Arxiv:2002.12778V2 [Astro-Ph.CO] 9 May 2021 8
CONSTRAINTS ON PRIMORDIAL BLACK HOLES Bernard Carr,1, 2, ∗ Kazunori Kohri,3, 4, 5, y Yuuiti Sendouda,6, z and Jun'ichi Yokoyama2, 5, 7, 8, x 1School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK 2Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan 3KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki 305-0801, Japan 4The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki 305-0801, Japan 5Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan 6Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan 7Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan 8Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-0033, Japan (Dated: Tuesday 11th May, 2021, 00:43) We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range 10−5{1050 g. Those smaller than ∼ 1015 g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic γ-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than ∼ 1015 g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves.
[Show full text]