Diagnostic and Therapeutic Aspects of Hemiplegic Migraine

Total Page:16

File Type:pdf, Size:1020Kb

Diagnostic and Therapeutic Aspects of Hemiplegic Migraine Migraine J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-322850 on 19 May 2020. Downloaded from REVIEW Diagnostic and therapeutic aspects of hemiplegic migraine Vincenzo Di Stefano ,1 Marianna Gabriella Rispoli,2 Noemi Pellegrino,3 Alessandro Graziosi,3 Eleonora Rotondo,3 Christian Napoli,4 Daniela Pietrobon,5,6 Filippo Brighina,1 Pasquale Parisi 7 1Department of Biomedicine, ABSTRact hypothesised a role for gene PRRT2 in migraine Neuroscience and Advanced Hemiplegic migraine (HM) is a clinically and genetically pathophysiology, but its specific implication in Diagnostic (BIND), University of HM is still debated. Given the lack of a recognised Palermo, Palermo, Sicilia, Italy heterogeneous condition with attacks of headache 2Department of Neuroscience and motor weakness which may be associated with fourth autosomal dominant gene for FHM, other Imaging and Clinical Sciences, impaired consciousness, cerebellar ataxia and intellectual genetic mechanisms might be supposed and further ’G. d’Annunzio’ University, disability. Motor symptoms usually last <72 hours and genetic analyses are needed.2 Sporadic hemiplegic Universita degli Studi Gabriele are associated with visual or sensory manifestations, migraine (SHM) shares similar clinical character- d’Annunzio Chieti e Pescara, Chieti Scalo, Chieti, Italy speech impairment or brainstem aura. HM can occur istics with FHM but it differs for the absence of 6 3Pediatrics, University Gabriele as a sporadic HM or familiar HM with an autosomal family history for HM. d’Annunzio of Chieti Pescara dominant mode of inheritance. Mutations in CACNA1A, As HM is a rare condition, few studies are Department of Medicine and ATP1A2 and SCN1A encoding proteins involved in ion reported and there are no specific treatments. In Aging Science, Chieti, Abruzzo, this review, we will discuss in detail about epidemi- Italy transport are implicated. The pathophysiology of HM is 4Department of Medical Surgical close to the process of typical migraine with aura, but ology, clinical presentation, diagnostic assessment, Sciences and Translational appearing with a lower threshold and more severity. We differential diagnosis and treatment of this complex Medicine, Sapienza University of reviewed epidemiology, clinical presentation, diagnostic disorder. Rome, Roma, Lazio, Italy assessment, differential diagnosis and treatment of 5Department of Biomedical Sciences & Padova Neuroscience HM to offer the best evidence of this rare condition. Epidemiology Center, University of Padova, The differential diagnosis of HM is broad, including Although migraine is a common condition with a Padova, Italy other types of migraine and any condition that can 6 prevalence between 15% and 20% in the general CNR Neuroscience Institute, cause transitory neurological signs and symptoms. population, HM is rare. The onset is generally in Padova, Italy 1 4 7 8 7Dipartimento di Neuroscienze Neuroimaging, cerebrospinal fluid analysis and adolescence between 12 and 17 years and the 9 Salute Mentale e Organi di electroencephalography are useful, but the diagnosis is overall estimated prevalence is 0.01%. Females are Senso (NESMOS), University clinical with a genetic confirmation. The management more frequently affected, with a variable female/ of Rome La Sapienza Faculty relies on the control of triggering factors and even male ratio among 2.5:1 and 4.3:1.9 10 The frequency of Medicine and Psychology, hospitalisation in case of long- lasting auras. As HM is a Roma, Lazio, Italy and severity of attacks progressively decrease with rare condition, there are no randomised controlled trials, increasing age.1 http://jnnp.bmj.com/ Correspondence to but the evidence for the treatment comes from small Professor Pasquale Parisi, studies. Clinical manifestations Dipartimento di Neuroscienze HM is characterised by recurrent attacks with Salute Mentale e Organi di headache and aura manifestations. Emotional and Senso (NESMOS), University of Rome La Sapienza Faculty of intense physical stress, viral infections and head Medicine and Psychology, Roma INTRODUCTION trauma are the more common reported trigger 11 12 00189, Lazio, Italy; pasquale . Hemiplegic migraine (HM) is an uncommon factors for HM attacks. Table 1 