s Tower Corporation, Prudential Assurance and Hope-Gibbons Buildings.
    [Show full text]