describes diag- parisi@ uniroma1. it on October 6, 2021 by guest. Protected copyright. subtype of migraine with aura that usually starts nostic criteria for HM, according to the definition 1 Received 21 January 2020 in the first or second decade of life. It is a clini- of the third edition of International Classification 3 Revised 22 April 2020 cally and genetically heterogeneous condition that of Headache Disorders. Accepted 24 April 2020 represents a challenge for the clinician because it Headache is almost always present during attacks Published Online First 19 May can occur with a dramatic and crippling clinical and it is often severe. The localisation of headache 2020 situation, resembling other more severe neurolog- is variable: bilateral, unilateral, ipsilateral or contra- 1 ical diseases (ie, stroke).1 2 lateral to the motor symptoms. HM can occur as a sporadic or familial condition Associated symptoms in HM can be distinguished if at least one first-degree or second- degree relative in aura symptoms that occur during attacks and © Author(s) (or their has the same form of migraine.3 Familial hemiplegic chronic symptoms that can be present interictally. employer(s)) 2020. Re- use permitted under CC BY-NC . No migraine (FHM) is the only migraine form for commercial re-use . See rights which an autosomal dominant mode of inheritance Aura symptoms and permissions. Published has been documented. Genetic studies have demon- Unilateral weakness is always present during HM by BMJ. strated the involvement of at least three distinct attacks and it is considered the most important To cite: Di Stefano V, Rispoli genes that encode proteins involved in ion trans- sign; weakness can rarely be bilateral and some- 2 MG, Pellegrino N, et al. J port (CACNA1A, ATP1A2 and SCN1A). Mutation times it may switch side. Besides motor weakness, Neurol Neurosurg Psychiatry of those genes explains for about 7%–14% of FHM sensory symptoms (such as tingling, numbness and 2020;91:764–771. in two population studies.4 5 Some authors have paraesthesia), visual defects (scintillating scotoma, 764 Di Stefano V, et al. J Neurol Neurosurg Psychiatry 2020;91:764–771. doi:10.1136/jnnp-2020-322850 Migraine J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-322850 on 19 May 2020. Downloaded from Table 1 Diagnostic criteria of hemiplegic migraine Diagnostic criteria ICHD-3 Hemiplegic migraine A. At least two attacks fulfilling criteria B. One or more of the following fully reversible aurasymptoms: 1. visual 2. sensory 3. speech and/or language 4. motor 5. brainstem 6. retinal C. At least three of the following six characteristics: 1. at least one aura symptom spreads graduallyover 5 minutes 2. two or more aura symptoms occur in succession 3. each individual aura symptom lasts 5–60 minutes 4. at least one aura symptom is unilateral 5. at least one aura symptom is positive 6. the aura is accompanied, or followed within 60 min, by headache D. Aura consisting of both of the following: 1. fully reversible motor weakness 2. fully reversible visual, sensory and/or speech/ language symptoms. Familial hemiplegic migraine (FHM) A. Attacks fulfilling criteria for Hemiplegic migraine B. At least one first- or second- degree relative has had attacks fulfilling criteria for Hemiplegic migraine. Familial hemiplegic migraine type 1 (FHM1) A. Attacks fulfilling criteria for Familial hemiplegic migraine B. A mutation on the CACNA1A gene has been demonstrated. Familial hemiplegic migraine type 2 (FHM2) A. Attacks fulfilling criteria for Familial hemiplegic migraine B. A mutation on the ATP1A2 gene has been demonstrated. Familial hemiplegic migraine type 3 (FHM3) A. Attacks fulfilling criteria for Familial hemiplegic migraine B. A mutation on the SCN1A gene has been demonstrated. Familial hemiplegic migraine, other loci A. Attacks fulfilling criteria for Familial hemiplegic migraine B. Genetic testing has demonstrated no mutation onthe CACNA1A, ATP1A2 or SCN1A genes. Sporadic hemiplegic migraine (SHM) A. Attacks fulfilling criteria for Hemiplegic migraine B. No first- or second- degree relative fulfils criteriafor Hemiplegic migraine. ICHD-3, third edition of International Classification of Headache Disorders. hemianopia) and aphasia are the most frequent aura symp- early onset CACNA1A- associated phenotype was proposed a toms. Sometimes, migraine attacks may include other signs and classification as ‘neurodevelopmental disorders’, suggesting thus symptoms such as fever, seizure, bilateral visual disturbances, a a close follow- up of psychomotor development and academic ‘brainstem aura’ with vertigo, dysarthria, ataxia, hyperacusia, performances.25 tinnitus, impaired consciousness and even, in the worse condi- Seizures in HM may be partial or generalised, with or without tions, coma.1 4 10 13 fever.26 Generally, the onset of epilepsy is in childhood and The duration of symptoms is usually 20–60 min but, in some sometimes it happens before the first HM attack. Hopefully, http://jnnp.bmj.com/ cases, the aura and motor deficit may onset quickly and simu- seizures in patients with HM have a benign evolution1 and higher late an ischaemic attack.8 The complete recovery from attacks is rates have been reported in families with FHM2.22 Of note, in the rule, but in severe
Recommended publications
  • Approach to a Case of Congenital Heart Disease
    BAI JERBAI WADIA HOSPITAL FOR CHILDREN PEDIATRIC CLINICS FOR POST GRADUATES PREFACE This book is a compilation of the discussions carried out at the course for post-graduates on ” Clinical Practical Pediatrics” at the Bai Jerbai Wadia Hospital for Children, Mumbai. It has been prepared by the teaching faculty of the course and will be a ready-reckoner for the exam-going participants. This manual covers the most commonly asked cases in Pediatric Practical examinations in our country and we hope that it will help the students in their practical examinations. An appropriately taken history, properly elicited clinical signs, logical diagnosis with the differential diagnosis and sound management principles definitely give the examiner the feeling that the candidate is fit to be a consultant of tomorrow. Wishing you all the very best for your forthcoming examinations. Dr.N.C.Joshi Dr.S.S.Prabhu Program Directors. FOREWARD I am very happy to say that the hospital has taken an initiative to organize this CME for the postgraduate students. The hospital is completing 75 years of its existence and has 2 done marvelous work in providing excellent sevices to the children belonging to the poor society of Mumbai and the country. The hospital gets cases referred from all over the country and I am proud to say that the referrals has stood the confidence imposed on the hospital and its faculty. We do get even the rarest of the rare cases which get diagnosed and treated. I am sure all of you will be immensely benefited by this programme. Wish you all the best in your examination and career.
    [Show full text]
  • Basilar Artery and Its Branches Called Pontine Arteries
    3 Farah Mohammad Ahmad Al-Tarefe Mohammad Al salem تذكر أ َّن : أولئك الذين بداخلهم شيء يفوق كل الظروف ، هم فقط من استطاعوا أ ّن يحققوا انجازاً رائعاً .... كن ذا همة Recommendation: Study this sheet after you finish the whole anatomy material . Dr.Alsalem started talking about the blood supply for brain and spinal cord which are mentioned in sheet#5 so that we didn't write them . 26:00-56:27/ Rec.Lab#3 Let start : Medulla oblengata : we will study the blood supply in two levels . A- Close medulla (central canal) : It is divided into four regions ; medial , anteromedial , posteriolateral and posterior region. Medially : anterior spinal artery. Anteromedial: vertebral artery posterolateral : posterior inferior cerebellar artery ( PICA). Posterior : posterior spinal artery which is a branch from PICA. B-Open medulla ( 4th ventricle ) : It is divided into four regions ; medial , anteromedial , posteriolateral region. Medially : anterior spinal artery. Anteromedial: vertebral artery posterolateral : posterior inferior cerebellar artery ( PICA). 1 | P a g e Lesions: 1- Medial medullary syndrome (Dejerine syndrome): It is caused by a lesion in anterior spinal artery which supplies the area close to the mid line. Symptoms: (keep your eyes on right pic). Contralateral hemiparesis= weakness: the pyramid will be affected . Contralateral loss of proprioception , fine touch and vibration (medial lemniscus). Deviation of the tongue to the ipsilateral side when it is protruded (hypoglossal root or nucleus injury). This syndrome is characterized by Alternating hemiplegia MRI from Open Medulla (notice the 4th ventricle) Note :The Alternating hemiplegia means ; 1- The upper and lower limbs are paralyzed in the contralateral side of lesion = upper motor neuron lesion .
    [Show full text]
  • Alternating Hemiplegia of Childhood Syndrome
    orphananesthesia Anaesthesia recommendations for Alternating Hemiplegia of Childhood syndrome Disease name: Alternating hemiplegia of childhood syndrome (AHC) ICD 10: G98 Synonyms: AHC syndrome (An ATP1A3-related neurologic disorder). AHC was named for its most striking and diagnostic motor symptom; however, the range of manifestations show it to be a CNS disorder affecting function broadly in various brain circuits, heart and the disease evolves with age. Disease summary: AHC is a very rare neurological disorder first described in 1971 which has received increasing interest recently [1]. It is characterized by hemiplegia of either side of the body, paroxysmal tonic or dystonic spells, oculomotor abnormalities and developmental delay.2-4 Onset occurs before 18 months of age. This condition is diagnosed based on the occurrence of the above combination of symptoms, is usually due to de novo pathogenic variant in ATP1A3 and has also been reported in a few families [2-3]. Onset and progression of neurological symptoms have been well characterized. While the course and severity of deficits can vary considerably, there appears to be progression over time, at least in some patients. The differential diagnosis of AHC includes familial hemiplegic migraine (FHM) syndromes (e.g. FHM1-CACNA1A; FHM2-ATP1A2), episodic ataxia type 6, glutamate transporter disorders (SLC1A3), glucose transporter defects, GLUT1 deficiency (SLC2A1), infantile onset epileptic encephalopathies, severe myoclonic epilepsy of infancy (Dravet syn- drome), SCN1A mutations, mitochondrial disorders, and disorders of dopamine biosynthesis/ neurotransmitter disorders. The prevalence has been estimated at 1:1,000,000 with most cases being due to de novo mutations [4-6]. Triggers in AHC and other ATP1A3 related diseases that can induce paroxysmal episodes in AHC are frequent.
    [Show full text]
  • Alternating Hemiplegia of Childhood: New Diagnostic Options
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Via Medica Journals n e u r o l o g i a i n e u r o c h i r u r g i a p o l s k a 4 8 ( 2 0 1 4 ) 1 3 0 – 1 3 5 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.elsevier.com/locate/pjnns Review article Alternating hemiplegia of childhood: New diagnostic options Aleksandra Gergont *, Marek Kaciński Department of Neurology of Children and Youth, Jagiellonian University, Collegium Medicum, Krakow, Poland a r t i c l e i n f o a b s t r a c t Article history: A syndrome of alternating hemiplegia of childhood (AHC) is a rare disorder first presented in Received 14 August 2012 1971. AHC is characterized by transient episodes of hemiplegia affecting either one or both sides Accepted 13 May 2013 of the body. Age of onset is before 18 months and the common earliest manifestations are Available online 15 February 2014 dystonic or tonic attacks and nystagmus. Hemiplegic episodes last minutes to days and the frequency and duration tend to decrease with time. Motor and intellectual development is fi Keywords: affected, de cits may also develop later. Epileptic seizures occur in some patients. Neuroimaging of the brain usually reveals no abnormalities. The variability of individual clinical presentations Alternating hemiplegia fi Children and evolution of symptoms have made diagnosis dif cult. Therefore the problems of misdiag- ATP1A3 nosis could account for the low prevalence of this syndrome.
    [Show full text]
  • Crossed Brainstem Syndrome Revealing
    Beucler et al. BMC Neurology (2021) 21:204 https://doi.org/10.1186/s12883-021-02223-7 CASE REPORT Open Access Crossed brainstem syndrome revealing bleeding brainstem cavernous malformation: an illustrative case Nathan Beucler1,2* , Sébastien Boissonneau1,3, Aurélia Ruf4, Stéphane Fuentes1, Romain Carron3,5 and Henry Dufour1,6 Abstract Background: Since the nineteenth century, a great variety of crossed brainstem syndromes (CBS) have been described in the medical literature. A CBS typically combines ipsilateral cranial nerves deficits to contralateral long tracts involvement such as hemiparesis or hemianesthesia. Classical CBS seem in fact not to be so clear-cut entities with up to 20% of patients showing different or unnamed combinations of crossed symptoms. In terms of etiologies, acute brainstem infarction predominates but CBS secondary to hemorrhage, neoplasm, abscess, and demyelination have been described. The aim of this study was to assess the proportion of CBS caused by a bleeding episode arising from a brainstem cavernous malformation (BCM) reported in the literature. Case presentation: We present the case of a typical Foville syndrome in a 65-year-old man that was caused by a pontine BCM with extralesional bleeding. Following the first bleeding episode, a conservative management was decided but the patient had eventually to be operated on soon after the second bleeding event. Discussion: A literature review was conducted focusing on the five most common CBS (Benedikt, Weber, Foville, Millard-Gubler, Wallenberg) on Medline database from inception to 2020. According to the literature, hemorrhagic BCM account for approximately 7 % of CBS. Microsurgical excision may be indicated after the second bleeding episode but needs to be carefully weighted up against the risks of the surgical procedure and openly discussed with the patient.
    [Show full text]
  • Pupil Sparing Cranial Nerve III Palsy and Hemiparesis, Weber Syndrome: a Case Report and Literature Review, SPR, 2021, Volume 1, Issue, 4, Page No.: 216 – 219
    Sunuwar N, Twayana AR, Panthi S, Koirala A, Gautam S, Pupil sparing Cranial Nerve III Palsy and Hemiparesis, Weber Syndrome: A Case Report and literature review, SPR, 2021, Volume 1, issue, 4, Page No.: 216 – 219. DOI: https://doi.org/10.52152/spr/2021.136 ISSN: 2635-0955 Case Report DOI: https://doi.org/10.52152/spr/2021.136 Pupil sparing Cranial Nerve III Palsy and Hemiparesis, Weber Syndrome: A Case Report and literature review Neela Sunuwar1,*, Anu Radha Twayana2, Sagar Panthi1, Aakash Koirala1, Swotantra Gautam1 1BP Koirala Institute of Health Sciences, Sunsari, Dharan, Nepal 2Kathmandu University School of Medical Sciences, Dhulikhel, Nepal *Corresponding Author: Dr. Neela Sunuwar, BP Koirala Institute of Health Sciences, Sunsari, Dharan, Nepal, Email: [email protected] Submission Date: 4/07/2021 Acceptance Date: 1/08/2021 Published Date: 6/08/2021 ABSTRACT Midbrain stroke especially Weber syndrome is a rare case seldom reported in the literature. It involves oculomotor nerve palsy and contralateral hemiparesis. A 46-year-old female presented with sudden onset of blurring of vision along with right-sided hemiparesis, right upper motor neuron type cranial nerve (CN) VII palsy, left-sided CN III palsy, and left-sided ptosis. Magnetic resonance imaging (MRI) revealed T2 flair/hyperintensity in the left side of the midbrain, bilateral gangliocapsular regions, and centrum semiovale indicating acute infarct and chronic ischemic changes respectively as well as a high signal area on the T2/FLAIR sequence, indicating sinusitis. Ocular manifestations of a midbrain stroke are highlighted in this case study, particularly Weber syndrome, which also entails contralateral hemiparesis. A better prognosis can be achieved with early diagnosis and treatment.
    [Show full text]
  • Alternating Hemiplegia of Childhood in a Child Misdiagnosed As Intractable Epilepsy
    Published online: 2019-09-25 Letters to the Editor a rare complication of HSV‑1 meningoencephalitis: Case report This is an open access article distributed under the terms of the Creative Commons and review of the literature. Scand J Infect Dis 2006;38:63‑6. Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, 8. Shelley BP, Raniga SB, Al‑Khabouri J. An unusual and build upon the work non-commercially, as long as the author is credited and the new late complication of intracerebral haematoma in herpes creations are licensed under the identical terms. encephalitis after successful acyclovir treatment. J Neurol Sci 2007;252:177‑80. Access this article online 9. Li JZ, Sax PE. HSV‑1 encephalitis complicated by cerebral Quick Response Code: hemorrhage in an HIV‑positive person. AIDS Read Website: www.ruralneuropractice.com 2009;19:153‑5. 10. Takeuchi S, Takasato Y. Herpes simplex virus encephalitis complicated by intracerebral hematoma. Neurol India DOI: 2011;59:594‑6. 10.4103/0976-3147.196436 11. Rodríguez‑Sainz A, Escalza‑Cortina I, Guio‑Carrión L, Matute‑Nieves A, Gómez‑Beldarrain M, Carbayo‑Lozano G, et al. Intracerebral hematoma complicating herpes simplex encephalitis. Clin Neurol Neurosurg 2013;115:2041‑5. How to cite this article: Mahale RR, Mehta A, Shankar AK, Miryala A, 12. Yu W, Lee A, Welch B. Herpes simplex encephalitis presents as Acharya P, Srinivasa R. Bilateral cerebral hemorrhage in herpes simplex large temporal lobe haemorrhage. Neurol Cases 2014;1:12‑5. encephalitis: Rare occurrence. J Neurosci Rural Pract 2016;7:S128-30. Alternating Hemiplegia of Childhood in a Child Misdiagnosed as Intractable Epilepsy Sir, Although she had use two antiepileptic drugs (AEDs) for Neurofibromatosis type 1 (NF1) is an autosomal‑dominant seizures, her attacks continued.
    [Show full text]
  • A Dictionary of Neurological Signs
    FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made.
    [Show full text]
  • High-Yield Neuroanatomy, FOURTH EDITION
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • C1 PAGE.Indd
    Neurology.org/N Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Editors John J. Millichap, MD Att ending Epileptologist Ann & Robert H. Lurie Children’s Hospital of Chicago Associate Professor of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL Jonathan W. Mink, MD, PhD Frederick A. Horner, MD Endowed Professor in Pediatric Neurology Professor of Neurology, Neuroscience, and Pediatrics Chief, Division of Child Neurology Vice Chair, Department of Neurology University of Rochester Medical Center Rochester, NY Phillip L. Pearl, MD Director of Epilepsy and Clinical Neurophysiology William G. Lennox Chair, Boston Children’s Hospital Professor of Neurology Harvard Medical School Boston, MA Roy E. Strowd III, MEd, MD Assistant Professor Neurology and Oncology Wake Forest School of Medicine Winston Salem, NC © 2019 American Academy of Neurology. All rights reserved. All articles have been published in Neurology®. Opinions expressed by the authors are not necessarily those of the American Academy of Neurology, its affi liates, or of the Publisher. Th e American Academy of Neurology, its affi liates, and the Publisher disclaim any liability to any party for the accuracy, completeness, effi cacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use or non-use of any of the material contained in this publication. TABLE OF CONTENTS Neurology.org/N Section 2. Pediatric stroke and cerebrovascular disorders 25 Introduction Robert Hurford, Laura L. Lehman, Behnam Sabayan, and Mitchell S.V.
    [Show full text]
  • Assessment of Acute Motor Deficit in the Pediatric Emergency Room
    J Pediatr (Rio J). 2017;93(s1):26---35 www.jped.com.br REVIEW ARTICLE Assessment of acute motor deficit in the pediatric ଝ emergency room a,∗ b a Marcio Moacyr Vasconcelos , Luciana G.A. Vasconcelos , Adriana Rocha Brito a Universidade Federal Fluminense (UFF), Hospital Universitário Antônio Pedro, Departamento Materno Infantil, Niterói, RJ, Brazil b Associac¸ão Brasileira Beneficente de Reabilitac¸ão (ABBR), Divisão de Pediatria, Rio de Janeiro, RJ, Brazil Received 21 May 2017; accepted 28 May 2017 Available online 27 July 2017 KEYWORDS Abstract Objectives: This review article aimed to present a clinical approach, emphasizing the diagnostic Acute weakness; investigation, to children and adolescents who present in the emergency room with acute-onset Motor deficit; Guillain---Barré muscle weakness. syndrome; Sources: A systematic search was performed in PubMed database during April and May 2017, using the following search terms in various combinations: ‘‘acute,’’ ‘‘weakness,’’ ‘‘motor Transverse myelitis; Child deficit,’’ ‘‘flaccid paralysis,’’ ‘‘child,’’ ‘‘pediatric,’’ and ‘‘emergency’’. The articles chosen for this review were published over the past ten years, from 1997 through 2017. This study assessed the pediatric age range, from 0 to 18 years. Summary of the data: Acute motor deficit is a fairly common presentation in the pedi- atric emergency room. Patients may be categorized as having localized or diffuse motor impairment, and a precise description of clinical features is essential in order to allow a complete differential diagnosis. The two most common causes of acute flaccid paralysis in the pediatric emergency room are Guillain---Barré syndrome and transverse myeli- tis; notwithstanding, other etiologies should be considered, such as acute disseminated encephalomyelitis, infectious myelitis, myasthenia gravis, stroke, alternating hemiplegia of childhood, periodic paralyses, brainstem encephalitis, and functional muscle weakness.
    [Show full text]
  • 25. C:\Documents and Settings\Kwang-Il\My
    The human disease network Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi′ A-L (2007) Proc Natl Acad Sci USA 104:8685-8690 Disorder Class Bone Coats Cancer Urolithiasise Osteopetrosis disease NDP Caffey van_Buchem Exudative Cardiovascular disease disease vitreoretinopathy Norrie SLC34A1 disease 439 LRP5 Connective tissue disorder Nevo Hyperostosis, syndrome COL1A1 endosteal Dermatological PLOD1 217 PAX9 Oligodontia Osteogenesis Osteoporosis 1164 Developmental Ehlers-Danlos imperfecta syndrome Arthropathy COL3A1 Hypodontia Ear, Nose, Throat Aneurysm, COL1A2 familial_arterial Myasthenic Witkop 733 syndrome Heart syndrome Pseudoachondroplasia Endocrine 3-methylglutaconicaciduria OPA3 WISP3 Optic Marfan block MSX1 atrophy OPA1 Aortic syndrome Paramyotonia Sick_sinus Gastrointestinal aneurysm congenita syndrome 3558 Intervertebral_disc Brugada SCN4A disease syndrome Syndactyly Spondyloepiphyseal COMP COL9A2 Hematological Glaucoma Weill-Marchesani Shprintzen-Goldberg Cramps, SCN5A Zlotogora-Ogur Cleft dysplasia syndrome syndrome potassium-aggravated Myotonia 2785 syndrome palate Parkes_Weber Basal_cell FBN1 congenita Oculodentodigital COL9A3 1432 Immunological 1414 CYP1B1 syndrome nevus_syndrome MASS Hypokalemic Acquired dysplasia Peters long_QT_syndrome Epiphyseal FLNB RASA1 PTCH Keratitis syndrome periodic MATN3 Metabolic SHH anomaly Eye Ectopia Thyrotoxic paralysis dysplasia Atelosteogenesis anomalies Marshall Larson Capillary Basal_cell Holoprosencephaly Coloboma, periodic KCNH2 PVRL1 malformations GJA1 Incontinentia syndrome SLC26A2
    [Show full text]